An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
34477370
PubMed Central
PMC8517974
DOI
10.1021/jacs.1c05495
Knihovny.cz E-resources
- MeSH
- Mass Spectrometry * MeSH
- Humans MeSH
- Metallothionein * chemistry metabolism MeSH
- Molecular Dynamics Simulation * MeSH
- Protein Stability MeSH
- Thermodynamics MeSH
- Binding Sites MeSH
- Zinc * chemistry metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Metallothionein * MeSH
- Zinc * MeSH
Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and β-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 μs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.
Department of Chemistry University of Bath Claverton Down Bath BA2 7AY United Kingdom
Department of Chemistry University of Oxford Oxford OX1 3TA United Kingdom
See more in PubMed
Krężel A.; Maret W. The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 2017, 18, 1237.10.3390/ijms18061237. PubMed DOI PMC
Stillman M. J. Metallothioneins. Coord. Chem. Rev. 1995, 144, 461–511. 10.1016/0010-8545(95)01173-M. DOI
Blindauer C. A.; Leszczyszyn O. I. Metallothioneins: Unparalleled diversity in structures and functions for metal ion homeostasis and more. Nat. Prod. Rep. 2010, 27, 720–741. 10.1039/b906685n. PubMed DOI
Capdevila M.; Atrian S. Metallothionein protein evolution: A miniassay. JBIC, J. Biol. Inorg. Chem. 2011, 16, 977–989. 10.1007/s00775-011-0798-3. PubMed DOI
Babula P.; Masarik M.; Adam V.; Eckschlager T.; Stiborova M.; Trnkova L.; Skutkova H.; Provaznik I.; Hubalek J.; Kizek R. Mammalian metallothioneins: properties and functions. Metallomics 2012, 4, 739–750. 10.1039/c2mt20081c. PubMed DOI
Ye B.; Maret W.; Vallee B. L. Zinc metallothionein imported into liver mitochondria modulates respiration. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 2317–2322. 10.1073/pnas.041619198. PubMed DOI PMC
Apostolova M. D.; Ivanova I. A.; Cherian M. G. Metallothionein and apoptosis during differentiation of myoblasts to myotubes: Protection against free radical toxicity metallothionein and apoptosis during differentiation of myo-blasts to myotubes: protection against free radical. Toxicol. Appl. Pharmacol. 1999, 159, 175–184. 10.1006/taap.1999.8755. PubMed DOI
Artells E.; Palacios O.; Capdevila M.; Atrian S. Mammalian MT1 and MT2 metallothioneins differ in their metal binding abilities. Metallomics 2013, 5, 1397–1410. 10.1039/c3mt00123g. PubMed DOI
Braun W.; Vašák M.; Robbins A. H.; Stout C. D.; Wagner G.; Kägi J. H.; Wüthrich K. Comparison of the NMR solution structure and the X-Ray crystal structure of rat metallothionein-2. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 10124–10128. 10.1073/pnas.89.21.10124. PubMed DOI PMC
Otvos J. D.; Petering D. H.; Shaw C. F. Structure-reactivity relationships of metallothionein, a unique metal-binding protein. Comments Inorg. Chem. 1989, 9, 1–35. 10.1080/02603598908035801. DOI
Vašák M.; Kägi J. H.. Spectroscopic properties of metallothionein. In Metal Ions in Biological Systems; Sigel H., Ed.; Marcel Dekker: New York, 1983; Vol. 15; pp 213–273.
