Indoor Positioning System Based on Fuzzy Logic and WLAN Infrastructure
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTE117005
Ministry of Education, Youth and Sports of Czech Republic
PubMed
32796643
PubMed Central
PMC7472030
DOI
10.3390/s20164490
PII: s20164490
Knihovny.cz E-zdroje
- Klíčová slova
- fuzzy logic, indoor positioning, localization, wireless networks,
- Publikační typ
- časopisecké články MeSH
This paper deals with the issue of mobile device localization in the environment of buildings, which is suitable for use in healthcare or crisis management. The developed localization system is based on wireless Local Area Network (LAN) infrastructure (commonly referred to as Wi-Fi), evaluating signal strength from different access points, using the fingerprinting method for localization. The most serious problems consist in multipath signal propagation and the different sensitivities (calibration) of Wi-Fi adapters installed in different mobile devices. To solve these issues, an algorithm based on fuzzy logic is proposed to optimize the localization performance. The localization system consists of five elements, which are mobile applications for Android OS, a fuzzy derivation model, and a web surveillance environment for displaying the localization results. All of these elements use a database and shared storage on a virtualized server running Ubuntu. The developed system is implemented in Java for Android-based mobile devices and successfully tested. The average accuracy is satisfactory for determining the position of a client device on the level of rooms.
Zobrazit více v PubMed
Hrad J., Vojtech L., Cihlar M., Stasa P., Neruda M., Svub J., Benes F. Fuzzy Logic Based Indoor Localization Using WLAN Infrastructure; Proceedings of the IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS); Tainan, Taiwan. 29–31 May 2020.
Konecny J., Urbanczyk T., Benes F., Stasa P. Framework AutoId Healthcare. Centre for Applied Cybernetics; Ostrava, Czech Republic: 2019.
Malik A. RTLS for Dummies. 1st ed. Wiley & Sons; New York, NY, USA: 2009.
Montaser A., Moselhi O. RFID indoor location identification for construction projects. Autom. Constr. 2014;39:167–179. doi: 10.1016/j.autcon.2013.06.012. DOI
Gu Y., Lo A., Niemegeers I. A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutor. 2009;11:13–32. doi: 10.1109/SURV.2009.090103. DOI
Ding G., Zhang J., Zhang L., Tan Z. Overview of Received Signal Strength Based Fingerprinting Localization in Indoor Wireless LAN Environments; Proceedings of the 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE); Chengdu, China. 29–31 October 2013; pp. 160–164. DOI
Chen Y., Crespi N., Lv L., Li M., Ortiz A.M., Shu L. Locating using prior information: Wireless indoor localization algorithm. Comput. Commun. Rev. 2013;43:463–464. doi: 10.1145/2534169.2491688. DOI
Wu C., Yang Z., Liu Y., Xi W. WILL: Wireless Indoor Localization without Site Survey; Proceedings of the IEEE International Conference on Computer Communications (INFOCOM); Orlando, FL, USA. 25–30 March 2012; pp. 64–72. DOI
Yang S., Dessai P., Verma M., Gerla M. FreeLoc: Calibration-Free Crowdsourced Indoor Localization; Proceedings of the IEEE International Conference on Computer Communications (INFOCOM); Turin, Italy. 14–19 April 2013; pp. 2481–2489. DOI
Farshad A., Li J., Marina M.K., Garcia F.J. A Microscopic Look at Wi-Fi Fingerprinting for Indoor Mobile Phone Localization in Diverse Environments; Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN); Montbeliard-Belfort, France. 28–31 October 2013; DOI
