• This record comes from PubMed

Metal- and Affinity-Specific Dual Labeling of Cysteine-Rich Proteins for Identification of Metal-Binding Sites

. 2020 Oct 06 ; 92 (19) : 12950-12958. [epub] 20200910

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Here, using human metallothionein (MT2) as an example, we describe an improved strategy based on differential alkylation coupled to MS, assisted by zinc probe monitoring, for identification of cysteine-rich binding sites with nanomolar and picomolar metal affinity utilizing iodoacetamide (IAM) and N-ethylmaleimide reagents. We concluded that an SN2 reaction provided by IAM is more suitable to label free Cys residues, avoiding nonspecific metal dissociation. Afterward, metal-bound Cys can be easily labeled in a nucleophilic addition reaction after separation by reverse-phase C18 at acidic pH. Finally, we evaluated the efficiency of the method by mapping metal-binding sites of Zn7-xMT species using a bottom-up MS approach with respect to metal-to-protein affinity and element(al) resolution. The methodology presented might be applied not only for MT2 but to identify metal-binding sites in other Cys-containing proteins.

See more in PubMed

Andreini C.; Banci L.; Bertini I.; Rosato A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 2006, 5, 196–201. 10.1021/pr050361j. PubMed DOI

Andreini C.; Banci L.; Bertini I.; Rosato A. Zinc through the three domains of life. J. Proteome Res. 2006, 5, 3173–3178. 10.1021/pr0603699. PubMed DOI

Kochańczyk T.; Drozd A.; Krężel A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins - insights into zinc regulation. Metallomics. 2015, 7, 244–257. 10.1039/C4MT00094C. PubMed DOI

Maret W.; Li Y. Coordination dynamics of zinc in proteins. Chem. Rev. 2009, 109, 4682–4707. 10.1021/cr800556u. PubMed DOI

Maret W. Metals on the Move: Zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. BioMetals 2011, 24, 411–418. 10.1007/s10534-010-9406-1. PubMed DOI

Ye B.; Maret W.; Vallee B. L. Zinc metallothionein imported into liver mitochondria modulates respiration. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 2317–2322. 10.1073/pnas.041619198. PubMed DOI PMC

Apostolova M. D.; Ivanova I. A.; Cherian M. G. Metallothionein and apoptosis during differentiation of myoblasts to myotubes: protection against free radical toxicity. Toxicol. Appl. Pharmacol. 1999, 159, 175–184. 10.1006/taap.1999.8755. PubMed DOI

Krężel A.; Maret W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 2017, 18, 1237.10.3390/ijms18061237. PubMed DOI PMC

Blindauer C. A.; Leszczyszyn O. I. Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat. Prod. Rep. 2010, 27, 720–741. 10.1039/b906685n. PubMed DOI

Capdevila M.; Atrian S. Metallothionein protein evolution: a miniassay. JBIC, J. Biol. Inorg. Chem. 2011, 16, 977–989. 10.1007/s00775-011-0798-3. PubMed DOI

Banci L.; Bertini I. In Metallomics and the Cell; Banci L., Ed.; Springer, 2013; pp 1–13. PubMed

Maret W.Zinc and Zinc Ions in Biological Systems. In Encyclopedia of Metalloproteins; Kretsinger R. H., Uversky V. N., Permyakov E. A., Eds.; Springer-Verlag: New York, 2013; p 87.

Paulsen C. E.; Carroll K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem. Rev. 2013, 113, 4633–4679. 10.1021/cr300163e. PubMed DOI PMC

Chung H. S.; Wang S.-B.; Venkatraman V.; Murray C. I.; Van Eyk J. E. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ. Res. 2013, 112, 382–392. 10.1161/CIRCRESAHA.112.268680. PubMed DOI PMC

Beck-Sickinger A. G.; Mörl K.. Posttranslational Modification of Proteins: Expanding Nature’s Inventory; Roberts & Co. Publishers: Englewood, CO, 2005; pp 121–123.