Krężel A.; Maret W. Dual nanomolar and picomolar Zn(II) binding properties of metallothionein. J. Am. Chem. Soc. 2007, 129, 10911–10921. 10.1021/ja071979s. PubMed DOI
Carpenter M. C.; Shah A. S.; DeSilva S.; Gleaton A.; Su A.; Goundie B.; Croteau M. L.; Stevenson M. J.; Wilcox D. E.; Austin R. N. Thermodynamics of Pb(II) and Zn(II) binding to MT-3, a neurologically important metallothionein. Metallomics 2016, 8, 605–617. 10.1039/C5MT00209E. PubMed DOI
Peris-Díaz M. D.; Richtera L.; Zitka O.; Krężel A.; Adam V. A Chemometric-assisted voltammetric analysis of free and Zn(II)-loaded metallothionein-3 states. Bioelectrochemistry 2020, 134, 107501.10.1016/j.bioelechem.2020.107501. PubMed DOI
Colvin R. A.; Holmes W. R.; Fontaine C. P.; Maret W. Cytosolic zinc buffering and muffling: Their role in intracellular zinc homeostasis. Metallomics 2010, 2, 306–317. 10.1039/b926662c. PubMed DOI
Kocyła A.; Tran J. B.; Krężel A. Galvanization of protein-protein interactions in a dynamic zinc interactome. Trends Biochem. Sci. 2021, 46, 64–79. 10.1016/j.tibs.2020.08.011. PubMed DOI
Krężel A.; Maret W. Zinc-buffering capacity of a eukaryotic cell at physiological pZn. JBIC, J. Biol. Inorg. Chem. 2006, 11, 1049–1062. 10.1007/s00775-006-0150-5. PubMed DOI
Yang Y.; Maret W.; Vallee B. L. Differential fluorescence labeling of cysteinyl clusters uncovers high tissue levels of thionein. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 5556–5559. 10.1073/pnas.101123298. PubMed DOI PMC
Ziller A.; Fraissinet-Tachet L. Metallothionein diversity and distribution in the tree of life: A multifunctional protein. Metallomics 2018, 10, 1549–1559. 10.1039/C8MT00165K. PubMed DOI
Margoshes M.; Vallee B. L. A Cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 1957, 79, 4813–4814. 10.1021/ja01574a064. DOI
Freisinger E.; Vašák M. Cadmium in metallothioneins. Met. Ions Life Sci. 2013, 11, 339–371. 10.1007/978-94-007-5179-8_11. PubMed DOI
Willner H.; Vašák M.; Kägi J. H. Cadmium-thiolate clusters in metallothionein: spectrophotometric and spectropolarimetric features. Biochemistry 1987, 26, 6287–6292. 10.1021/bi00393a049. PubMed DOI
Stillman M. J.; Zelazowski A. J. Domain-specificity of Cd2+ and Zn2+ binding to rabbit liver metallothionein 2. Metal ion mobility in the formation of Cd4-Metallothionein α-fragment. Biochem. J. 1989, 262, 181–188. 10.1042/bj2620181. PubMed DOI PMC
Meloni G.; Zovo K.; Kazantseva J.; Palumaa P.; Vašák M. Organization and assembly of metal-thiolate clusters in epithelium-specific metallothionein-4. J. Biol. Chem. 2006, 281, 14588–14595. 10.1074/jbc.M601724200. PubMed DOI
Good M.; Hollenstein R.; Sadler P. J.; Vašák M. 113Cd NMR studies on metal-thiolate cluster formation in rabbit Cd(II)-metallothionein: Evidence for a pH dependence. Biochemistry 1988, 27, 7163–7166. 10.1021/bi00418a074. PubMed DOI
Gehrig P. M.; You C. H.; Dallinger R.; Gruber C.; Brouwer M.; Kägi J. H. R.; Hunziker P. E. Electrospray ionization mass spectrometry of zinc, cadmium, and copper metallothioneins: Evidence for metal-binding cooperativity. Protein Sci. 2000, 9, 395–402. 10.1110/ps.9.2.395. PubMed DOI PMC
Good M.; Vašák M. Spectroscopic properties of the cobalt(II)-substituted α-fragment of rabbit liver metallothionein. Biochemistry 1986, 25, 3328–3334. 10.1021/bi00359a036. PubMed DOI
Ejnik J.; Robinson J.; Zhu J.; Försterling H.; Shaw C. F.; Petering D. H. Folding pathway of apo-metallothionein induced by Zn2+, Cd2+ and Co2+. J. Inorg. Biochem. 2002, 88, 144–152. 10.1016/S0162-0134(01)00393-2. PubMed DOI
