Overcoming Waning Immunity in Pertussis Vaccines: Workshop of the National Institute of Allergy and Infectious Diseases

. 2020 Aug 15 ; 205 (4) : 877-882.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32769142

Grantová podpora
R01 AI137155 NIAID NIH HHS - United States
R21 AI116186 NIAID NIH HHS - United States
R56 AI107016 NIAID NIH HHS - United States
R01 GM113681 NIGMS NIH HHS - United States
R01 AI153250 NIAID NIH HHS - United States
MR/N026993/1 Medical Research Council - United Kingdom
R01 AI141671 NIAID NIH HHS - United States
R21 AI142678 NIAID NIH HHS - United States
R01 GM083113 NIGMS NIH HHS - United States
R56 AI065507 NIAID NIH HHS - United States
MR/N013204/1 Medical Research Council - United Kingdom

Despite high vaccine coverage in many parts of the world, pertussis is resurging in a number of areas in which acellular vaccines are the primary vaccine administered to infants and young children. This is attributed in part to the suboptimal and short-lived immunity elicited by acellular pertussis vaccines and to their inability to prevent nasal colonization and transmission of the etiologic agent Bordetella pertussis In response to this escalating public health concern, the National Institute of Allergy and Infectious Diseases held the workshop "Overcoming Waning Immunity in Pertussis Vaccines" in September 2019 to identify issues and possible solutions for the defects in immunity stimulated by acellular pertussis vaccines. Discussions covered aspects of the current problem, gaps in knowledge and possible paths forward. This review summarizes presentations and discussions of some of the key points that were raised by the workshop.

Zobrazit více v PubMed

Rohani P, Scarpino S V. Introduction to pertussis transmission and evolution. Pertussis Epidemiol. Immunol. Evol, Oxford University Press, Oxford; n.d., p. 274.

Gu XX, Plotkin SA, Edwards KM, Sette A, Mills KHG, Levy O, et al. Waning immunity and microbial vaccines-workshop of the National Institute of Allergy and infectious diseases. Clin Vaccine Immunol 2017;24. 10.1128/CVI.00034-17. PubMed DOI PMC

Dabrera G, Amirthalingam G, Andrews N, Campbell H, Ribeiro S, Kara E, et al. A case-control study to estimate the effectiveness of maternal pertussis vaccination in protecting newborn infants in England and Wales, 2012–2013. Clin Infect Dis 2015;60:333–7. 10.1093/cid/ciu821. PubMed DOI

Baxter R, Bartlett J, Fireman B, Lewis E, Klein NP. Effectiveness of vaccination during pregnancy to prevent infant pertussis. Pediatrics 2017;139. 10.1542/peds.2016-4091. PubMed DOI

Amirthalingam G, Campbell H, Ribeiro S, Fry NK, Ramsay M, Miller E, et al. Sustained Effectiveness of the Maternal Pertussis Immunization Program in England 3 Years Following Introduction. Clin Infect Dis 2016;63:S236–43. 10.1093/cid/ciw559. PubMed DOI PMC

Zerbo O, Bartlett J, Goddard K, Fireman B, Lewis E, Klein NP. Acellular pertussis vaccine effectiveness over time. Pediatrics 2019;144. 10.1542/peds.2018-3466. PubMed DOI PMC

Domenech De Cellès M, Magpantay FMG, King AA, Rohani P. The impact of past vaccination coverage and immunity on pertussis resurgence. Sci Transl Med 2018;10. 10.1126/scitranslmed.aaj1748. PubMed DOI PMC

Domenech De Cellès M, Rohani P, King AA. Duration of Immunity and Effectiveness of Diphtheria-Tetanus-Acellular Pertussis Vaccines in Children. JAMA Pediatr 2019;173:588–94. 10.1001/jamapediatrics.2019.0711. PubMed DOI PMC

Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019;10:2869. 10.3389/fimmu.2019.02869. PubMed DOI PMC

Gestal MC, Howard LK, Dewan K, Johnson HM, Barbier M, Bryant C, et al. Enhancement of immune response against Bordetella spp. by disrupting immunomodulation. Sci Rep 2019;9:20261. 10.1038/s41598-019-56652-z. PubMed DOI PMC

