Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradient

. 2020 Oct ; 23 (10) : 1499-1510. [epub] 20200818

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32808457

Grantová podpora
Ref.3.3-CZE-1192673-HFST-P Alexander von Humboldt Foundation and the Federal Ministry for Education and Research
MSM200962004 Programme for Research and Mobility Support of Starting Researchers
669609 H2020 European Research Council
20-10205S Grantová Agentura České Republiky
20-10543Y Grantová Agentura České Republiky

In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.

Zobrazit více v PubMed

Anderson-Teixeira, K.J., Davies, S.J., Bennett, A.C., Gonzalez-Akre, E.B., Muller-Landau, H.C., Wright, S.J. et al. (2015). CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Glob. Chang. Biol., 21, 528-549.

Andrew, N.R. & Hughes, L. (2005a). Arthropod community structure along a latitudinal gradient: Implications for future impacts of climate change. Austral Ecol., 30, 281-297.

Andrew, N.R. & Hughes, L. (2005b). Herbivore damage along a latitudinal gradient: Relative impacts of different feeding guilds. Oikos, 108, 176-182.

Basset, Y., Aberlenc, H. & Delvare, G. (1992). Abundance and stratification of foliage arthropods in a lowland rain forest of Cameroon. Ecol. Entomol., 17, 310-318.

Basset, Y., Cizek, L., Cuenoud, P., Didham, R.K., Guilhaumon, F., Missa, O. et al. (2012). Arthropod diversity in a tropical forest. Science, 338, 1481-1484.

Basset, Y. & Lamarre, G.P.A. (2019). Toward a world that values insects. Science, 364, 1230-1231.

Basset, Y., Cizek, L., Cuénoud, P., Didham, R.K., Novotny, V., Ødegaard, F. et al. (2015). Arthropod distribution in a tropical rainforest: Tackling a four dimensional puzzle. PLoS One, 10, e0144110.

Birkhofer, K. & Wolters, V. (2012). The global relationship between climate, net primary production and the diet of spiders. Glob. Ecol. Biogeogr., 21, 100-108.

Bluthgen, N., Gebauer, G. & Fiedler, K. (2003). Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia, 137, 426-435.

Clarke, A. & Gaston, K.J. (2006). Climate, energy and diversity. Proc. R. Soc. B Biol. Sci., 273, 2257-2266.

Davidson, D.W. (1997). The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol. J. Linn. Soc., 61, 153-181.

Davidson, D.W., Cook, S.C., Snelling, R.R. & Chua, T.H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300, 969-972.

Dixon, A.F.G., Kindlmann, P., Leps, J. & Holman, J. (1987). Why there are so few species of aphids, especially in the tropics. Am. Nat., 129, 580-592.

Dyer, L.A. & Coley, P.D. (2002). Tritrophic interactions in tropical versus temperate communities. In Multitrophic Level Interactions (eds Teja, T., Hawkins, B.A.). Cambridge University Press, Cambridge, UK, pp. 67-88.

Fibich, P., Leps, J., Novotny, V., Klimes, P., Tesitel, J., Molem, K. et al. (2016). Spatial patterns of tree species distribution in New Guinea primary and secondary lowland rain forest. J. Veg. Sci., 27, 328-339.

Floren, A., Biun, A. & Linsenmair, K.E. (2002). Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia, 131, 137-144.

Floren, A., Wetzel, W. & Staab, M. (2014). The contribution of canopy species to overall ant diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems. Myrmecological News, 19, 65-74.

Gaston, K.J., Genney, D.R., Thurlow, M. & Hartley, S.E. (2004). The geographical range structure of the holly leaf-miner. IV. Effects of variation in host-plant quality. J. Anim. Ecol., 73, 911-924.

Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince, S. et al. (2008). Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 89, 2117-2126.

Hairston, N.G., Smith, F.E. & Slobodkin, L.B. (1960). Community structure, population control, and competition. Am. Nat., 94, 421-425.

Halaj, J., Ross, D.W. & Moldenke, A.R. (1997). Negative effects of ant foraging on spiders in Douglas-fir canopies. Oecologia, 109, 313-322.

Hamilton, A.J., Basset, Y., Benke, K.K., Grimbacher, P.S., Miller, S.E., Novotný, V. et al. (2010). Quantifying uncertainty in estimation of tropical arthropod species richness. Am. Nat., 176, 90-95.

Hammond, P. (1992). Species inventory. In Global biodiversity (eds Edwards, D.S., Booth, W.E., Choy, S.C.). Springer, Dordrecht, Netherlands, pp. 17-39.

Holt, R.D. (1984). Spatial heterogeneity, indirect interactions, and the coexistence of prey species. Am. Nat., 124, 377-406.

Hooks, C.R.R., Pandey, R.R. & Johnson, M.W. (2003). Impact of avian and arthropod predation on lepidopteran caterpillar densities and plant productivity in an ephemeral agroecosystem. Ecol. Entomol., 28, 522-532.