Bertini I.; Luchinat C.; Messori L.; Vašák M. Proton NMR studies of the cobalt(II)-metallothionein system. J. Am. Chem. Soc. 1989, 111, 7296–7300. 10.1021/ja00201a002. DOI
Bertini I.; Luchinat C.; Messori L.; Vašák M. Proton NMR Spectra of the Co4S11 cluster in metallothioneins: A theoretical model. J. Am. Chem. Soc. 1989, 111, 7300–7303. 10.1021/ja00201a003. DOI
Vašák M.; Kägi J. H. R. Metal thiolate clusters in cobalt(II)-metallothionein. Proc. Natl. Acad. Sci. U. S. A. 1981, 78, 6709–6713. 10.1073/pnas.78.11.6709. PubMed DOI PMC
Drozd A.; Wojewska D.; Peris-Díaz M. D.; Jakimowicz P.; Krężel A. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2. Metallomics 2018, 10, 595–613. 10.1039/C7MT00332C. PubMed DOI
Peris-Díaz M. D.; Guran R.; Zitka O.; Adam V.; Krȩżel A. Metal- and affinity-specific dual labeling of cysteine-rich proteins for identification of metal-binding sites. Anal. Chem. 2020, 92, 12950–12958. 10.1021/acs.analchem.0c01604. PubMed DOI PMC
Mierek-Adamska A.; Dąbrowska G. B.; Blindauer C. A. The type 4 metallothionein from Brassica Napus seeds folds in a metal-dependent fashion and favours zinc over other metals. Metallomics 2018, 10, 1430–1443. 10.1039/C8MT00161H. PubMed DOI
Dong S.; Wagner N. D.; Russell D. H. Collision-induced unfolding of partially metalated metallothionein-2A: Tracking unfolding reactions of gas-phase ions. Anal. Chem. 2018, 90, 11856–11862. 10.1021/acs.analchem.8b01622. PubMed DOI PMC
Chen S. H.; Chen L. X.; Russell D. H. Metal-induced conformational changes of human metallothionein-2A: A combined theoretical and experimental study of metal-free and partially metalated intermediates. J. Am. Chem. Soc. 2014, 136, 9499–9508. 10.1021/ja5047878. PubMed DOI
Irvine G. W.; Pinter T. B. J.; Stillman M. J. Defining the metal binding pathways of human metallothionein 1a: Balancing zinc availability and cadmium seclusion. Metallomics 2016, 8, 71–81. 10.1039/C5MT00225G. PubMed DOI
Scotcher J.; Clarke D. J.; Weidt S. K.; Mackay C. L.; Hupp T. R.; Sadler P. J.; Langridge-Smith P. R. R. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 2011, 22, 888–897. 10.1007/s13361-011-0088-x. PubMed DOI
Berezovskaya Y.; Armstrong C. T.; Boyle A. L.; Porrini M.; Woolfson D. N.; Barran P. E. Metal binding to a zinc-finger peptide: A comparison between solution and the gas phase. Chem. Commun. (Cambridge, U. K.) 2011, 47, 412–414. 10.1039/C0CC02445G. PubMed DOI
Jurneczko E.; Cruickshank F.; Porrini M.; Clarke D. J.; Campuzano I. D. G.; Morris M.; Nikolova P. V.; Barran P. E. Probing the conformational diversity of cancer-associated mutations in p53 with ion-mobility mass spectrometry. Angew. Chem., Int. Ed. 2013, 52, 4370–4374. 10.1002/anie.201210015. PubMed DOI
Pagel K.; Natan E.; Hall Z.; Fersht A. R.; Robinson C. V. Intrinsically disordered p53 and its complexes populate compact conformations in the gas phase. Angew. Chem., Int. Ed. 2013, 52, 361–365. 10.1002/anie.201203047. PubMed DOI
Agasid M. T.; Sørensen L.; Urner L. H.; Yan J.; Robinson C. V. The effects of sodium ions on ligand binding and conformational states of G protein-coupled receptors-Insights from mass spectrometry. J. Am. Chem. Soc. 2021, 143, 4085–4089. 10.1021/jacs.0c11837. PubMed DOI PMC
Leney A. C.; Heck A. J. R. Native mass spectrometry: What is in the name?. J. Am. Soc. Mass Spectrom. 2017, 28, 5–13. 10.1007/s13361-016-1545-3. PubMed DOI PMC
