Embryonic transcriptome unravels mechanisms and pathways underlying embryonic development with respect to muscle growth, egg production, and plumage formation in native and broiler chickens
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36313432
PubMed Central
PMC9616467
DOI
10.3389/fgene.2022.990849
PII: 990849
Knihovny.cz E-zdroje
- Klíčová slova
- 7th- and 18th-day embryo tissues, fast and slow growth chicken, microarray, quantitative real-time PCR, reference gene,
- Publikační typ
- časopisecké články MeSH
Background: Muscle development, egg production, and plumage colors are different between native and broiler chickens. The study was designed to investigate why improved Aseel (PD4) is colorful, stronger, and grew slowly compared with the control broiler (CB). Methods: A microarray was conducted using the 7th-day embryo (7EB) and 18th-day thigh muscle (18TM) of improved Aseel and broiler, respectively. Also, we have selected 24 Gallus gallus candidate reference genes from NCBI, and total RNA was isolated from the broiler, improved Aseel embryo tissues, and their expression profiles were studied by real-time quantitative PCR (qPCR). Furthermore, microarray data were validated with qPCR using improved Aseel and broiler embryo tissues. Results: In the differential transcripts screening, all the transcripts obtained by microarray of slow and fast growth groups were screened by fold change ≥ 1 and false discovery rate (FDR) ≤ 0.05. In total, 8,069 transcripts were differentially expressed between the 7EB and 18TM of PD4 compared to the CB. A further analysis showed that a high number of transcripts are differentially regulated in the 7EB of PD4 (6,896) and fewer transcripts are differentially regulated (1,173) in the 18TM of PD4 compared to the CB. On the 7th- and 18th-day PD4 embryos, 3,890, 3,006, 745, and 428 transcripts were up- and downregulated, respectively. The commonly up- and downregulated transcripts are 91 and 44 between the 7th- and 18th-day of embryos. In addition, the best housekeeping gene was identified. Furthermore, we validated the differentially expressed genes (DEGs) related to muscle growth, myostatin signaling and development, and fatty acid metabolism genes in PD4 and CB embryo tissues by qPCR, and the results correlated with microarray expression data. Conclusion: Our study identified DEGs that regulate the myostatin signaling and differentiation pathway; glycolysis and gluconeogenesis; fatty acid metabolism; Jak-STAT, mTOR, and TGF-β signaling pathways; tryptophan metabolism; and PI3K-Akt signaling pathways in PD4. The results revealed that the gene expression architecture is present in the improved Aseel exhibiting embryo growth that will help improve muscle development, differentiation, egg production, protein synthesis, and plumage formation in PD4 native chickens. Our findings may be used as a model for improving the growth in Aseel as well as optimizing the growth in the broiler.
Zobrazit více v PubMed
Adams D., Larman B., Oxburgh L. (2007). Developmental expression of mouse follistatin-like 1 (Fstl1): Dynamic regulation during organogenesis of the kidney and lung. Gene Expr. Patterns 7 (4), 491–500. 10.1016/j.modgep.2006.10.009 PubMed DOI PMC
Akizawa Y., Kanno H., Kawamichi Y., Matsuda Y., Ohta H., Fujii H., et al. (2013). Enhanced expression of myogenic differentiation factors and skeletal muscle proteins in human amnion-derived cells via the forced expression of MYOD1. Brain Dev. 35 (4), 349–355. 10.1016/j.braindev.2012.05.012 PubMed DOI
