Identification of Immune Regulatory Genes in Apis mellifera through Caffeine Treatment

. 2020 Aug 10 ; 11 (8) : . [epub] 20200810

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32785078

Grantová podpora
MOST107-2311-B-002-024-MY3 Ministry of Science and Technology, Taiwan

Plants and pollinators are mutually beneficial: plants provide nectar as a food source and in return their pollen is disseminated by pollinators such as honeybees. Some plants secrete chemicals to deter herbivores as a protective measure, among which is caffeine, a naturally occurring, bitter tasting, and pharmacologically active secondary compound. It can be found in low concentrations in the nectars of some plants and as such, when pollinators consume nectar, they also take in small amounts of caffeine. Whilst caffeine has been indicated as an antioxidant in both mammals and insects, the effect on insect immunity is unclear. In the present study, honeybees were treated with caffeine and the expression profiles of genes involved in immune responses were measured to evaluate the influence of caffeine on immunity. In addition, honeybees were infected with deformed wing virus (DWV) to study how caffeine affects their response against pathogens. Our results showed that caffeine can increase the expression of genes involved in immunity and reduce virus copy numbers, indicating that it has the potential to help honeybees fight against viral infection. The present study provides a valuable insight into the mechanism by which honeybees react to biotic stress and how caffeine can serve as a positive contributor, thus having a potential application in beekeeping.

Zobrazit více v PubMed

Moritz R., Härtel S., Neumann P. Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience. 2005;12:289–301. doi: 10.2980/i1195-6860-12-3-289.1. DOI

Kremen C., Williams N.M., Thorp R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA. 2002;99:16812–16816. doi: 10.1073/pnas.262413599. PubMed DOI PMC

Francis R.M., Nielsen S.L., Kryger P. Varroa-virus interaction in collapsing honey bee colonies. PLoS ONE. 2013;8:e57540. doi: 10.1371/journal.pone.0057540. PubMed DOI PMC

Vanengelsdorp D., Traynor K., Andree M., Lichtenberg E.M., Chen Y., Saegerman C., Cox-Foster D.L. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. PLoS ONE. 2017;12:e0179535. doi: 10.1371/journal.pone.0179535. PubMed DOI PMC

Nazzi F., Pennacchio F. Disentangling multiple interactions in the hive ecosystem. Trends Parasitol. 2014;30:556–561. doi: 10.1016/j.pt.2014.09.006. PubMed DOI

Cornman R.S., Tarpy D.R., Chen Y., Jeffreys L., Lopez D., Pettis J.S., Vanengelsdorp D., Evans J.D. Pathogen Webs in Collapsing Honey Bee Colonies. PLoS ONE. 2012;7:e43562. doi: 10.1371/journal.pone.0043562. PubMed DOI PMC

Cox-Foster D.L., Conlan S., Holmes E.C., Palacios G.F., Evans J.D., Moran N.A., Quan P.-L., Briese T., Hornig M., Geiser D.M., et al. A Metagenomic Survey of Microbes in Honey Bee Colony Collapse Disorder. Science. 2007;318:283–287. doi: 10.1126/science.1146498. PubMed DOI

Ellis J.D., Evans J.D., Pettis J.S. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 2010;49:134–136. doi: 10.3896/IBRA.1.49.1.30. DOI

Dolezal A.G., Hendrix S.D., Scavo N.A., Carrillo-Tripp J., Harris M.A., Wheelock M.J., O’Neal M.E., Toth A.L. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation. PLoS ONE. 2016;11:e0166190. doi: 10.1371/journal.pone.0166190. PubMed DOI PMC

Grozinger C.M., Flenniken M.L. Bee Viruses: Ecology, Pathogenicity, and Impacts. Annu. Rev. Èntomol. 2019;64:205–226. doi: 10.1146/annurev-ento-011118-111942. PubMed DOI

McMenamin A.J., Genersch E. Honey bee colony losses and associated viruses. Current Opinion in Insect Science. 2015;8:121–129. doi: 10.1016/j.cois.2015.01.015. PubMed DOI

Wilfert L., Long G., Leggett H.C., Schmid-Hempel P., Butlin R.K., Martin S.J.M., Boots M. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science. 2016;351:594–597. doi: 10.1126/science.aac9976. PubMed DOI

Nazzi F., Le Conte Y. Ecology ofVarroa destructor, the Major Ectoparasite of the Western Honey Bee, Apis mellifera. Annu. Rev. Èntomol. 2016;61:417–432. doi: 10.1146/annurev-ento-010715-023731. PubMed DOI