Gunnoo S. B.; Madder A. Chemical protein modification through cysteine. ChemBioChem 2016, 17, 529–553. 10.1002/cbic.201500667. PubMed DOI

Maret W. The redox biology of redox-inert zinc ions. Free Radical Biol. Med. 2019, 134, 311–326. 10.1016/j.freeradbiomed.2019.01.006. PubMed DOI

Krężel A.; Maret W. Zinc-buffering capacity of a eukaryotic cell at physiological pZn. JBIC, J. Biol. Inorg. Chem. 2006, 11, 1049–1062. 10.1007/s00775-006-0150-5. PubMed DOI

Krężel A.; Hao Q.; Maret W. Zinc/Thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch. Biochem. Biophys. 2007, 463, 188–200. 10.1016/j.abb.2007.02.017. PubMed DOI

Hartwig A. Metal interaction with redox regulation: an integrating concept in metal carcinogenesis?. Free Radical Biol. Med. 2013, 55, 63–72. 10.1016/j.freeradbiomed.2012.11.009. PubMed DOI

Alcock L. J.; Perkins M. V.; Chalker J. M. Chemical methods for mapping cysteine oxidation. Chem. Soc. Rev. 2018, 47, 231–268. 10.1039/C7CS00607A. PubMed DOI

Chalker J. M.; Bernardes G. J. L.; Lin Y. A.; Davis B. G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. - Asian J. 2009, 4, 630–640. 10.1002/asia.200800427. PubMed DOI

Awoonor-Williams E.; Rowley C. N. Evaluation of methods for the calculation of the pKa of cysteine residues in proteins. J. Chem. Theory Comput. 2016, 12, 4662–4673. 10.1021/acs.jctc.6b00631. PubMed DOI

Marino S. M.; Gladyshev V. N. Analysis and functional prediction of reactive cysteine residues. J. Biol. Chem. 2012, 287, 4419–4425. 10.1074/jbc.R111.275578. PubMed DOI PMC

Wojdyla K.; Rogowska-Wrzesinska A. Differential alkylation-based redox proteomics - lessons learnt. Redox Biol. 2015, 6, 240–252. 10.1016/j.redox.2015.08.005. PubMed DOI PMC

Paulech J.; Solis N.; Cordwell S. J. Characterization of reaction conditions providing rapid and specific cysteine alkylation for peptide-based mass spectrometry. Biochim. Biophys. Acta, Proteins Proteomics 2013, 1834, 372–379. 10.1016/j.bbapap.2012.08.002. PubMed DOI

Hill B. G.; Reily C.; Oh J. Y.; Johnson M. S.; Landar A. Methods for the determination and quantification of the reactive thiol proteome. Free Radical Biol. Med. 2009, 47, 675–683. 10.1016/j.freeradbiomed.2009.06.012. PubMed DOI PMC

Chen S. H.; Russell D. H. Reaction of human Cd7metallothionein and N-Ethylmaleimide: kinetic and structural insights from electrospray ionization mass spectrometry. Biochemistry 2015, 54 (39), 6021–6028. 10.1021/acs.biochem.5b00545. PubMed DOI

Bernhard W. R.; Vašák M.; Kägi J. H. R. Cadmium binding and metal cluster formation in metallothionein: a differential modification study. Biochemistry 1986, 25, 1975–1980. 10.1021/bi00356a021. PubMed DOI

Shaw C. F.; He L.; Muñoz A.; Savas M. M.; Chi S.; Fink C. L.; Gan T.; Petering D. H. Kinetics of reversible N-Ethylmaleimide alkylation of metallothionein and the subsequent metal release. JBIC, J. Biol. Inorg. Chem. 1997, 2, 65–73. 10.1007/s007750050107. DOI

Drozd A.; Wojewska D.; Peris-Díaz M. D.; Jakimowicz P.; Krȩzel A. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2. Metallomics 2018, 10, 595–613. 10.1039/C7MT00332C. PubMed DOI

Seiwert B.; Hayen H.; Karst U. Differential labeling of free and disulfide-bound thiol functions in proteins. J. Am. Soc. Mass Spectrom. 2008, 19, 1–7. 10.1016/j.jasms.2007.10.001. PubMed DOI

