Metal- and Affinity-Specific Dual Labeling of Cysteine-Rich Proteins for Identification of Metal-Binding Sites
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32786475
PubMed Central
PMC7547867
DOI
10.1021/acs.analchem.0c01604
Knihovny.cz E-resources
- MeSH
- Hydrogen-Ion Concentration MeSH
- Humans MeSH
- Metallothionein chemistry genetics MeSH
- Binding Sites MeSH
- Zinc analysis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Metallothionein MeSH
- Zinc MeSH
Here, using human metallothionein (MT2) as an example, we describe an improved strategy based on differential alkylation coupled to MS, assisted by zinc probe monitoring, for identification of cysteine-rich binding sites with nanomolar and picomolar metal affinity utilizing iodoacetamide (IAM) and N-ethylmaleimide reagents. We concluded that an SN2 reaction provided by IAM is more suitable to label free Cys residues, avoiding nonspecific metal dissociation. Afterward, metal-bound Cys can be easily labeled in a nucleophilic addition reaction after separation by reverse-phase C18 at acidic pH. Finally, we evaluated the efficiency of the method by mapping metal-binding sites of Zn7-xMT species using a bottom-up MS approach with respect to metal-to-protein affinity and element(al) resolution. The methodology presented might be applied not only for MT2 but to identify metal-binding sites in other Cys-containing proteins.
See more in PubMed
Andreini C.; Banci L.; Bertini I.; Rosato A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 2006, 5, 196–201. 10.1021/pr050361j. PubMed DOI
Andreini C.; Banci L.; Bertini I.; Rosato A. Zinc through the three domains of life. J. Proteome Res. 2006, 5, 3173–3178. 10.1021/pr0603699. PubMed DOI
Kochańczyk T.; Drozd A.; Krężel A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins - insights into zinc regulation. Metallomics. 2015, 7, 244–257. 10.1039/C4MT00094C. PubMed DOI
Maret W.; Li Y. Coordination dynamics of zinc in proteins. Chem. Rev. 2009, 109, 4682–4707. 10.1021/cr800556u. PubMed DOI
Maret W. Metals on the Move: Zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. BioMetals 2011, 24, 411–418. 10.1007/s10534-010-9406-1. PubMed DOI
Ye B.; Maret W.; Vallee B. L. Zinc metallothionein imported into liver mitochondria modulates respiration. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 2317–2322. 10.1073/pnas.041619198. PubMed DOI PMC
Apostolova M. D.; Ivanova I. A.; Cherian M. G. Metallothionein and apoptosis during differentiation of myoblasts to myotubes: protection against free radical toxicity. Toxicol. Appl. Pharmacol. 1999, 159, 175–184. 10.1006/taap.1999.8755. PubMed DOI
Krężel A.; Maret W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 2017, 18, 1237.10.3390/ijms18061237. PubMed DOI PMC
Blindauer C. A.; Leszczyszyn O. I. Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat. Prod. Rep. 2010, 27, 720–741. 10.1039/b906685n. PubMed DOI
Capdevila M.; Atrian S. Metallothionein protein evolution: a miniassay. JBIC, J. Biol. Inorg. Chem. 2011, 16, 977–989. 10.1007/s00775-011-0798-3. PubMed DOI
Banci L.; Bertini I. In Metallomics and the Cell; Banci L., Ed.; Springer, 2013; pp 1–13. PubMed
Maret W.Zinc and Zinc Ions in Biological Systems. In Encyclopedia of Metalloproteins; Kretsinger R. H., Uversky V. N., Permyakov E. A., Eds.; Springer-Verlag: New York, 2013; p 87.
Paulsen C. E.; Carroll K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 2013, 113, 4633–4679. 10.1021/cr300163e. PubMed DOI PMC
Chung H. S.; Wang S.-B.; Venkatraman V.; Murray C. I.; Van Eyk J. E. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ. Res. 2013, 112, 382–392. 10.1161/CIRCRESAHA.112.268680. PubMed DOI PMC
Beck-Sickinger A. G.; Mörl K.. Posttranslational Modification of Proteins: Expanding Nature’s Inventory; Roberts & Co. Publishers: Englewood, CO, 2005; pp 121–123.