Allen D. L., Cleary A. S., Speaker K. J., Lindsay S. F., Uyenishi J., Reed J. M., et al. (2008). Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am. J. Physiol. Endocrinol. Metab. 294 (5), E918–E927. 10.1152/ajpendo.00798.2007 PubMed DOI
Andersen C. L., Jensen J. L., Orntoft T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250. 10.1158/0008-5472.CAN-04-0496 PubMed DOI
Awgulewitsch A. (2003). Hox in hair growth and development. Naturwissenschaften 90, 193–211. 10.1007/s00114-003-0417-4 PubMed DOI
Bages S., Estany J., Tor M., Pena R. N. (2015). Investigating reference genes for quantitative real-time PCR analysis across four chicken tissues. Gene 561, 82–87. 10.1016/j.gene.2015.02.016 PubMed DOI
Bain M. M., McDade K., Burchmore R., Law A., Wilson P. W., Schmutz M., et al. (2013). Enhancing the egg's natural defence against bacterial penetration by increasing cuticle deposition. Anim. Genet. 44 (6), 661–668. 10.1111/age.12071 PubMed DOI
Bain M. M., Nys Y., Dunn I. C. (2016). Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges? Br. Poult. Sci. 57, 330–338. 10.1080/00071668.2016.1161727 PubMed DOI PMC
Bar A. (2009). Calcium transport in strongly calcifying laying birds: Mechanisms and regulation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 152 (4), 447–469. 10.1016/j.cbpa.2008.11.020 PubMed DOI
Beauclercq S., Hennequet-Antier C., Praud C., Godet E., Collin A., Tesseraud S., et al. (2017). Muscle transcriptome analysis reveals molecular pathways and biomarkers involved in extreme ultimate pH and meat defect occurrence in chicken. Sci. Rep. 7 (1), 6447–6453. 10.1038/s41598-017-06511-6 PubMed DOI PMC
Beauclercq S., Nadal-Desbarats L., Hennequet-Antier C., Collin A., Tesseraud S., Bourin M., et al. (2016). Serum and muscle metabolomics for the prediction of ultimate pH, a key factor for chicken-meat quality. J. Proteome Res. 15 (4), 1168–1178. PubMed
Benathan M. (1997). Opposite regulation of tyrosinase and glutathione peroxidase by intracellular thiols in human melanoma cells. Arch. Dermatol. Res. 289, 341–346. 10.1007/s004030050202 PubMed DOI
Benathan M., Virador V., Furumura M., Kobayashi N., Panizzon R. G., Hearing V. J. (1999). Co-Regulation of melanin precursors and tyrosinase in human pigment cells: Roles of cysteine and glutathione. Cell. Mol. Biol. 45, 981–990. PubMed
Benedetto J. P., Ortonne J. P., Voulot C., Khatchadourian C., Prota G., Thivolet J. (1981). Role of thiol compounds in mammalian melanin pigmentation: Part I. Reduced and oxidized glutathione. J. Invest. Dermatol. 77, 402–405. 10.1111/1523-1747.ep12494592 PubMed DOI
Bhattacharya T. K., Chatterjee R. N. (2013). Polymorphism of the myostatin gene and its association with growth traits in chicken. Poult. Sci. 92 (4), 910–915. 10.3382/ps.2012-02736 PubMed DOI
Bhattacharya T. K., Chatterjee R. N., Dushyanth K., Shukla R. (2015). Cloning, characterization and expression of myostatin (growth differentiation factor-8) gene in broiler and layer chicken (Gallus gallus). Mol. Biol. Rep. 42, 319–327. 10.1007/s11033-014-3753-x PubMed DOI
Bhattacharya T. K., Shukla R., Chatterjee R. N., Bhanja S. K. (2019). Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knockdown chicken. Sci. Rep. 9, 7789. 10.1038/s41598-019-44217-z PubMed DOI PMC
Biederer C., Ries S., Drobnik W., Schmitz G. (1998). Molecular cloning of human caveolin 3. Biochim. Biophys. Acta 1406 (1), 5–9. 10.1016/s0925-4439(97)00095-1 PubMed DOI
Bigot K., Taouis M., Tesseraud S. (2003). Refeeding and insulin regulate S6K1 activity in chicken skeletal muscles. J. Nutr. 133 (2), 369–373. 10.1093/jn/133.2.369 PubMed DOI