Jaffe, K., Horchler, P., Verhaagh, M. & Gomez, C. (2007). Comparing the ant fauna in a tropical and a temperate forest. Ecotropicos, 20, 74-81.

Jeanne, R.L. (1979). A latitudinal gradient in rates of ant predation. Ecology, 60, 1211-1224.

Kambach, S., Kühn, I., Castagneyrol, B. & Bruelheide, H. (2016). The impact of tree diversity on different aspects of insect herbivory along a global temperature gradient - A meta-analysis. PLoS One, 11, 1-14.

Kaspari, M., Alonso, L. & O’Donnell, S. (2000). Three energy variables predict ant abundance at a geographical scale. Proc. R. Soc. B Biol. Sci., 267, 485-489.

Katayama, M., Kishimoto-Yamada, K., Tanaka, H.O., Endo, T., Hashimoto, Y., Yamane, S. et al. (2015). Negative correlation between ant and spider abundances in the canopy of a bornean tropical rain forest. Biotropica, 47, 363-368.

Klimes, P. (2017). Diversity and specificity of ant-plant interactions in canopy communities: insights from primary and secondary tropical forests in New Guinea. In Ant-Plant Interactions - Impacts of Humans on Terrestrial Ecosystems (eds Oliveira, P.S., Koptur, S.). Cambridge University Press, Cambridge, MA, pp. 26-51.

Klimes, P., Fibich, P., Idigel, C. & Rimandai, M. (2015). Disentangling the diversity of arboreal ant communities in tropical forest trees. PLoS One, 10, e0117853.

Klimes, P., Janda, M., Ibalim, S., Kua, J. & Novotny, V. (2011). Experimental suppression of ants foraging on rainforest vegetation in New Guinea: Testing methods for a whole-forest manipulation of insect communities. Ecol. Entomol., 36, 94-103.

Lach, L., Parr, C. & Abbott, K.L. (2010). Ant Ecology. Oxford University Press, Oxford, UK.

Legendre, P. & Fortin, M.J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107-138.

Libra, M., Tulai, S., Novotny, V. & Hrcek, J. (2019). Elevational contrast in predation and parasitism risk to caterpillars in a tropical rainforest. Entomol. Exp. Appl., 167, 922-931.

Liere, H., Jackson, D. & Vandermeer, J. (2012). Ecological complexity in a coffee agroecosystem: spatial heterogeneity, population persistence and biological control. PLoS One, 7, e45508.

Lim, J.Y., Fine, P.V.A. & Mittelbach, G.G. (2015). Assessing the latitudinal gradient in herbivory. Glob. Ecol. Biogeogr., 24, 1106-1112.

Lister, B.C. & Garcia, A. (2018). Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci., 115, E10397-E10406.

Mestre, L., Piñol, J., Barrientos, J.A., Cama, A. & Espadaler, X. (2012). Effects of ant competition and bird predation on the spider assemblage of a citrus grove. Basic Appl. Ecol., 13, 355-362.

Michalko, R., Pekár, S., Dul'a, M & Entling, M.H., (2019). Global patterns in the biocontrol efficacy of spiders: A meta-analysis. Glob. Ecol. Biogeogr., 28, 1366-1378.

Moles, A.T., Bonser, S.P., Poore, A.G.B., Wallis, I.R. & Foley, W.J. (2011). Assessing the evidence for latitudinal gradients in plant defence and herbivory. Funct. Ecol., 25, 380-388.

Mooney, K.A. (2007). Tritrophic effects of birds and ants on a canopy food web, tree growth, and phytochemistry. Ecology, 88, 2005-2014.

Mottl, O., Plowman, N.S., Novotny, V., Gewa, B., Rimandai, M. & Klimes, P. (2019). Secondary succession has surprisingly low impact on arboreal ant communities in tropical montane rainforest. Ecosphere, 10, e02848.

Mottl, O., Yombai, J., Fayle, T.M., Novotny, V. & Klimes, P. (2020). Experiments with artificial nests provide evidence for ant community stratification and nest site limitation in a tropical forest. Biotropica, 52(2), 277-287.

Novotny, V., Drozd, P., Miller, S.E., Kulfan, M., Janda, M., Basset, Y. et al. (2006). Why are there so many species of herbivorous insects in tropical rainforests? Science, 313, 1115-1118.

Novotny, V., Miller, S.E., Baje, L., Balagawi, S., Basset, Y., Cizek, L. et al. (2010). Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J. Anim. Ecol., 79, 1193-1203.

Novotny, V., Miller, S.E., Hrcek, J., Baje, L., Basset, Y., Lewis, O.T. et al. (2012). Insects on plants: Explaining the paradox of low diversity within specialist herbivore guilds. Am. Nat., 179, 351-362.

Oksanen, L., Fretwell, S.D., Arruda, J. & Niemela, P. (1981). Exploitation ecosystems in gradients of primary productivity. Am. Nat., 118, 240-261.

Ozanne, C.M.P., Anhuf, D., Boulter, S.L., Keller, M., Kitching, R.L., Körner, C. et al. (2003). Biodiversity meets the atmosphere: a global view of forest canopies. Science, 301, 183-186.

Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. (2014). Linear and Nonlinear Mixed Effects Models.

Plowman, N.S., Mottl, O., Novotny, V., Idigel, C., Philip, F.J., Rimandai, M. et al. (2019). Nest microhabitats and tree size mediate shifts in ant community structure across elevation in tropical rainforest canopies. Ecography, 42, 1-12.

Pontarp, M., Bunnefeld, L., Cabral, J.S., Etienne, R.S., Fritz, S.A., Gillespie, R. et al. (2019). The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol., 34, 211-223.

R Core Team, (2016). R: A language and environment for statistical computing.

Rasmann, S. & Agrawal, A.A. (2011). Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol. Lett., 14, 476-483.

Redmond, C., Auga, J., Gewa, B., Segar, S.T., Miller, S.E., Molem, K. et al. (2018). High specialization and limited structural change in plant-herbivore networks along a successional chronosequence in tropical montane forest. Ecography, 42, 162-172.

Room, P.M. & Smith, E.S.C. (1975). Relative abundance and distribution of insect pests, ants and other components of the cocoa ecosystem in Papua New Guinea. J. Appl. Ecol., 12, 31.

Roslin, T., Hardwick, B., Novotny, V., Petry, W.K., Andrew, N.R., Asmus, A. et al. (2017). Higher predation risk for insect prey at low latitudes and elevations. Science, 356, 742-744.

Roy, J., Saugier, B. & Mooney, H.A. (2001). Terrestrial Global Productivity. Academic Press, San Diego, CA.

Rypstra, A.L. (1986). Web spiders in temperate and tropical forests: Relative abundance and environmental correlates. Am. Midl. Nat., 115, 42-51.

Salazar, D. & Marquis, R.J. (2012). Herbivore pressure increases toward the equator. Proc. Natl Acad. Sci., 109, 12616-12620.

Sam, K., Koane, B. & Novotny, V. (2015a). Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography, 38, 293-300.

Sam, K., Remmel, T. & Molleman, F. (2015b). Material affects attack rates on dummy caterpillars in tropical forest where arthropod predators dominate: An experiment using clay and dough dummies with green colourants on various plant species. Entomol. Exp. Appl., 157, 317-324.

Samson, D.A., Rickart, E.A. & Gonzales, P.C. (1997). Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica, 29, 349-363.

Schemske, D.W., Mittelbach, G.G., Cornell, H.V., Sobel, J.M. & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst., 40, 245-269.

Segar, S.T., Volf, M., Isua, B., Sisol, M., Redmond, C.M., Rosati, M.E. et al. (2017). Variably hungry caterpillars: Predictive models and foliar chemistry suggest how to eat a rainforest. Proc. R. Soc. B Biol. Sci., 284, 20171803.

Sidak, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc., 62, 626-633.

Simberloff, D. & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annu. Rev. Ecol. Syst., 22, 115-143.

Sinclair, R.J. & Hughes, L. (2008). Incidence of leaf mining in different vegetation types across rainfall, canopy cover and latitudinal gradients. Austral Ecol., 33, 353-360.

Supriya, K., Moreau, C.S., Sam, K. & Price, T.D. (2019). Analysis of tropical and temperate elevational gradients in arthropod abundance. Front. Biogeogr. 11(2), 0-18.

Tobin, P.C. & Bjørnstad, O.N. (2003). Spatial dynamics and cross-correlation in a transient predator-prey system. J. Anim. Ecol., 72, 460-467.

Trøjelsgaard, K. & Olesen, J.M. (2013). Macroecology of pollination networks. Glob. Ecol. Biogeogr., 22, 149-162.

Volf, M., Klimes, P., Lamarre, G.P.A., Redmond, C.M., Abe, T., Auga, J. et al. (2019). Quantitative assessment of plant-arthropod interactions in forest canopies: a plot- based approach. PLoS One, 14.

Volf, M., Segar, S.T., Miller, S.E., Isua, B., Sisol, M., Aubona, G. et al. (2018). Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett., 21, 83-92.

Walker, M. & Jones, T.H. (2001). Relative roles of top-down and bottom-up forces in terrestrial tritrophic plant-insect herbivore-natural enemy systems. Oikos, 93, 177-187.

Welti, E.A.R., Prather, R.M., Sanders, N.J., DeBeurs, K.M. & Kaspari, M. (2020). Bottom-up when it is not top-down: Predators and plants control biomass of grassland arthropods. J. Anim. Ecol., 89(5), 1286-1294.

Whitfeld, T.J.S., Novotny, V., Miller, S.E., Hrcek, J., Klimes, P. & Weiblen, G.D. (2012). Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology, 93, S21-S22.

Wright, D.H. (1983). Species-energy theory: An extension of species-area theory. Oikos, 41, 496-506.

Yanoviak, S.P., Nadkarni, N.M. & Jon, C. (2003). Arthropods in epiphytes: a diversity component that is not effectively sampled by canopy fogging. Biodivers. Conserv., 12, 731-741.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...