Berényi O., Bakonyi T., Derakhshifar I., Köglberger H., Topolska G., Ritter W., Pechhacker H., Nowotny N. Phylogenetic Analysis of Deformed Wing Virus Genotypes from Diverse Geographic Origins Indicates Recent Global Distribution of the Virus. Appl. Environ. Microbiol. 2007;73:3605–3611. doi: 10.1128/AEM.00696-07. PubMed DOI PMC

Yang X., Cox-Foster D.L. Impact of an ectoparasite on the immunity and pathology of an invertebrate: Evidence for host immunosuppression and viral amplification. Proc. Natl. Acad. Sci. USA. 2005;102:7470–7475. doi: 10.1073/pnas.0501860102. PubMed DOI PMC

Navajas M., Migeon A., Alaux C., Martin-Magniette M., Robinson G.E., Evans J.D., Cros-Arteil S., Crauser D., Le Conte Y. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genom. 2008;9:301. doi: 10.1186/1471-2164-9-301. PubMed DOI PMC

Li Q., Verma I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2002;2:725–734. doi: 10.1038/nri910. PubMed DOI

Gordon M.D., Dionne M.S., Schneider D.S., Nusse R. WntD is a feedback inhibitor of Dorsal/NF-κB in Drosophila development and immunity. Nature. 2005;437:746–749. doi: 10.1038/nature04073. PubMed DOI PMC

Xi Z., Ramirez J.L., Dimopoulos G. The Aedes aegypti Toll Pathway Controls Dengue Virus Infection. PLoS Pathog. 2008;4:e1000098. doi: 10.1371/journal.ppat.1000098. PubMed DOI PMC

Vanwalscappel B., Tada T., Landau N.R. Toll-like receptor agonist R848 blocks Zika virus replication by inducing the antiviral protein viperin. Virology. 2018;522:199–208. doi: 10.1016/j.virol.2018.07.014. PubMed DOI PMC

Evans J.D., Aronstein K., Chen Y.P., Hetru C., Imler J., Jiang H., Kanost M., Thompson G.J., Zou Z., Hultmark D. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 2006;15:645–656. doi: 10.1111/j.1365-2583.2006.00682.x. PubMed DOI PMC

Brutscher L.M., Daughenbaugh K.F., Flenniken M.L. Antiviral defense mechanisms in honey bees. Curr. Opin. Insect Sci. 2015;10:71–82. doi: 10.1016/j.cois.2015.04.016. PubMed DOI PMC

Nazzi F., Pennacchio F. Honey Bee Antiviral Immune Barriers as Affected by Multiple Stress Factors: A Novel Paradigm to Interpret Colony Health Decline and Collapse. Viruses. 2018;10:159. doi: 10.3390/v10040159. PubMed DOI PMC

Kennedy D.O., Wightman E.L. Herbal Extracts and Phytochemicals: Plant Secondary Metabolites and the Enhancement of Human Brain Function. Adv. Nutr. 2011;2:32–50. doi: 10.3945/an.110.000117. PubMed DOI PMC

Kretschmar J.A., Baumann T.W. Caffeine in Citrus flowers. Phytochemistry. 1999;52:19–23. doi: 10.1016/S0031-9422(99)00119-3. DOI

Couvillon M.J., Al Toufailia H., Butterfield T.M., Schrell F., Ratnieks F.L.W., Schurch R. Caffeinated forage tricks honeybees into increasing foraging and recruitment behaviors. Curr. Biol. 2015;25:2815–2818. doi: 10.1016/j.cub.2015.08.052. PubMed DOI

Mustard J., Dews L., Brugato A., Dey K., Wright G.A. Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee. Behav. Brain Res. 2012;232:217–224. doi: 10.1016/j.bbr.2012.04.014. PubMed DOI

Si A., Zhang S.-W., Maleszka R. Effects of caffeine on olfactory and visual learning in the honey bee (Apis mellifera) Pharmacol. Biochem. Behav. 2005;82:664–672. doi: 10.1016/j.pbb.2005.11.009. PubMed DOI

Wright G.A., Baker D.D., Palmer M.J., Stabler D., Mustard J.A., Power E.F., Borland A.M., Stevenson P.C. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science. 2013;339:1202–1204. doi: 10.1126/science.1228806. PubMed DOI PMC