Gunnoo S. B.; Madder A. Chemical protein modification through cysteine. ChemBioChem 2016, 17, 529–553. 10.1002/cbic.201500667. PubMed DOI
Maret W. The redox biology of redox-inert zinc ions. Free Radical Biol. Med. 2019, 134, 311–326. 10.1016/j.freeradbiomed.2019.01.006. PubMed DOI
Krężel A.; Maret W. Zinc-buffering capacity of a eukaryotic cell at physiological pZn. JBIC, J. Biol. Inorg. Chem. 2006, 11, 1049–1062. 10.1007/s00775-006-0150-5. PubMed DOI
Krężel A.; Hao Q.; Maret W. Zinc/Thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch. Biochem. Biophys. 2007, 463, 188–200. 10.1016/j.abb.2007.02.017. PubMed DOI
Hartwig A. Metal interaction with redox regulation: an integrating concept in metal carcinogenesis?. Free Radical Biol. Med. 2013, 55, 63–72. 10.1016/j.freeradbiomed.2012.11.009. PubMed DOI
Alcock L. J.; Perkins M. V.; Chalker J. M. Chemical methods for mapping cysteine oxidation. Chem. Soc. Rev. 2018, 47, 231–268. 10.1039/C7CS00607A. PubMed DOI
Chalker J. M.; Bernardes G. J. L.; Lin Y. A.; Davis B. G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. - Asian J. 2009, 4, 630–640. 10.1002/asia.200800427. PubMed DOI
Awoonor-Williams E.; Rowley C. N. Evaluation of methods for the calculation of the pKa of cysteine residues in proteins. J. Chem. Theory Comput. 2016, 12, 4662–4673. 10.1021/acs.jctc.6b00631. PubMed DOI
Marino S. M.; Gladyshev V. N. Analysis and functional prediction of reactive cysteine residues. J. Biol. Chem. 2012, 287, 4419–4425. 10.1074/jbc.R111.275578. PubMed DOI PMC
Wojdyla K.; Rogowska-Wrzesinska A. Differential alkylation-based redox proteomics - lessons learnt. Redox Biol. 2015, 6, 240–252. 10.1016/j.redox.2015.08.005. PubMed DOI PMC
Paulech J.; Solis N.; Cordwell S. J. Characterization of reaction conditions providing rapid and specific cysteine alkylation for peptide-based mass spectrometry. Biochim. Biophys. Acta, Proteins Proteomics 2013, 1834, 372–379. 10.1016/j.bbapap.2012.08.002. PubMed DOI
Hill B. G.; Reily C.; Oh J. Y.; Johnson M. S.; Landar A. Methods for the determination and quantification of the reactive thiol proteome. Free Radical Biol. Med. 2009, 47, 675–683. 10.1016/j.freeradbiomed.2009.06.012. PubMed DOI PMC
Chen S. H.; Russell D. H. Reaction of human Cd7metallothionein and N-Ethylmaleimide: kinetic and structural insights from electrospray ionization mass spectrometry. Biochemistry 2015, 54 (39), 6021–6028. 10.1021/acs.biochem.5b00545. PubMed DOI
Bernhard W. R.; Vašák M.; Kägi J. H. R. Cadmium binding and metal cluster formation in metallothionein: a differential modification study. Biochemistry 1986, 25, 1975–1980. 10.1021/bi00356a021. PubMed DOI
Shaw C. F.; He L.; Muñoz A.; Savas M. M.; Chi S.; Fink C. L.; Gan T.; Petering D. H. Kinetics of reversible N-Ethylmaleimide alkylation of metallothionein and the subsequent metal release. JBIC, J. Biol. Inorg. Chem. 1997, 2, 65–73. 10.1007/s007750050107. DOI
Drozd A.; Wojewska D.; Peris-Díaz M. D.; Jakimowicz P.; Krȩzel A. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2. Metallomics 2018, 10, 595–613. 10.1039/C7MT00332C. PubMed DOI
Seiwert B.; Hayen H.; Karst U. Differential labeling of free and disulfide-bound thiol functions in proteins. J. Am. Soc. Mass Spectrom. 2008, 19, 1–7. 10.1016/j.jasms.2007.10.001. PubMed DOI