Schilling B.; Yoo C. B.; Collins C. J.; Gibson B. W. Determining cysteine oxidation status using differential alkylation. Int. J. Mass Spectrom. 2004, 236, 117–127. 10.1016/j.ijms.2004.06.004. DOI

McDonagh B.; Sakellariou G. K.; Smith N. T.; Brownridge P.; Jackson M. J. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging. J. Proteome Res. 2014, 13, 5008–5021. 10.1021/pr5006394. PubMed DOI PMC

Held J. M.; Danielson S. R.; Behring J. B.; Atsriku C.; Britton D. J.; Puckett R. L.; Schilling B.; Campisi J.; Benz C. C.; Gibson B. W. Targeted quantitation of site-specific cysteine oxidation in endogenous proteins using a differential alkylation and multiple reaction monitoring mass spectrometry approach. Mol. Cell. Proteomics 2010, 9, 1400–1410. 10.1074/mcp.M900643-MCP200. PubMed DOI PMC

Weerapana E.; Wang C.; Simon G. M.; Richter F.; Khare S.; Dillon M. B. D.; Bachovchin D. A.; Mowen K.; Baker D.; Cravatt B. F. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 2010, 468, 790–797. 10.1038/nature09472. PubMed DOI PMC

Chen S.-H.; Russell W. K.; Russell D. H. Combining chemical labeling, bottom-up and top-down ion-mobility mass spectrometry to identify metal-binding sites of partially metalated metallothionein. Anal. Chem. 2013, 85, 3229–3237. 10.1021/ac303522h. PubMed DOI

Hong S.-H.; Hao Q.; Maret W. Domain-specific fluorescence resonance energy transfer (fret) sensors of metallothionein/thionein. Protein Eng., Des. Sel. 2005, 18, 255–263. 10.1093/protein/gzi031. PubMed DOI

Potier N.; Rogniaux H.; Chevreux G.; Van Dorsselaer A. Ligand-metal ion binding to proteins: investigation by ESI mass spectrometry. Methods Enzymol. 2005, 402, 361–389. 10.1016/S0076-6879(05)02011-2. PubMed DOI

Irvine G. W.; Santolini M.; Stillman M. J. Selective cysteine modification of metal-free human metallothionein 1a and its isolated domain fragments: solution structural properties revealed via ESI-MS. Protein Sci. 2017, 26, 960–971. 10.1002/pro.3139. PubMed DOI PMC

Chen S.-H.; Chen L.; Russell D. H. Metal-induced conformational changes of human metallothionein-2a: a combined theoretical and experimental study of metal-free and partially metalated intermediates. J. Am. Chem. Soc. 2014, 136, 9499–9508. 10.1021/ja5047878. PubMed DOI

Pace N. J.; Weerapana E. A competitive chemical-proteomic platform to identify zinc-binding cysteines. ACS Chem. Biol. 2014, 9, 258–265. 10.1021/cb400622q. PubMed DOI

Puljung M. C.; Zagotta W. N. Labeling of specific cysteines in proteins using reversible metal protection. Biophys. J. 2011, 100, 2513–2521. 10.1016/j.bpj.2011.03.063. PubMed DOI PMC

Lee Y. M.; Lim C. Factors controlling the reactivity of zinc finger cores. J. Am. Chem. Soc. 2011, 133, 8691–8703. 10.1021/ja202165x. PubMed DOI

Scotcher J.; Clarke D. J.; Weidt S. K.; Mackay C. L.; Hupp T. R.; Sadler P. J.; Langridge-Smith P. R. R. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 2011, 22, 888–897. 10.1007/s13361-011-0088-x. PubMed DOI

Kopera E.; Schwerdtle T.; Hartwig A.; Bal W. Co(II) and Cd(II) substitute for zn(ii) in the zinc finger derived from the dna repair protein xpa, demonstrating a variety of potential mechanisms of toxicity. Chem. Res. Toxicol. 2004, 17, 1452–1458. 10.1021/tx049842s. PubMed DOI