Wilk MM, Mills KHG. CD4 TRM cells following infection and immunization: Implications for more effective vaccine design. Front Immunol 2018;9:1860. 10.3389/fimmu.2018.01860. PubMed DOI PMC

Wilk MM, Misiak A, McManus RM, Allen AC, Lynch MA, Mills KHG. Lung CD4 Tissue-Resident Memory T Cells Mediate Adaptive Immunity Induced by Previous Infection of Mice with Bordetella pertussis. J Immunol 2017;199:233–43. 10.4049/jimmunol.1602051. PubMed DOI

Wilk MM, Borkner L, Misiak A, Curham L, Allen AC, Mills KHG. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg Microbes Infect 2019;8:169–85. 10.1080/22221751.2018.1564630. PubMed DOI PMC

Allen AC, Wilk MM, Misiak A, Borkner L, Murphy D, Mills KHG. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting TRM cells. Mucosal Immunol 2018. 10.1038/s41385-018-0080-x. PubMed DOI

Sukumar N, Love CF, Conover MS, Kock ND, Dubey P, Deora R. Active and passive immunizations with bordetella colonization factor a protect mice against respiratory challenge with bordetella bronchiseptica. Infect Immun 2009;77:885–95. 10.1128/IAI.01076-08. PubMed DOI PMC

Jennings-Gee J, Quataert S, Ganguly T, D’Agostino R, Deora R, Dubey P. The adjuvant Bordetella colonization factor A attenuates alum-induced Th2 responses and enhances Bordetella pertussis clearance from mouse lungs. Infect Immun 2018;86. 10.1128/IAI.00935-17. PubMed DOI PMC

Boehm DT, Hall JM, Wong TY, DiVenere A, Sen-Kilic E, Bevere JR, et al. Evaluation of adenylate cyclase toxoid antigen in acellular pertussis vaccines using a Bordetella pertussis challenge model in mice. Infect Immun 2018:IAI.00857–17. 10.1128/IAI.00857-17. PubMed DOI PMC

Wong TY, Hall JM, Nowak ES, Boehm DT, Gonyar LA, Hewlett EL, et al. Analysis of the In Vivo Transcriptome of Bordetella pertussis during Infection of Mice. MSphere 2019;4. 10.1128/mspheredirect.00154-19. PubMed DOI PMC

Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis SARS CoV-2 Infection - Full Text View - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/show/NCT04283461 (accessed April 7, 2020).

Ibsen PH. The effect of formaldehyde, hydrogen peroxide and genetic detoxification of pertussis toxin on epitope recognition by murine monoclonal antibodies. Vaccine 1996;14:359–68. 10.1016/0264-410X(95)00230-X. PubMed DOI

Acquaye-Seedah E, Reczek EE, Russell HH, DiVenere AM, Sandman SO, Collins JH, et al. Characterization of individual human antibodies that bind pertussis toxin stimulated by acellular immunization. Infect Immun 2018;86. 10.1128/IAI.00004-18. PubMed DOI PMC

Nencioni L, Volpini G, Peppoloni S, Bugnoli M, De Magistris T, Marsili I, et al. Properties of pertussis toxin mutant PT-9K/129G after formaldehyde treatment. Infect Immun 1991;59:625–30. PubMed PMC

Berstad AKH, Holst J, Frøholm LO, Haugen IL, Wedege E, Oftung F, et al. A nasal whole-cell pertussis vaccine induces specific systemic and cross-reactive mucosal antibody responses in human volunteers. J Med Microbiol 2000;49:157–63. 10.1099/0022-1317-49-2-157. PubMed DOI

Berstad a K, Oftung F, Korsvold GE, Haugen IL, Froholm LO, Holst J, et al. Induction of antigen-specific T cell responses in human volunteers after intranasal immunization with a whole-cell pertussis vaccine. Vaccine 2000;18:2323–30. https://doi.org/S0264-410X(00)00024-4 [pii]. PubMed

Baumann E, Binder BR, Falk W, Huber EG, Kurz R, Rosanelli K. Development and clinical use of an oral heat-inactivated whole cell pertussis vaccine. Dev Biol Stand 1985;61:511–6. PubMed

Lin A, Apostolovic D, Jahnmatz M, Liang F, Ols S, Tecleab T, et al. Live attenuated pertussis vaccine BPZE1 induces a broad antibody response in humans. J Clin Invest 2020;130. 10.1172/jci135020. PubMed DOI PMC