Xia Z.; Degrandchamp J. B.; Williams E. R. Native mass spectrometry beyond ammonium acetate: Effects of nonvolatile salts on protein stability and structure. Analyst 2019, 144, 2565–2573. 10.1039/C9AN00266A. PubMed DOI
Konermann L. Addressing a common misconception: Ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2017, 28, 1827–1835. 10.1007/s13361-017-1739-3. PubMed DOI
Bakhtiari M.; Konermann L. Protein ions generated by native electrospray ionization: Comparison of gas phase, solution, and crystal structures. J. Phys. Chem. B 2019, 123, 1784–1796. 10.1021/acs.jpcb.8b12173. PubMed DOI
Chen S.-H.; Russell W. K.; Russell D. H. Combining chemical labeling, bottom-up and top-down ion-mobility mass spectrometry to identify metal-binding sites of partially metalated metallothionein. Anal. Chem. 2013, 85, 3229–3237. 10.1021/ac303522h. PubMed DOI
Melenbacher A.; Korkola N. C.; Stillman M. J. The pathways and domain specificity of Cu(I) binding to human metallothionein 1A. Metallomics 2020, 12, 1951–1964. 10.1039/D0MT00215A. PubMed DOI
Chen S. H.; Russell D. H. Reaction of human Cd7metallothionein and N-ethylmaleimide: Kinetic and structural insights from electrospray ionization mass spectrometry. Biochemistry 2015, 54, 6021–6028. 10.1021/acs.biochem.5b00545. PubMed DOI
Dong S.; Shirzadeh M.; Fan L.; Laganowsky A.; Russell D. H. Ag+ ion binding to human metallothionein-2A is cooperative and domain specific. Anal. Chem. 2020, 92, 8923–8932. 10.1021/acs.analchem.0c00829. PubMed DOI PMC
Wong D. L.; Yuan A. T.; Korkola N. C.; Stillman M. J. Interplay between Carbonic Anhydrases and Metallothioneins: structural control of metalation. Int. J. Mol. Sci. 2020, 21, 5697.10.3390/ijms21165697. PubMed DOI PMC
Wong D. L.; Korkola N. C.; Stillman M. J. Kinetics of competitive Cd2+ binding pathways: the realistic structure of intrinsically disordered partially metallated metallothioneins. Metallomics 2019, 11, 894–905. 10.1039/C8MT00347E. PubMed DOI
Korkola N. C.; Scarrow P. M.; Stillman M. J. pH dependence of the non-cooperative binding of Bi3+ to human apo-metallothionein 1A: kinetics, speciation, and stoichiometry. Metallomics 2020, 12, 435–448. 10.1039/C9MT00285E. PubMed DOI
Marklund E. G.; Benesch J. L. Weighing-up protein dynamics: The combination of native mass spectrometry and molecular dynamics simulations. Curr. Opin. Struct. Biol. 2019, 54, 50–58. 10.1016/j.sbi.2018.12.011. PubMed DOI
Landreh M.; Marklund E. G.; Uzdavinys P.; Degiacomi M. T.; Coincon M.; Gault J.; Gupta K.; Liko I.; Benesch J. L. P.; Drew D.; Robinson C. V. Integrating mass spectrometry with MD simulations reveals the role of lipids in Na+/H+ antiporters. Nat. Commun. 2017, 8, 13993.10.1038/ncomms13993. PubMed DOI PMC
Beveridge R.; Migas L. G.; Das R. K.; Pappu R. V.; Kriwacki R. W.; Barran P. E. Ion mobility mass spectrometry uncovers the impact of the patterning of oppositely charged residues on the conformational distributions of intrinsically disordered proteins. J. Am. Chem. Soc. 2019, 141, 4908–4918. 10.1021/jacs.8b13483. PubMed DOI PMC
Peris-Díaz M. D.; Guran R.; Zitka O.; Adam V.; Krężel A. Mass spectrometry-based structural analysis of cysteine-rich metal-binding sites in proteins with MetaOdysseus R software. J. Proteome Res. 2021, 20, 776–785. 10.1021/acs.jproteome.0c00651. PubMed DOI PMC
Dorfer V.; Pichler P.; Stranzl T.; Stadlmann J.; Taus T.; Winkler S.; Mechtler K. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 2014, 13, 3679–3684. 10.1021/pr500202e. PubMed DOI PMC
