Development of the Vestibular Lamina in Human Embryos: Morphogenesis and Vestibule Formation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
MR/R006237/1
Medical Research Council - United Kingdom
PubMed
32765288
PubMed Central
PMC7378788
DOI
10.3389/fphys.2020.00753
Knihovny.cz E-zdroje
- Klíčová slova
- apoptosis, dental pathologies, epithelial differentiation, human development, keratin, oral mucosa,
- Publikační typ
- časopisecké články MeSH
The vestibular lamina (VL) is a transient developmental structure that forms the lip furrow, creating a gap between the lips/cheeks and teeth (oral vestibule). Surprisingly, little is known about the development of the VL and its relationship to the adjacent dental lamina (DL), which forms the teeth. In some congenital disorders, such as Ellis-van Creveld (EVC) syndrome, development of the VL is disrupted and multiple supernumerary frenula form, physically linking the lips and teeth. Here, we assess the normal development of the VL in human embryos from 6.5 (CS19) to 13 weeks of development, showing the close relationship between the VL and DL, from initiation to differentiation. In the anterior lower region, the two structures arise from the same epithelial thickening. The VL then undergoes complex morphogenetic changes during development, forming a branched structure that separates to create the vestibule. Changing expression of keratins highlight the differentiation patterns in the VL, with fissure formation linked to the onset of filaggrin. Apoptosis is involved in removal of the central portion of the VL to create a broad furrow between the future cheek and gum. This research forms an essential base to further explore developmental defects in this part of the oral cavity.
Zobrazit více v PubMed
Alfaqeeh S. A., Tucker A. S. (2013). The slice culture method for following development of tooth germs in explant culture. J. Vis. Exp. 81:e50824. 10.3791/50824, PMID: PubMed DOI PMC
Bolk L. (1921). Odontological essays. J. Anat. 57, 55–75. PMID: PubMed PMC
Caparrós-Martín J. A., Valencia M., Reytor E., Pacheco M., Fernandez M., Perez-Aytes A., et al. . (2013). The ceiliary EVC/EVC2 complex interacts with smo and controls hedgehog pathway activity in chondrocytes by regulating Sufu/Gli3 dissociation and Gli3 trafficking in primary cilia. Hum. Mol. Genet. 22, 124–139. 10.1093/hmg/dds409, PMID: PubMed DOI
Coolen N. A., Schouten K. C. W. M., Middelkoop E., Ulrich M. M. W. (2010). Comparison between human fetal and adult skin. Arch. Dermatol. Res. 302, 47–55. 10.1007/s00403-009-0989-8, PMID: PubMed DOI PMC
Coslet J. G., Cohen D. W. (1969). Observations on the development of the vestibular trough in the human fetus part I. The anterior portion of the mouth. J. Periodontol. 40, 320–329. 10.1902/jop.1969.40.6.320, PMID: PubMed DOI
Dale B. A., Holbrook K. A., Kimball J. R., Hoff M., Sun T. T. (1985). Expression of epidermal keratins and filaggrin during human fetal skin development. J. Cell Biol. 101, 1257–1269. 10.1083/jcb.101.4.1257, PMID: PubMed DOI PMC
Dietrich D. R. (1993). Toxicological and pathological applications of proliferating cell nuclear antigen (PCNA), a novel endogenous marker for cell proliferation. Crit. Rev. Toxicol. 23, 77–109. 10.3109/10408449309104075 PubMed DOI
Hovorakova M., Lesot H., Peterka M., Peterkova R. (2005). The developmental relationship between the deciduous dentition and the oral vestibule in human embryos. Anat. Embryol. 209, 303–313. 10.1007/s00429-004-0441-y, PMID: PubMed DOI
Hovorakova M., Lesot H., Vonesch J. -L., Peterka M., Peterkova R. (2007). Early development of the lower deciduous dentition and oral vestibule in human embryos. Eur. J. Oral Sci. 115, 280–287. 10.1111/j.1600-0722.2007.00464.x, PMID: PubMed DOI
Hovorakova M., Lochovska K., Zahradnicek O., Tibenska K. D., Dornhoferova M., Horakova-Smrckova L., et al. . (2016). One odontogenic cell-population contributes to the development of the mouse incisors and of the oral vestibule. PLoS One 11:e0162523. 10.1371/journal.pone.0162523, PMID: PubMed DOI PMC
Hovorakova M., Zahradnicek O., Bartos M., Hurnik P., Stransky J., Stembirek J., et al. . (2020). Reawakening of ancestral dental potential as a mechanism to explain dental pathologies. Integr. Comp. Biol. icaa053. 10.1093/icb/icaa053, PMID: PubMed DOI