Zurita ME, Wilk MM, Carriquiriborde F, Bartel E, Moreno G, Misiak A, et al. A Pertussis Outer Membrane Vesicle-Based Vaccine Induces Lung-Resident Memory CD4 T Cells and Protection Against Bordetella pertussis, Including Pertactin Deficient Strains. Front Cell Infect Microbiol 2019;9:125. 10.3389/fcimb.2019.00125. PubMed DOI PMC

Kilgore AM, Pennock ND, Kedl RM. cDC1 IL-27p28 Production Predicts Vaccine-Elicited CD8 + T Cell Memory and Protective Immunity. J Immunol 2020;204:510–7. 10.4049/jimmunol.1901357. PubMed DOI PMC

Mitchell TC, Casella CR. No pain no gain? Adjuvant effects of alum and monophosphoryl lipid A in pertussis and HPV vaccines. Curr Opin Immunol 2017;47:17–25. 10.1016/j.coi.2017.06.009. PubMed DOI PMC

Rajam G, Carlone G, Kim E, Choi J, Paulos S, Park SH, et al. Development and validation of a robust multiplex serological assay to quantify antibodies specific to pertussis antigens. Biologicals 2019;57:9–20. 10.1016/j.biologicals.2018.11.001. PubMed DOI PMC

Nguyen AW, Wagner EK, Laber JR, Goodfield LL, Smallridge WE, Harvill ET, et al. A cocktail of humanized anti-pertussis toxin antibodies limits disease in murine and baboon models of whooping cough. Sci Transl Med 2015;7:316ra195. 10.1126/scitranslmed.aad0966. PubMed DOI PMC

Fumimoto R, Otsuka N, Sunagawa T, Tanaka-Taya K, Kamiya H, Kamachi K. Age-related differences in antibody avidities to pertussis toxin and filamentous hemagglutinin in a healthy Japanese population. Vaccine 2019;37:2463–9. 10.1016/j.vaccine.2019.03.055. PubMed DOI

Hovingh ES, Kuipers B, Bonačić Marinović AA, Jan Hamstra H, Hijdra D, Mughini Gras L, et al. Detection of opsonizing antibodies directed against a recently circulating Bordetella pertussis strain in paired plasma samples from symptomatic and recovered pertussis patients. Sci Rep 2018;8:1–11. 10.1038/s41598-018-30558-8. PubMed DOI PMC

Jennewein MF, Goldfarb I, Dolatshahi S, Cosgrove C, Noelette FJ, Krykbaeva M, et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell 2019;178:202–215.e14. 10.1016/j.cell.2019.05.044. PubMed DOI PMC

Fumimoto R, Otsuka N, Sunagawa T, Tanaka-Taya K, Kamiya H, Kamachi K. Age-related differences in antibody avidities to pertussis toxin and filamentous hemagglutinin in a healthy Japanese population. Vaccine 2019;37:2463–9. 10.1016/j.vaccine.2019.03.055. PubMed DOI

Naninck T, Coutte L, Mayet C, Contreras V, Locht C, Le Grand R, et al. In vivo imaging of bacterial colonization of the lower respiratory tract in a baboon model of Bordetella pertussis infection and transmission. Sci Rep 2018;8:1–11. 10.1038/s41598-018-30896-7. PubMed DOI PMC

de Graaf H, Ibrahim M, Hill AR, Gbesemete D, Vaughan AT, Gorringe A, et al. Controlled Human Infection With Bordetella pertussis Induces Asymptomatic, Immunizing Colonization. Clin Infect Dis 2019. 10.1093/cid/ciz840. PubMed DOI PMC

Publications | PERISCOPE n.d. https://periscope-project.eu/publications/ (accessed April 27, 2020).

Weigand MR, Peng Y, Loparev V, Batra D, Bowden KE, Burroughs M, et al. The history of Bordetella pertussis genome evolution includes structural rearrangement. J Bacteriol 2017;199:e00806–16. 10.1128/JB.00806-16. PubMed DOI PMC

Martin SW, Pawloski L, Williams M, Weening K, DeBolt C, Qin X, et al. Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin Infect Dis 2015;60:223–7. 10.1093/cid/ciu788. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...