Ishay J.S., Paniry V.A. Effects of Caffeine and Various Xanthines on Hornets and Bees. Psychopharmacology. 1979;65:299–309. doi: 10.1007/BF00492219. PubMed DOI

Fernandes F.L., Picanço M.C., Fernandes M., Queiroz R.B., Xavier V., Martinez H. The Effects of Nutrients and Secondary Compounds of Coffea arabica on the Behavior and Development of Coccus viridis. Environ. Èntomol. 2012;41:333–341. doi: 10.1603/EN11003. PubMed DOI

Nakayama S., Sasaki K., Matsumura K., Lewis Z., Miyatake T. Dopaminergic system as the mechanism underlying personality in a beetle. J. Insect Physiol. 2012;58:750–755. doi: 10.1016/j.jinsphys.2012.02.011. PubMed DOI

Nishi Y., Sasaki K., Miyatake T. Biogenic amines, caffeine and tonic immobility in Tribolium castaneum. J. Insect Physiol. 2010;56:622–628. doi: 10.1016/j.jinsphys.2010.01.002. PubMed DOI

Bernklau E., Bjostad L., Hogeboom A., Carlisle A., Arathi H.S. Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance. Insects. 2019;10:14. doi: 10.3390/insects10010014. PubMed DOI PMC

Hu Y.-T., Wu T.-C., Yang E.-C., Wu P.-C., Lin P.-T., Wu Y.-L. Regulation of genes related to immune signaling and detoxification in Apis mellifera by an inhibitor of histone deacetylation. Sci. Rep. 2017;7:41255. doi: 10.1038/srep41255. PubMed DOI PMC

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Gregorc A., Evans J.D., Scharf M., Ellis J.D. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor) J. Insect Physiol. 2012;58:1042–1049. doi: 10.1016/j.jinsphys.2012.03.015. PubMed DOI

Biergans S.D., Galizia C.G., Reinhard J., Claudianos C. Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees. Sci. Rep. 2015;5:16223. doi: 10.1038/srep16223. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Chang Y., Tang C.K., Lin Y.H., Tsai C.H., Lu Y.H., Wu Y.L. Snellenius manilae bracovirus suppresses the host immune system by regulating extracellular adenosine levels in Spodoptera litura. Sci. Rep. 2020;10:2096. doi: 10.1038/s41598-020-58375-y. PubMed DOI PMC

Mandal A., Poddar M.K. Long-term caffeine consumption reverses tumor-induced suppression of the innate immune response in adult mice. Planta Med. 2008;74:1779–1784. doi: 10.1055/s-0028-1088337. PubMed DOI

Barcelos R.P., Lima F.D., Carvalho N.R., Bresciani G., Royes L.F. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr. Res. 2020;80:1–17. doi: 10.1016/j.nutres.2020.05.005. PubMed DOI

Horrigan L.A., Kelly J.P., Connor T.J. Caffeine suppresses TNF-alpha production via activation of the cyclic AMP/protein kinase A pathway. Int. Immunopharmacol. 2004;4:1409–1417. doi: 10.1016/j.intimp.2004.06.005. PubMed DOI

Torgersen K.M., Vang T., Abrahamsen H., Yaqub S., Taskén K. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell. Signal. 2002;14:1–9. doi: 10.1016/S0898-6568(01)00214-5. PubMed DOI

Gil Ferreira Á., Naylor H., Esteves S.S., Pais I., E Martins N., Teixeira L. The Toll-Dorsal Pathway Is Required for Resistance to Viral Oral Infection in Drosophila. PLoS Pathog. 2014;10:e1004507. doi: 10.1371/journal.ppat.1004507. PubMed DOI PMC

Avadhanula V., Weasner B.P., Hardy G.G., Kumar J.P., Hardy R.W. A Novel System for the Launch of Alphavirus RNA Synthesis Reveals a Role for the Imd Pathway in Arthropod Antiviral Response. PLoS Pathog. 2009;5:e1000582. doi: 10.1371/journal.ppat.1000582. PubMed DOI PMC

Galbraith D.A., Yang X.Y., Nino E.L., Yi S., Grozinger C. Parallel Epigenomic and Transcriptomic Responses to Viral Infection in Honey Bees (Apis mellifera) PLoS Pathog. 2015;11:e1004713. doi: 10.1371/journal.ppat.1004713. PubMed DOI PMC

Vannette R.L., Mohamed A., Johnson B.R. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing. Sci. Rep. 2015;5:16224. doi: 10.1038/srep16224. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...