Birkl P., Chow J., Forsythe P., Gostner J. M., Kjaer J. B., Kunze W. A., et al. (2019). The role of tryptophan-kynurenine in feather pecking in domestic chicken lines. Front. Vet. Sci. 6, 209. 10.3389/fvets.2019.00209 PubMed DOI PMC
Bodine S. C., Latres E., Baumhueter S., Lai V. K., Nunez L., Clarke B. A., et al. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294 (5547), 1704–1708. 10.1126/science.1065874 PubMed DOI
Borowska D., Rothwell L., Bailey R. A., Watson K., Kaiser P. (2016). Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs. Vet. Immunol. Immunopathol. 170, 20–24. 10.1016/j.vetimm.2016.01.001 PubMed DOI
Bottje W. G., Carstens G. E. (2009). Association of mitochondrial function and feed efficiency in poultry and livestock species. J. Anim. Sci. 87 (14), E48–E63. 10.2527/jas.2008-1379 PubMed DOI
Bottje W. G., Kong B. W., Lee J. Y., Washington T., Baum J., Dridi S., et al. (2014). Potential roles of mTOR and protein degradation pathways in the phenotypic expression of feed efficiency in broilers. Biochem. Physiol. 3 (125), 2. 10.4172/2168-9652.1000125 DOI
Bottje W. G., Kong B. W., Song J. J., Lee J. Y., Hargis B. M., Lassiter K., et al. (2012). Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K microarray. II. Differentially expressed focus genes. Poult. Sci. 91 (10), 2576–2587. 10.3382/ps.2012-02204 PubMed DOI
Bottje W. G., Lassiter K., Dridi S., Hudson N., Kong B. W. (2017b). Enhanced expression of proteins involved in energy production and transfer in breast muscle of pedigree male broilers exhibiting high feed efficiency. Poult. Sci. 96 (7), 2454–2458. 10.3382/ps/pew453 PubMed DOI PMC
Bottje W. G., Lassiter K., Piekarski-Welsher A., Dridi S., Reverter A., Hudson N. J., et al. (2017c). Proteogenomics reveals enriched ribosome assembly and protein translation in pectoralis major of high feed efficiency pedigree broiler males. Front. Physiol. 8, 306. 10.3389/fphys.2017.00306 PubMed DOI PMC
Bottje W., Kong B. W. (2013). Cell biology symposium: Feed efficiency: Mitochondrial function to global gene expression. J. Anim. Sci. 91 (4), 1582–1593. 10.2527/jas.2012-5787 PubMed DOI
Bottje W., Kong B. W., Reverter A., Waardenberg A. J., Lassiter K., Hudson N. J. (2017a). Progesterone signalling in broiler skeletal muscle is associated with divergent feed efficiency. BMC Syst. Biol. 11 (1), 29–36. 10.1186/s12918-017-0396-2 PubMed DOI PMC
Buckingham M., Rigby P. W. (2014). Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev. Cell 28, 225–238. 10.1016/j.devcel.2013.12.020 PubMed DOI
Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. 10.1373/clinchem.2008.112797 PubMed DOI
Carling D. (2004). The AMP-activated protein kinase cascade–a unifying system for energy control. Trends biochem. Sci. 29 (1), 18–24. 10.1016/j.tibs.2003.11.005 PubMed DOI
Chang K. W., Huang N. A., Liu I., Wang Y. H., Wu P., Tseng Y. T., et al. (2015). Emergence of differentially regulated pathways associated with the development of regional specificity in chicken skin. BMC Genomics 16 (1), 22–14. 10.1186/s12864-014-1202-9 PubMed DOI PMC
Chen B., Xu J., He X., Xu H., Li G., Du H., et al. (2015a). A genome-wide mRNA screen and functional analysis reveal FOXO3 as a candidate gene for chicken growth. PLoS One 10 (9), e0137087. 10.1371/journal.pone.0137087 PubMed DOI PMC
Chen C. F., Foley J., Tang P. C., Li A., Jiang T. X., Wu P., et al. (2015b). Development, regeneration, and evolution of feathers. Annu. Rev. Anim. Biosci. 3, 169–195. 10.1146/annurev-animal-022513-114127 PubMed DOI PMC
Chen H. L. (2012). cDNA cloning and tissue expression of TNNC1, TNNC2 and TNNT3 in tianfu goat. Sichuan, China: Sichuan Agricultural University.