Macchiagodena M.; Pagliai M.; Andreini C.; Rosato A.; Procacci P. Upgrading and validation of the AMBER force field for histidine and cysteine zinc(II)-binding residues in sites with four protein ligands. J. Chem. Inf. Model. 2019, 59, 3803–3816. 10.1021/acs.jcim.9b00407. PubMed DOI
Li P.; Roberts B. P.; Chakravorty D. K.; Merz K. M. Rational design of particle mesh Ewald compatible Lennard-Jones parameters for + 2 metal cations in explicit solvent. J. Chem. Theory Comput. 2013, 9, 2733–2748. 10.1021/ct400146w. PubMed DOI PMC
Maret W.; Li Y. Coordination dynamics of zinc in proteins. Chem. Rev. 2009, 109, 4682–4707. 10.1021/cr800556u. PubMed DOI
Bonomi M.; Bussi G.; Camilloni C.; Tribello G. A.; Banáš P.; Barducci A.; Bernetti M.; Bolhuis P. G.; Bottaro S.; Branduardi D.; Capelli R.; Carloni P.; Ceriotti M.; Cesari A.; Chen H.; Chen W.; Colizzi F.; De S.; De La Pierre M.; Donadio D.; Drobot V.; Ensing B.; Ferguson A. L.; Filizola M.; Fraser J. S.; Fu H.; Gasparotto P.; Gervasio F. L.; Giberti F.; Gil-Ley A.; Giorgino T.; Heller G. T.; Hocky G. M.; Iannuzzi M.; Invernizzi M.; Jelfs K. E.; Jussupow A.; Kirilin E.; Laio A.; Limongelli V.; Lindorff-Larsen K.; Löhr T.; Marinelli F.; Martin-Samos L.; Masetti M.; Meyer R.; Michaelides A.; Molteni C.; Morishita T.; Nava M.; Paissoni C.; Papaleo E.; Parrinello M.; Pfaendtner J.; Piaggi P.; Piccini G. M.; Pietropaolo A.; Pietrucci F.; Pipolo S.; Provasi D.; Quigley D.; Raiteri P.; Raniolo S.; Rydzewski J.; Salvalaglio M.; Sosso G. C.; Spiwok V.; Šponer J.; Swenson D. W. H.; Tiwary P.; Valsson O.; Vendruscolo M.; Voth G. A.; White A. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 2019, 16, 670–673. 10.1038/s41592-019-0506-8. PubMed DOI
Llabrés S.; Juárez-Jiménez J.; Masetti M.; Leiva R.; Vázquez S.; Gazzarrini S.; Moroni A.; Cavalli A.; Luque F. J. Mechanism of the pseudoirreversible binding of amantadine to the M2 proton channel. J. Am. Chem. Soc. 2016, 138, 15345–15358. 10.1021/jacs.6b07096. PubMed DOI
Van Der Spoel D.; Lindahl E.; Hess B.; Groenhof G.; Mark A. E.; Berendsen H. J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. 10.1002/jcc.20291. PubMed DOI
Laio A.; Parrinello M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC
Pfaendtner J.; Bonomi M. Efficient Sampling of High-dimensional free-energy landscapes with parallel bias metadynamics. J. Chem. Theory Comput. 2015, 11, 5062–5067. 10.1021/acs.jctc.5b00846. PubMed DOI
Branduardi D.; Bussi G.; Parrinello M. Metadynamics with adaptive Gaussians. J. Chem. Theory Comput. 2012, 8, 2247–2254. 10.1021/ct3002464. PubMed DOI
Barducci A.; Bussi G.; Parrinello M. Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Phys. Rev. Lett. 2008, 100, 020603.10.1103/PhysRevLett.100.020603. PubMed DOI
Lermyte F.; Everett J.; Lam Y. P. Y.; Wootton C. A.; Brooks J.; Barrow M. P.; Telling N. D.; Sadler P. J.; O’Connor P. B.; Collingwood J. F. Metal ion binding to the amyloid β monomer studied by native top-down FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 2019, 30, 2123–2134. 10.1007/s13361-019-02283-7. PubMed DOI PMC
Yin S.; Loo J. A. Top-down mass spectrometry of supercharged native protein-ligand complexes. Int. J. Mass Spectrom. 2011, 300, 118–122. 10.1016/j.ijms.2010.06.032. PubMed DOI PMC
Xie Y.; Zhang J.; Yin S.; Loo J. A. Top-down ESI-ECD-FT-ICR Mass spectrometry localizes noncovalent protein-ligand binding sites. J. Am. Chem. Soc. 2006, 128, 14432–14433. 10.1021/ja063197p. PubMed DOI