Schilling B.; Yoo C. B.; Collins C. J.; Gibson B. W. Determining cysteine oxidation status using differential alkylation. Int. J. Mass Spectrom. 2004, 236, 117–127. 10.1016/j.ijms.2004.06.004. DOI
McDonagh B.; Sakellariou G. K.; Smith N. T.; Brownridge P.; Jackson M. J. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging. J. Proteome Res. 2014, 13, 5008–5021. 10.1021/pr5006394. PubMed DOI PMC
Held J. M.; Danielson S. R.; Behring J. B.; Atsriku C.; Britton D. J.; Puckett R. L.; Schilling B.; Campisi J.; Benz C. C.; Gibson B. W. Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach. Mol. Cell. Proteomics 2010, 9, 1400–1410. 10.1074/mcp.M900643-MCP200. PubMed DOI PMC
Weerapana E.; Wang C.; Simon G. M.; Richter F.; Khare S.; Dillon M. B. D.; Bachovchin D. A.; Mowen K.; Baker D.; Cravatt B. F. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 2010, 468, 790–797. 10.1038/nature09472. PubMed DOI PMC
Chen S.-H.; Russell W. K.; Russell D. H. Combining chemical labeling, bottom-up and top-down ion-mobility mass spectrometry to identify metal-binding sites of partially metalated metallothionein. Anal. Chem. 2013, 85, 3229–3237. 10.1021/ac303522h. PubMed DOI
Hong S.-H.; Hao Q.; Maret W. Domain-specific fluorescence resonance energy transfer (fret) sensors of metallothionein/thionein. Protein Eng., Des. Sel. 2005, 18, 255–263. 10.1093/protein/gzi031. PubMed DOI
Potier N.; Rogniaux H.; Chevreux G.; Van Dorsselaer A. Ligand-metal ion binding to proteins: investigation by ESI mass spectrometry. Methods Enzymol. 2005, 402, 361–389. 10.1016/S0076-6879(05)02011-2. PubMed DOI
Irvine G. W.; Santolini M.; Stillman M. J. Selective cysteine modification of metal-free human metallothionein 1a and its isolated domain fragments: solution structural properties revealed via ESI-MS. Protein Sci. 2017, 26, 960–971. 10.1002/pro.3139. PubMed DOI PMC
Chen S.-H.; Chen L.; Russell D. H. Metal-induced conformational changes of human metallothionein-2a: a combined theoretical and experimental study of metal-free and partially metalated intermediates. J. Am. Chem. Soc. 2014, 136, 9499–9508. 10.1021/ja5047878. PubMed DOI
Pace N. J.; Weerapana E. A competitive chemical-proteomic platform to identify zinc-binding cysteines. ACS Chem. Biol. 2014, 9, 258–265. 10.1021/cb400622q. PubMed DOI
Puljung M. C.; Zagotta W. N. Labeling of specific cysteines in proteins using reversible metal protection. Biophys. J. 2011, 100, 2513–2521. 10.1016/j.bpj.2011.03.063. PubMed DOI PMC
Lee Y. M.; Lim C. Factors controlling the reactivity of zinc finger cores. J. Am. Chem. Soc. 2011, 133, 8691–8703. 10.1021/ja202165x. PubMed DOI
Scotcher J.; Clarke D. J.; Weidt S. K.; Mackay C. L.; Hupp T. R.; Sadler P. J.; Langridge-Smith P. R. R. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 2011, 22, 888–897. 10.1007/s13361-011-0088-x. PubMed DOI
Kopera E.; Schwerdtle T.; Hartwig A.; Bal W. Co(II) and Cd(II) substitute for zn(ii) in the zinc finger derived from the dna repair protein xpa, demonstrating a variety of potential mechanisms of toxicity. Chem. Res. Toxicol. 2004, 17, 1452–1458. 10.1021/tx049842s. PubMed DOI
Krȩżel A.; Maret W. Dual nanomolar and picomolar zn(ii) binding properties of metallothionein. J. Am. Chem. Soc. 2007, 129, 10911–10921. 10.1021/ja071979s. PubMed DOI