Chen L., Feng X. C., Zhang Y. Y., Liu X. B., Zhang W. G., Li C. B., et al. (2015c). Effects of ultrasonic processing on caspase-3, calpain expression and myofibrillar structure of chicken during post-mortem ageing. Food Chem. 177 (12), 280–287. PubMed
Cheung P. C., Salt I. P., Davies S. P., Hardie D. G., Carling D. (2000). Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding. Biochem. J. 346 (3), 659–669. 10.1042/bj3460659 PubMed DOI PMC
Cho M., Ryu M., Jeong Y., Chung Y-H., Kim D-E., Cho H-S., et al. (2009). Cardamonin suppresses melanogenesis by inhibition of Wnt/beta-catenin signaling. Biochem. Biophys. Res. Commun. 390, 500–505. 10.1016/j.bbrc.2009.09.124 PubMed DOI
Chuong C. M., Oliver G., Ting S. A., Jegalian B. G., Chen H. M., De Robertis E. M. (1990). Gradients of homeoproteins in developing feather buds. Development 110, 1021–1030. 10.1242/dev.110.4.1021 PubMed DOI
Ciacciariello M., Gous R. M. (2005). A comparison of the effects of feeding treatments and lighting on age at first egg and subsequent laying performance and carcase composition of broiler breeder hens. Br. Poult. Sci. 46, 246–254. 10.1080/00071660500066233 PubMed DOI
Cleveland B. M., Evenhuis J. P. (2010). Molecular characterization of atrogin-1/F-box protein-32 (FBXO32) and fbox protein-25 (FBXO25) in rainbow trout (Oncorhynchus mykiss): Expression across tissues in response to feed deprivation. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 157 (3), 248–257. 10.1016/j.cbpb.2010.06.010 PubMed DOI
Crawford R. R., Prescott E. T., Sylvester C. F., Higdon A. N., Shan J., Kilberg M. S., et al. (2015). Human CHAC1 protein degrades glutathione, and mRNA induction is regulated by the transcription factors ATF4 and ATF3 and a bipartite ATF/CRE regulatory element. J. Biol. Chem. 290, 15878–15891. 10.1074/jbc.M114.635144 PubMed DOI PMC
Davis R. J. (2000). Signal transduction by the JNK group of MAP kinases. Inflamm. Process., 13–21. PubMed
Davis R. V., Lamont S. J., Rothschild M. F., Persia M. E., Ashwell C. M., Schmidt C. J. (2015). Transcriptome analysis of post-hatch breast muscle in legacy and modern broiler chickens reveals enrichment of several regulators of myogenic growth. PLoS One 10 (3), e0122525. 10.1371/journal.pone.0122525 PubMed DOI PMC
De Boever S., Vangestel C., De Backer P., Croubels S., Sys S. U. (2008). Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens. Vet. Immunol. Immunopathol. 122, 312–317. 10.1016/j.vetimm.2007.12.002 PubMed DOI
De Palma C., Morisi F., Pambianco S., Assi E., Touvier T., Russo S., et al. (2014). Deficient nitric oxide signalling impairs skeletal muscle growth and performance: Involvement of mitochondrial dysregulation. Skelet. Muscle 4 (1), 22–21. 10.1186/s13395-014-0022-6 PubMed DOI PMC
Deeley R. G., Tam S. P., Archer T. K. (1985). The effects of estrogen on apolipoprotein synthesis. Can. J. Biochem. Cell Biol. 63, 882–889. 10.1139/o85-109 PubMed DOI
Derynck R., Zhang Y., Feng X. H. (1998). Smads: Transcriptional activators of TGF-beta responses. Cell 95 (6), 737–740. 10.1016/s0092-8674(00)81696-7 PubMed DOI