Kochva E. (1965). The development of the venom gland in the opisthoglyph snake Telescopus fallax with remarks on Thamnophis sirtalis. Copeia 1965, 147–154. 10.2307/1440716 DOI
Kuechle M. K., Presland R. B., Lewis S. P., Fleckman P., Dale B. A. (2000). Inducible expression of filaggrin increases keratinocyte susceptibility to apoptotic cell death. Cell Death Differ. 7, 566–573. 10.1038/sj.cdd.4400687, PMID: PubMed DOI
Lee S. C., Lee J. B., Kook J. P., Seo J. J., Nam K. I., Park S. S., et al. . (1999). Expression of differentiation markers during fetal skin development in humans: immunohistochemical studies on the precursor proteins forming the cornified cell envelope. J. Invest. Dermatol. 112, 882–886. 10.1046/j.1523-1747.1999.00602.x, PMID: PubMed DOI
Martin K. J., Rasch L. J., Cooper R. L., Metscher B. D., Johanson Z., Fraser G. J. (2016). Sox2+ progenitors in sharks link taste development with the evolution of regenerative teeth from denticles. Proc. Natl. Acad. Sci. U. S. A. 113, 14769–14774. 10.1073/pnas.1612354113 PubMed DOI PMC
Nakatomi M., Hovorakova M., Gritli-Linde A., Blair H. J., MacArthur K., Peterka M., et al. . (2013). Evc regulates a symmetrical response to Shh signaling in molar development. J. Dent. Res. 92, 222–228. 10.1177/0022034512471826, PMID: PubMed DOI
Nery E. B., Kraus B. S., Croup M. (1970). Timing and topography of early human tooth development. Arch. Oral Biol. 15, 1315–1326. 10.1016/0003-9969(70)90020-8, PMID: PubMed DOI
Pavlikova H., Witter K., Misek I. (1999). Primordium of the upper vestibulum oris in the domestic sheep. Acta Vet. Brno 68, 175–178. 10.2754/avb199968030175 DOI
Pelissier A., Ouhayoun J. P., Sawaf M. H., Forest N. (1992). Changes in cytokeratin expression during the development of the human oral mucosa. J. Periodontal Res. 27, 588–598. 10.1111/j.1600-0765.1992.tb01741.x, PMID: PubMed DOI
Peterková R. (1985). The common developmental origin and phylogenetic aspects of teeth, rugae palatinae, and fornix vestibuli oris in the mouse. J. Craniofac. Genet. Dev. Biol. 5, 89–104. PMID: PubMed
Popa E. M., Buchtova M., Tucker A. S. (2019). Revitalising the rudimentary replacement dentition in the mouse. Development 146:dev171363. 10.1242/dev.171363, PMID: PubMed DOI
Presland R. B., Kuechle M. K., Lewis S. P., Fleckman P., Dale B. A. (2001). Regulated expression of human filaggrin in keratinocytes results in cytoskeletal disruption, loss of cell-cell adhesion, and cell cycle arrest. Exp. Cell Res. 270, 199–213. 10.1006/excr.2001.5348, PMID: PubMed DOI
Sasalawad S. S., Hugar S. M., Poonacha K. S., Mallikarjuna R. (2013). Ellis-van Creveld syndrome. BMJ Case Rep. 2013:bcr2013009463. 10.1136/bcr-2013-009463, PMID: PubMed DOI PMC
Schour I. (1929). Early human tooth development, with special reference to the relationship between the dental lamina and the lip-furrow band. J. Dent. Res. 9, 699–717. 10.1177/00220345290090050801 DOI
Tonge C. H. (1969). The time-structure relationship to tooth development in human embryogenesis. J. Dent. Res. 48, 745–752. PubMed
Tucker A. S. (2010). “Salivary gland adaptations: Modification of the glands for novel uses” in Salivary glands. eds. Tucker A. S., Miletich I. (Basel: Karger; ), 21–31. PubMed
Tucker A., Sharpe P. (2004). The cutting-edge of mammalian development: how the embryo makes teeth. Nat. Rev. Genet. 5, 499–508. 10.1038/nrg1380, PMID: PubMed DOI
Verlach J., Foltan R., Vlk M., Szabo P., Smetana K. (2017). Phenotypic chacterisation of oral mucosa: what is normal? J. Oral Pathol. Med. 46, 834–839. 10.1111/jop.12556, PMID: PubMed DOI
Vonk F. J., Admiraal J. F., Jackson K., Reshef R., de Bakker M. A. G., Vanderschoot K., et al. . (2008). Evolutionary origin and development of snake fangs. Nature 454, 630–633. 10.1038/nature07178, PMID: PubMed DOI
Wang X. P., O’Connell D. J., Lund J. J., Saadi I., Kuraguchi M., Turbe-Doan A., et al. . (2009). Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 136, 1939–1949. 10.1242/dev.033803, PMID: PubMed DOI PMC
West C. M. (1924). The development of the gums and their relationship to the deciduous teeth in the human fetus. Contr. Embroyol. Carnegie Inst. 16, 25–45.
Witter K., Pavlikova H., Matulova P., Misek I. (2005). Relationship between vestibular lamina, dental lamina, and the developing oral vestibule in the upper jaw of the field vole (Microtus agrestis, Rodentia). J. Morphol. 265, 264–270. 10.1002/jmor.10356, PMID: PubMed DOI