Torres-Sospedra J., Jiménez A.R., Moreira A., Lungenstrass T., Lu W.-C., Knauth S., Mendoza-Silva G.M., Seco F., Pérez-Navarro A., Nicolau M.J., et al. Off-Line Evaluation of Mobile-Centric Indoor Positioning Systems: The Experiences from the 2017 IPIN Competition. Sensors. 2018;18:487. doi: 10.3390/s18020487. PubMed DOI PMC
Ferreira A.G., Fernandes D., Catarino A.P., Monteiro J. Performance Analysis of ToA-Based Positioning Algorithms for Static and Dynamic Targets with Low Ranging Measurements. Sensors. 2017;17:1915. doi: 10.3390/s17081915. PubMed DOI PMC
Honkavirta V., Perälä T., Ali-Löytty S., Piché R.A. Comparative Survey of WLAN Location Fingerprinting Methods; Proceedings of the 6th Workshop on Positioning, Navigation and Communication (WPNC); Hannover, Germany. 19 March 2009; pp. 243–251. DOI
Han D., Jung S., Lee M., Yoon G. Building a Practical Wi-Fi-Based Indoor Navigation System. IEEE Pervasive Comput. 2014;13:72–79. doi: 10.1109/mprv.2014.24. DOI
Ferreira A.G., Fernandes D., Catarino A., Rocha A.M., Monteiro J.L. A Loose-Coupled Fusion of Inertial and UWB Assisted by a Decision-Making Algorithm for Localization of Emergency Responders. Electronics. 2019;8:1463. doi: 10.3390/electronics8121463. DOI
Niu J., Gu Y., Lu B., Cheng L., Jun J.H. Wi-Fi Fingerprint Localization in Open Space. Lang. Cognit. Neurosci. 2013;2013:1–4.
He S., Chan S.-H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2015;18:466–490. doi: 10.1109/COMST.2015.2464084. DOI
Fuchs C., Aschenbruck N., Martini P., Wieneke M. Indoor tracking for mission critical scenarios: A survey. Pervasive Mob. Comput. 2011;7:1–15. doi: 10.1016/j.pmcj.2010.07.001. DOI
Fischer C., Gellersen H. Location and Navigation Support for Emergency Responders: A Survey. IEEE Pervasive Comput. 2009;9:38–47. doi: 10.1109/MPRV.2009.91. DOI
Ferreira A.G., Fernandes D., Catarino A., Monteiro J. Localization and Positioning Systems for Emergency Responders: A Survey. IEEE Commun. Surv. Tutor. 2017;19:2836–2870. doi: 10.1109/COMST.2017.2703620. DOI
Cihlář M. Bachelor’s Thesis. Czech Technical University; Prague, Czech Republic: 2014. Analýza Pokrytí Zadaného území Signálem pro Technologii RTLS v pásmu 2,45 GHz.
Hossain A.K.M., Jin Y., Soh W.-S., Van H.N. SSD: A Robust RF Location Fingerprint Addressing Mobile Devices’ Heterogeneity. IEEE Trans. Mob. Comput. 2011;12:65–77. doi: 10.1109/TMC.2011.243. DOI
Welch G., Bishop G. An Introduction to the Kalman Filter. University of North Carolina; Chapel Hill, NC, USA: 1995.
Wang L.-X., Mendel J.M. Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 1992;22:1414–1427. doi: 10.1109/21.199466. DOI
Casillas J., Cordón O., Herrera F. COR: A methodology to improve ad hoc data-driven linguistic rule learning methods by inducing cooperation among rules. IEEE Trans. Syst. Man Cybern. Part B. 2002;32:526–537. doi: 10.1109/TSMCB.2002.1018771. PubMed DOI
Yanar T.A., Akyürek Z. Fuzzy model tuning using simulated annealing. Expert Syst. Appl. 2011;38:8159–8169. doi: 10.1016/j.eswa.2010.12.159. DOI
Liu G., Yang W. Learning and Tuning of Fuzzy Membership Functions by Simulated Annealing Algorithm; Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems: Electronic Communication Systems; Tianjin, China. 4–6 December 2000; pp. 367–370.
Černý V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Optim. Theory Appl. 1985;45:41–51. doi: 10.1007/BF00940812. DOI
Kirkpatrick S., Gelatt C.D., Jr., Vecchi M.P. Optimization by Simulated Annealing. Science. 1983;220:671–680. doi: 10.1126/science.220.4598.671. PubMed DOI
Jorgensen W.L. Perspective on Equation of state calculations by fast computing machines. Theor. Chem. Acc. 2000;103:225–227. doi: 10.1007/s002149900053. DOI