Britto P. J.; Knipling L.; Wolff J. The local electrostatic environment determines cysteine reactivity of tubulin. J. Biol. Chem. 2002, 277, 29018–29027. 10.1074/jbc.M204263200. PubMed DOI
Chen S. H.; Chen L. X.; Russell D. H. Metal-induced conformational changes of human metallothionein-2a: a combined theoretical and experimental study of metal-free and partially metalated intermediates. J. Am. Chem. Soc. 2014, 136, 9499–9508. 10.1021/ja5047878. PubMed DOI
Poltash M. L.; McCabe J. W.; Shirzadeh M.; Laganowsky A.; Clowers B. H.; Russell D. H. Fourier transform-ion mobility-orbitrap mass spectrometer: a next-generation instrument for native mass spectrometry. Anal. Chem. 2018, 90, 10472–10478. 10.1021/acs.analchem.8b02463. PubMed DOI PMC
Rose R. J.; Damoc E.; Denisov E.; Makarov A.; Heck A. J. R. High-sensitivity orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 2012, 9, 1084–1086. 10.1038/nmeth.2208. PubMed DOI
Kondrat F. D. L.; Kowald G. R.; Scarff C. A.; Scrivens J. H.; Blindauer C. A. Resolution of a paradox by native mass spectrometry: facile occupation of all four metal binding sites in the dimeric zinc sensor SmtB. Chem. Commun. 2013, 49, 813–815. 10.1039/C2CC38387J. PubMed DOI
Martin E. M.; Kondrat F. D. L.; Stewart A. J.; Scrivens J. H.; Sadler P. J.; Blindauer C. A. Native electrospray mass spectrometry approaches to probe the interaction between zinc and an anti-angiogenic peptide from histidine-rich glycoprotein. Sci. Rep. 2018, 8, 8646.10.1038/s41598-018-26924-1. PubMed DOI PMC
Pagel K.; Natan E.; Hall Z.; Fersht A. R.; Robinson C. V. Intrinsically disordered p53 and its complexes populate compact conformations in the gas phase. Angew. Chem., Int. Ed. 2013, 52, 361–365. 10.1002/anie.201203047. PubMed DOI
Jurneczko E.; Cruickshank F.; Porrini M.; Clarke D. J.; Campuzano I. D. G.; Morris M.; Nikolova P. V.; Barran P. E. Probing the conformational diversity of cancer-associated mutations in p53 with ion-mobility mass spectrometry. Angew. Chem., Int. Ed. 2013, 52, 4370–4374. 10.1002/anie.201210015. PubMed DOI
Arlt C.; Flegler V.; Ihling C. H.; Schäfer M.; Thondorf I.; Sinz A. An integrated mass spectrometry based approach to probe the structure of the full-length wild-type tetrameric p53 tumor suppressor. Angew. Chem., Int. Ed. 2017, 56, 275–279. 10.1002/anie.201609826. PubMed DOI
Perez-Zúñiga C.; Leiva-Presa A.; Austin R. N.; Capdevila M.; Palacios O. Pb(Ii) binding to the brain specific mammalian metallothionein isoform MT3 and its isolated αMT3 and βMT3 domains. Metallomics 2019, 11, 349–361. 10.1039/C8MT00294K. PubMed DOI
Yu X.; Wojciechowski M.; Fenselau C. Assessment of metals in reconstituted metallothioneins by electrospray mass spectrometry. Anal. Chem. 1993, 65, 1355–1359. 10.1021/ac00058a010. PubMed DOI
Peris-Díaz M. D.; Richtera L.; Zitka O.; Krężel A.; Adam V. A chemometric-assisted voltammetric analysis of free and Zn(II)-loaded metallothionein-3 states. Bioelectrochemistry 2020, 134, 107501.10.1016/j.bioelechem.2020.107501. PubMed DOI
Mendoza V. L.; Vachet R. W. Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom. Rev. 2009, 28, 785–815. 10.1002/mas.20203. PubMed DOI PMC