Dickinson M. E., Kobrin M. S., Silan C. M., Kingsley D. M., Justice M. J., Miller D. A., et al. (1990). Chromosomal localization of seven members of the murine TGF-beta superfamily suggests close linkage to several morphogenetic mutantloci. Genomics 6, 505–520. 10.1016/0888-7543(90)90480-i PubMed DOI
Dikalov S. (2011). Cross talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51 (7), 1289–1301. 10.1016/j.freeradbiomed.2011.06.033 PubMed DOI PMC
Divya D., Bhattacharya T. K., Prakash M. G., Chatterjee R. N., Shukla R., Vishnu P. B., et al. (2018a). Molecular characterization and expression profiling of BMP 3 gene in broiler and layer chicken. Mol. Biol. Rep. 45 (4), 477–495. 10.1007/s11033-018-4184-x PubMed DOI
Divya D., Prakash M. G., Chatterjee R. N., Reddy V. R., Reddy Y. N., Bhattacharya T. K. (2018b). Relative expression profile of AA genotype of BMP4 gene in broiler and layer chicken. J. Anim. Res. 8 (4), 549–554. 10.30954/2277-940x.08.2018.1 DOI
Dong C. L. (2017). Multiscale studies of skeletal muscle contraction. Zhejiang, China: Zhejiang University.
Dong X., Li J., Zhang Y., Han D., Hua G., Wang J., et al. (2019). Genomic analysis reveals pleiotropic alleles at EDN3 and BMP7 involved in chicken comb color and egg production. Front. Genet. 10, 612. 10.3389/fgene.2019.00612 PubMed DOI PMC
Dore J. J., Edens M., Garamszegi N., Leof E. B. (1998). Heteromeric and homomeric transforming growth factor-beta receptors show distinct signaling and endocytic responses in epithelial cells. J. Biol. Chem. 273 (48), 31770–31777. 10.1074/jbc.273.48.31770 PubMed DOI
Dorshorst B. J., Ashwell C. M. (2009). Genetic mapping of the sex-linked barring gene in the chicken. Poult. Sci. 88 (9), 1811–1817. 10.3382/ps.2009-00134 PubMed DOI
Dorshorst B., Molin A. M., Rubin C. J., Johansson A. M., Stromstedt L., Pham M. H., et al. (2011). A complex genomic rearrangement involving the endothelin 3 locus causes dermal hyperpigmentation in the chicken. PLoS Genet. 7 (12), e1002412. 10.1371/journal.pgen.1002412 PubMed DOI PMC
Drogemuller C., Giese A., Martins-Wess F., Wiedemann S., Andersson L., Brenig B., et al. (2006). The mutation causing the black-and-tan pigmentation phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence. Mamm. Genome 17 (1), 58–66. 10.1007/s00335-005-0104-1 PubMed DOI
Duffy D. L., Zhao Z. Z., Sturm R. A., Hayward N. K., Martin N. G., Montgomery G. W. (2010). Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J. Invest. Dermatol. 130 (2), 520–528. 10.1038/jid.2009.258 PubMed DOI PMC
Dupont J., Derouet M., Simon J., Taouis M. (1998a). Effect of nutritional state on the formation of a complex involving insulin receptor IRS-1, the 52 kDa Src homology/collagen protein (Shc) isoform and phosphatidylinositol 3′-kinase activity. Biochem. J. 335 (2), 293–300. 10.1042/bj3350293 PubMed DOI PMC
Dupont J., Derouet M., Simon J., Taouis M. (1998b). Nutritional state regulates insulin receptor and IRS-1 phosphorylation and expression in chicken. Am. J. Physiol. 274 (2), E309–E316. 10.1152/ajpendo.1998.274.2.E309 PubMed DOI
Eisen M. B., Spellman P. T., Brown P. O., Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U. S. A. 95, 14863–14868. 10.1073/pnas.95.25.14863 PubMed DOI PMC