Krȩżel A.; Maret W. Dual nanomolar and picomolar zn(ii) binding properties of metallothionein. J. Am. Chem. Soc. 2007, 129, 10911–10921. 10.1021/ja071979s. PubMed DOI

Britto P. J.; Knipling L.; Wolff J. The local electrostatic environment determines cysteine reactivity of tubulin. J. Biol. Chem. 2002, 277, 29018–29027. 10.1074/jbc.M204263200. PubMed DOI

Chen S. H.; Chen L. X.; Russell D. H. Metal-induced conformational changes of human metallothionein-2a: a combined theoretical and experimental study of metal-free and partially metalated intermediates. J. Am. Chem. Soc. 2014, 136, 9499–9508. 10.1021/ja5047878. PubMed DOI

Poltash M. L.; McCabe J. W.; Shirzadeh M.; Laganowsky A.; Clowers B. H.; Russell D. H. Fourier transform-ion mobility-orbitrap mass spectrometer: a next-generation instrument for native mass spectrometry. Anal. Chem. 2018, 90, 10472–10478. 10.1021/acs.analchem.8b02463. PubMed DOI PMC

Rose R. J.; Damoc E.; Denisov E.; Makarov A.; Heck A. J. R. High-sensitivity orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 2012, 9, 1084–1086. 10.1038/nmeth.2208. PubMed DOI

Kondrat F. D. L.; Kowald G. R.; Scarff C. A.; Scrivens J. H.; Blindauer C. A. Resolution of a paradox by native mass spectrometry: facile occupation of all four metal binding sites in the dimeric zinc sensor SmtB. Chem. Commun. 2013, 49, 813–815. 10.1039/C2CC38387J. PubMed DOI

Martin E. M.; Kondrat F. D. L.; Stewart A. J.; Scrivens J. H.; Sadler P. J.; Blindauer C. A. Native electrospray mass spectrometry approaches to probe the interaction between zinc and an anti-angiogenic peptide from histidine-rich glycoprotein. Sci. Rep. 2018, 8, 8646.10.1038/s41598-018-26924-1. PubMed DOI PMC

Pagel K.; Natan E.; Hall Z.; Fersht A. R.; Robinson C. V. Intrinsically disordered p53 and its complexes populate compact conformations in the gas phase. Angew. Chem., Int. Ed. 2013, 52, 361–365. 10.1002/anie.201203047. PubMed DOI

Jurneczko E.; Cruickshank F.; Porrini M.; Clarke D. J.; Campuzano I. D. G.; Morris M.; Nikolova P. V.; Barran P. E. Probing the conformational diversity of cancer-associated mutations in p53 with ion-mobility mass spectrometry. Angew. Chem., Int. Ed. 2013, 52, 4370–4374. 10.1002/anie.201210015. PubMed DOI

Arlt C.; Flegler V.; Ihling C. H.; Schäfer M.; Thondorf I.; Sinz A. An integrated mass spectrometry based approach to probe the structure of the full-length wild-type tetrameric p53 tumor suppressor. Angew. Chem., Int. Ed. 2017, 56, 275–279. 10.1002/anie.201609826. PubMed DOI

Perez-Zúñiga C.; Leiva-Presa A.; Austin R. N.; Capdevila M.; Palacios O. Pb(Ii) binding to the brain specific mammalian metallothionein isoform MT3 and its isolated αMT3 and βMT3 domains. Metallomics 2019, 11, 349–361. 10.1039/C8MT00294K. PubMed DOI

Yu X.; Wojciechowski M.; Fenselau C. Assessment of metals in reconstituted metallothioneins by electrospray mass spectrometry. Anal. Chem. 1993, 65, 1355–1359. 10.1021/ac00058a010. PubMed DOI

Peris-Díaz M. D.; Richtera L.; Zitka O.; Krężel A.; Adam V. A chemometric-assisted voltammetric analysis of free and Zn(II)-loaded metallothionein-3 states. Bioelectrochemistry 2020, 134, 107501.10.1016/j.bioelechem.2020.107501. PubMed DOI

Mendoza V. L.; Vachet R. W. Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom. Rev. 2009, 28, 785–815. 10.1002/mas.20203. PubMed DOI PMC