He L.; Weisbrod C. R.; Marshall A. G. Protein de novo sequencing by top-down and middle-down ms/ms: limitations imposed by mass measurement accuracy and gaps in sequence coverage. Int. J. Mass Spectrom. 2018, 427, 107–113. 10.1016/j.ijms.2017.11.012. DOI
Powlowski J.; Sahlman L. Reactivity of the two essential cysteine residues of the periplasmic mercuric ion-binding protein, MerP. J. Biol. Chem. 1999, 274, 33320–33326. 10.1074/jbc.274.47.33320. PubMed DOI
Sikorska M.; Krężel A.; Otlewski J. Femtomolar Zn2+ affinity of lim domain of pdlim1 protein uncovers crucial contribution of protein-protein interactions to protein stability. J. Inorg. Biochem. 2012, 115, 28–35. 10.1016/j.jinorgbio.2012.05.009. PubMed DOI
Kochanczyk T.; Nowakowski M.; Wojewska D.; Kocyla A.; Ejchart A.; Kozminski W.; Krężel A. Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly. Sci. Rep. 2016, 6, 36346.10.1038/srep36346. PubMed DOI PMC
Kocyła A.; Pomorski A.; Krężel A. Molar absorption coefficients and stability constants of zincon metal complexes for determination of metal ions and bioinorganic applications. J. Inorg. Biochem. 2017, 176, 53–65. 10.1016/j.jinorgbio.2017.08.006. PubMed DOI
Kocyła A.; Pomorski A.; Krężel A. Molar absorption coefficients and stability constants of metal complexes of 4-(2-Pyridylazo)Resorcinol (PAR): revisiting common chelating probe for the study of metalloproteins. J. Inorg. Biochem. 2015, 152, 82–92. 10.1016/j.jinorgbio.2015.08.024. PubMed DOI
Suckau D.; Resemann A.; Schuerenberg M.; Hufnagel P.; Franzen J.; Holle A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 2003, 376, 952–965. 10.1007/s00216-003-2057-0. PubMed DOI
Bakhtiari M.; Konermann L. Protein ions generated by native electrospray ionization: comparison of gas phase, solution, and crystal structures. J. Phys. Chem. B 2019, 123, 1784–1796. 10.1021/acs.jpcb.8b12173. PubMed DOI
Konermann L. Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28, 1827–1835. 10.1007/s13361-017-1739-3. PubMed DOI
Xia Z.; Degrandchamp J. B.; Williams E. R. Native mass spectrometry beyond ammonium acetate: effects of nonvolatile salts on protein stability and structure. Analyst 2019, 144, 2565–2573. 10.1039/C9AN00266A. PubMed DOI
Susa A. C.; Xia Z.; Williams E. R. Small emitter tips for native mass spectrometry of proteins and protein complexes from nonvolatile buffers that mimic the intracellular environment. Anal. Chem. 2017, 89, 3116–3122. 10.1021/acs.analchem.6b04897. PubMed DOI
Vasak M.; Kagi J. H. R.; Hill H. A. O. Zinc(II), Cadmium(II), and Mercury(II) thiolate transitions in metallothionein. Biochemistry 1981, 20, 2852–2856. 10.1021/bi00513a022. PubMed DOI
Hong S. H.; Toyama M.; Maret W.; Murooka Y. High yield expression and single step purification of human thionein/metallothionen. Protein Expression Purif. 2001, 21, 243–250. 10.1006/prep.2000.1372. PubMed DOI
Dong S.; Wagner N. D.; Russell D. H. Collision-induced unfolding of partially metalated metallothionein-2a: tracking unfolding reactions of gas-phase ions. Anal. Chem. 2018, 90, 11856–11862. 10.1021/acs.analchem.8b01622. PubMed DOI PMC
Irvine G. W.; Pinter T. B. J.; Stillman M. J. Defining the metal binding pathways of human metallothionein 1a: balancing zinc availability and cadmium seclusion. Metallomics 2016, 8, 71–81. 10.1039/C5MT00225G. PubMed DOI