Elkina Y., von Haehling S., Anker S. D., Springer J. (2011). The role of myostatin in muscle wasting: An overview. J. Cachexia Sarcopenia Muscle 2 (3), 143–151. 10.1007/s13539-011-0035-5 PubMed DOI PMC
Errede B., Cade R. M., Yashar B. M., Kamada Y., Levin D. E., Irie K., et al. (1995). Dynamics and organization of MAP kinase signal pathways. Mol. Reprod. Dev. 42, 477–485. 10.1002/mrd.1080420416 PubMed DOI
Exposito-Rodriguez M., Borges A. A., Borges-Perez A., Perez J. A. (2008). Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 8, 131. 10.1186/1471-2229-8-131 PubMed DOI PMC
Fan R., Xie J., Bai J., Wang H., Tian X., Bai R., et al. (2013). Skin transcriptome profiles associated with coat color in sheep. BMC Genomics 14 (1), 389–392. 10.1186/1471-2164-14-389 PubMed DOI PMC
Feinstein-Linial M., Buvoli M., Buvoli A., Sadeh M., Dabby R., Straussberg R., et al. (2016). Two novel MYH7 proline substitutions cause Laing Distal Myopathy-like phenotypes with variable expressivity and neck extensor contracture. BMC Med. Genet. 17 (1), 57–59. 10.1186/s12881-016-0315-1 PubMed DOI PMC
Ferreira L. F., Laitano O. (2016). Regulation of NADPH oxidases in skeletal muscle. Free Radic. Biol. Med. 98, 18–28. 10.1016/j.freeradbiomed.2016.05.011 PubMed DOI PMC
Florini J. R., Ewton D. Z., Falen S. L., Van Wyk J. J. (1986). Biphasic concentration dependency of stimulation of myoblast differentiation by somatomedins. Am. J. Physiol. 19, C771–C778. 10.1152/ajpcell.1986.250.5.C771 PubMed DOI
Florini J. R., Ewton D. Z., Magri K. A. (1991b). Hormones, growth factors, and myogenic differentiation. Annu. Rev. Physiol. 53, 201–216. 10.1146/annurev.ph.53.030191.001221 PubMed DOI
Florini J. R., Magri K. A. (1989). Effects of growth factors on myogenic differentiation. Am. J. Physiol. 256, C701–C711. 10.1152/ajpcell.1989.256.4.C701 PubMed DOI
Florini J. R., Magri K., Ewton D., James P., Grindstaff K., Rotwein P. (1991a). "Spontaneous" differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II.. J. Biol. Chem. 266, 15917–15923. 10.1016/s0021-9258(18)98496-6 PubMed DOI
Foulstone E. J., Savage P. B., Crown A. L., Holly J. M., Stewart C. E. (2003). Role of insulin‐like growth factor binding protein‐3 (IGFBP‐3) in the differentiation of primary human adult skeletal myoblasts. J. Cell. Physiol. 195 (1), 70–79. 10.1002/jcp.10227 PubMed DOI
Frey N., Barrientos T., Shelton J. M., Frank D., Rutten H., Gehring D., et al. (2004). Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat. Med. 10 (12), 1336–1343. 10.1038/nm1132 PubMed DOI
Frey N., Frank D., Lippl S., Kuhn C., Kogler H., Barrientos T., et al. (2008). Calsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation. J. Clin. Invest. 118 (11), 3598–3608. 10.1172/JCI36277 PubMed DOI PMC
Frey N., Richardson J. A., Olson E. N. (2000). Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 97, 14632–14637. 10.1073/pnas.260501097 PubMed DOI PMC
Fu X., Zhao J. X., Liang J., Zhu M. J., Foretz M., Viollet B., et al. (2013). AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. Am. J. Physiol. Cell Physiol. 305 (8), C887–C895. 10.1152/ajpcell.00124.2013 PubMed DOI PMC
Fuentes E. N., Valdes J. A., Molina A., Bjornsson B. T. (2013). Regulation of skeletal muscle growth in fish by the growth hormone-insulin-like growth factor system. Gen. Comp. Endocrinol. 192, 136–148. 10.1016/j.ygcen.2013.06.009 PubMed DOI