He L.; Weisbrod C. R.; Marshall A. G. Protein de novo sequencing by top-down and middle-down ms/ms: limitations imposed by mass measurement accuracy and gaps in sequence coverage. Int. J. Mass Spectrom. 2018, 427, 107–113. 10.1016/j.ijms.2017.11.012. DOI

Powlowski J.; Sahlman L. Reactivity of the two essential cysteine residues of the periplasmic mercuric ion-binding protein, MerP. J. Biol. Chem. 1999, 274, 33320–33326. 10.1074/jbc.274.47.33320. PubMed DOI

Sikorska M.; Krężel A.; Otlewski J. Femtomolar Zn2+ affinity of lim domain of pdlim1 protein uncovers crucial contribution of protein-protein interactions to protein stability. J. Inorg. Biochem. 2012, 115, 28–35. 10.1016/j.jinorgbio.2012.05.009. PubMed DOI

Kochanczyk T.; Nowakowski M.; Wojewska D.; Kocyla A.; Ejchart A.; Kozminski W.; Krężel A. Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly. Sci. Rep. 2016, 6, 36346.10.1038/srep36346. PubMed DOI PMC

Kocyła A.; Pomorski A.; Krężel A. Molar absorption coefficients and stability constants of zincon metal complexes for determination of metal ions and bioinorganic applications. J. Inorg. Biochem. 2017, 176, 53–65. 10.1016/j.jinorgbio.2017.08.006. PubMed DOI

Kocyła A.; Pomorski A.; Krężel A. Molar absorption coefficients and stability constants of metal complexes of 4-(2-Pyridylazo)Resorcinol (PAR): revisiting common chelating probe for the study of metalloproteins. J. Inorg. Biochem. 2015, 152, 82–92. 10.1016/j.jinorgbio.2015.08.024. PubMed DOI

Suckau D.; Resemann A.; Schuerenberg M.; Hufnagel P.; Franzen J.; Holle A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 2003, 376, 952–965. 10.1007/s00216-003-2057-0. PubMed DOI

Bakhtiari M.; Konermann L. Protein ions generated by native electrospray ionization: comparison of gas phase, solution, and crystal structures. J. Phys. Chem. B 2019, 123, 1784–1796. 10.1021/acs.jpcb.8b12173. PubMed DOI

Konermann L. Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28, 1827–1835. 10.1007/s13361-017-1739-3. PubMed DOI

Xia Z.; Degrandchamp J. B.; Williams E. R. Native mass spectrometry beyond ammonium acetate: effects of nonvolatile salts on protein stability and structure. Analyst 2019, 144, 2565–2573. 10.1039/C9AN00266A. PubMed DOI

Susa A. C.; Xia Z.; Williams E. R. Small emitter tips for native mass spectrometry of proteins and protein complexes from nonvolatile buffers that mimic the intracellular environment. Anal. Chem. 2017, 89, 3116–3122. 10.1021/acs.analchem.6b04897. PubMed DOI

Vasak M.; Kagi J. H. R.; Hill H. A. O. Zinc(II), Cadmium(II), and Mercury(II) thiolate transitions in metallothionein. Biochemistry 1981, 20, 2852–2856. 10.1021/bi00513a022. PubMed DOI

Hong S. H.; Toyama M.; Maret W.; Murooka Y. High yield expression and single step purification of human thionein/metallothionen. Protein Expression Purif. 2001, 21, 243–250. 10.1006/prep.2000.1372. PubMed DOI

Dong S.; Wagner N. D.; Russell D. H. Collision-induced unfolding of partially metalated metallothionein-2a: tracking unfolding reactions of gas-phase ions. Anal. Chem. 2018, 90, 11856–11862. 10.1021/acs.analchem.8b01622. PubMed DOI PMC

Irvine G. W.; Pinter T. B. J.; Stillman M. J. Defining the metal binding pathways of human metallothionein 1a: balancing zinc availability and cadmium seclusion. Metallomics 2016, 8, 71–81. 10.1039/C5MT00225G. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...