Gülbakan B.; Barylyuk K.; Zenobi R. Determination of thermodynamic and kinetic properties of biomolecules by mass spectrometry. Curr. Opin. Biotechnol. 2015, 31, 65–72. 10.1016/j.copbio.2014.08.003. PubMed DOI
Kostyukevich Y.; Kononikhin A.; Popov I.; Indeykina M.; Kozin A. S.; Makarov A. A.; Nikolaev E. Supermetallization of peptides and proteins during electrospray ionization. J. Mass Spectrom. 2015, 50, 1079–1087. 10.1002/jms.3622. PubMed DOI
Breci L. A.; Tabb D. L.; Yates J. R.; Wysocki V. H. Cleavage N-terminal to proline: Analysis of a database of peptide tandem mass spectra. Anal. Chem. 2003, 75, 1963–1971. 10.1021/ac026359i. PubMed DOI
Yuan G.; Ma Q.; Wu T.; Wang M.; Li X.; Zuo J.; Zheng P. Multistep Protein unfolding scenarios from the rupture of a complex metal cluster Cd3S9. Sci. Rep. 2019, 9, 10518.10.1038/s41598-019-47004-y. PubMed DOI PMC
Yang J.; Calero C.; Bonomi M.; Martí J. Specific ion binding at phospholipid membrane surfaces. J. Chem. Theory Comput. 2015, 11, 4495–4499. 10.1021/acs.jctc.5b00540. PubMed DOI
Tiwary P.; Mondal J.; Morrone J. A.; Berne B. J. Role of water and steric constraints in the kinetics of cavity-ligand unbinding. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 12015–12019. 10.1073/pnas.1516652112. PubMed DOI PMC
Moraca F.; Amato J.; Ortuso F.; Artese A.; Pagano B.; Novellino E.; Alcaro S.; Parrinello M.; Limongelli V. Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E2136–E2145. 10.1073/pnas.1612627114. PubMed DOI PMC
Krężel A.; Maret W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. 10.1016/j.abb.2016.04.010. PubMed DOI PMC
Kochańczyk T.; Drozd A.; Krężel A. Relationship between the architecture of zinc coordination and zinc binding affinity in proteins - Insights into zinc regulation. Metallomics 2015, 7, 244–257. 10.1039/C4MT00094C. PubMed DOI
Babu C. S.; Lee Y. M.; Dudev T.; Lim C. Modeling Zn2+ release from metallothionein. J. Phys. Chem. A 2014, 118, 9244–9252. 10.1021/jp503189v. PubMed DOI
Jiang L. J.; Vašák M.; Vallee B. L.; Maret W. Zinc transfer potentials of the α- and β-clusters of metallothionein are affected by domain interactions in the whole molecule. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 2503–2508. 10.1073/pnas.97.6.2503. PubMed DOI PMC
Ngu T. T.; Easton A.; Stillman M. J. Kinetic analysis of arsenic-metalation of human metallothionein: Significance of the two-domain structure. J. Am. Chem. Soc. 2008, 130, 17016–17028. 10.1021/ja8060326. PubMed DOI
Perez-Zúñiga C.; Leiva-Presa A.; Austin R. N.; Capdevila M.; Palacios O. Pb(II) binding to the brain specific mammalian metallothionein isoform MT3 and its isolated αMT3 and βMT3 domains. Metallomics 2019, 11, 349–361. 10.1039/C8MT00294K. PubMed DOI
Pinter T. B. J.; Stillman M. J. Putting the pieces into place: Properties of intact zinc Metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase. Biochem. J. 2015, 471, 347–356. 10.1042/BJ20150676. PubMed DOI
Basu S.; Biswas P. Salt-bridge dynamics in intrinsically disordered proteins: A trade-off between electrostatic interactions and structural flexibility. Biochim. Biophys. Acta, Proteins Proteomics 2018, 1866, 624–641. 10.1016/j.bbapap.2018.03.002. PubMed DOI
Marino S. M.; Gladyshev V. N. Analysis and functional prediction of reactive cysteine residues. J. Biol. Chem. 2012, 287, 4419–4425. 10.1074/jbc.R111.275578. PubMed DOI PMC