Galvan I., Alonso-Alvarez C. (2008). An intracellular antioxidant determines the expression of a melanin-based signal in a bird. PLoS One 3, e3335. 10.1371/journal.pone.0003335 PubMed DOI PMC
Godwin A. R., Capecchi M. R. (1999). Hair defects in Hoxc13 mutant mice. J. Investig. Dermatol. Symp. Proc. 4, 244–247. 10.1038/sj.jidsp.5640221 PubMed DOI
Gu Z., Zhu D., Li N., Li H., Deng X., Wu C. (2004). The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci. China. C Life Sci. 47 (1), 25–30. 10.1360/02yc0201 PubMed DOI
Gustin M. C., Albertyn J., Alexander M., Davenport K. (1998). MAP kinase pathways in the yeast Saccharomyces cerevisiae . Microbiol. Mol. Biol. Rev. 62, 1264–1300. 10.1128/MMBR.62.4.1264-1300.1998 PubMed DOI PMC
Halprin K. M., Ohkawara A. (1966). Glutathione and human pigmentation. Arch. Dermatol. 94, 355–357. 10.1001/archderm.94.3.355 PubMed DOI
Han C., An G., Du X. (2014). Three novel single nucleotide polymorphisms of the 3-hydroxy-3-methylglutaryl coenzyme A reductase gene associated with egg-production in chicken. Folia Biol. 62, 203–209. 10.3409/fb62_3.203 PubMed DOI
Han H. Q., Mitch W. E. (2011). Targeting the myostatin signaling pathway to treat muscle wasting diseases. Curr. Opin. Support. Palliat. Care 5 (4), 334–341. 10.1097/SPC.0b013e32834bddf9 PubMed DOI PMC
Hardie D. G., Carling D., Carlson M. (1998). The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821–855. 10.1146/annurev.biochem.67.1.821 PubMed DOI
Hardie D. G., Scott J. W., Pan D. A., Hudson E. R. (2003). Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546 (1), 113–120. 10.1016/s0014-5793(03)00560-x PubMed DOI
Harrison C. A., Gray P. C., Koerber S. C., Fischer W., Vale W. (2003). Identification of a functional binding site for activin on the type I receptor ALK4. J. Biol. Chem. 278 (23), 21129–21135. 10.1074/jbc.M302015200 PubMed DOI
Hartsock A., Nelson W. J. (2008). Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778 (3), 660–669. 10.1016/j.bbamem.2007.07.012 PubMed DOI PMC
He Y. M., Gu M. M. (2017). Research progress of myosin heavy chain genes in human genetic diseases. Yi Chuan 39 (10), 877–887. 10.16288/j.yczz.17-090 PubMed DOI
Hellemans J., Mortier G., Paepe A. D., Speleman F., Vandesompele J. (2007). qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8 (2), R19. 10.1186/gb-2007-8-2-r19 PubMed DOI PMC
Herrmann J. M., Stuart R. A., Craig E. A., Neupert W. (1994). Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J. Cell Biol. 127 (4), 893–902. 10.1083/jcb.127.4.893 PubMed DOI PMC
Hu S., Ni W., Sai W., Zi H., Qiao J., Wang P., et al. (2013). Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PLoS One 8 (3), e58521. 10.1371/journal.pone.0058521 PubMed DOI PMC
Huang D. W., Sherman B. T., Lempicki R. A. (2009b). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13. 10.1093/nar/gkn923 PubMed DOI PMC
Huang D. W., Sherman B. T., Lempicki R. A. (2009a). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57. 10.1038/nprot.2008.211 PubMed DOI
Inman G. J., Nicolas F. J., Hill C. S. (2002). Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell 10 (2), 283–294. 10.1016/s1097-2765(02)00585-3 PubMed DOI
Ito S., Palumbo A., Prota G. (1985). Tyrosinase-catalyzed conjugation of dopa with glutathione. Experientia 41, 960–961. 10.1007/BF01970033 PubMed DOI
Itoh F., Asao H., Sugamura K., Heldin C. H., ten Dijke P., Itoh S. (2001). Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J. 20 (15), 4132–4142. 10.1093/emboj/20.15.4132 PubMed DOI PMC
Jeong W., Lim W., Kim J., Ahn S. E., Lee H. C., Jeong J. W., et al. (2012). Cell-specific and temporal aspects of gene expression in the chicken oviduct at different stages of the laying cycle. Biol. Reprod. 6 (86), 172. 10.1095/biolreprod.111.098186 PubMed DOI
Ji S., Losinski R. L., Cornelius S. G., Frank G. R., Willis G. M., Gerrard D. E., et al. (1998). Myostatin expression in porcine tissues: Tissue specificity and developmental and postnatal regulation. Am. J. Physiol. 275 (4), R1265–R1273. 10.1152/ajpregu.1998.275.4.R1265 PubMed DOI
Jia X., Lin H., Nie Q., Zhang X., Lamont S. J. (2016). A short insertion mutation disrupts Genesis of miR-16 and causes increased body weight in domesticated chicken. Sci. Rep. 6 (1), 36433–36441. 10.1038/srep36433 PubMed DOI PMC
Kang B., Guo J. R., Yang H. M., Zhou R. J., Liu J. X., Li S. Z., et al. (2009). Differential expression profiling of ovarian genes in prelaying and laying geese. Poult. Sci. 88, 1975–1983. 10.3382/ps.2008-00519 PubMed DOI
Kanzler B., Prin F., Thelu J., Dhouailly D. (1997). CHOXC-8 and CHOXD-13 expression in embryonic chick skin and cutaneous appendage specification. Dev. Dyn. 210, 274–287. 10.1002/(SICI)1097-0177(199711)210:3<274::AID-AJA8>3.0.CO;2-D PubMed DOI
Kanzler B., Viallet J. P., Le M. H., Boncinelli E., Duboule D., Dhouailly D. (1994). Differential expression of two different homeobox gene families during mouse tegument morphogenesis. Int. J. Dev. Biol. 38, 633–640. PubMed
Khan S., Roberts J., Wu S. (2017). Reference gene selection for gene expression study in shell gland and spleen of laying hens challenged with infectious bronchitis virus. Sci. Rep. 7, 14271. 10.1038/s41598-017-14693-2 PubMed DOI PMC
Kim D. H., Sarbassov D. D., Ali S. M., King J. E., Latek R. R., Erdjument-Bromage H., et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110 (2), 163–175. 10.1016/s0092-8674(02)00808-5 PubMed DOI
Kim J., Choi Y. H. (2014). Differential abundance of egg white proteins in laying hens treated with corticosterone. J. Agric. Food Chem. 62, 12346–12359. 10.1021/jf504469t PubMed DOI
Kishi H., Kuroda E., Mishima H. K., Yamashita U. (2001). Role of TGF-beta in the retinoic acid-induced inhibition of proliferation and melanin synthesis in chick retinal pigment epithelial cells in vitro . Cell Biol. Int. 25, 1125–1129. 10.1006/cbir.2001.0795 PubMed DOI
Kobayashi A., Kang M. I., Okawa H., Ohtsuji M., Zenke Y., Chiba T., et al. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24 (16), 7130–7139. 10.1128/MCB.24.16.7130-7139.2004 PubMed DOI PMC
Kobayashi A., Kang M. I., Watai Y., Tong K. I., Shibata T., Uchida K., et al. (2006). Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 26 (1), 221–229. 10.1128/MCB.26.1.221-229.2006 PubMed DOI PMC
Kong B. W., Lassiter K., Piekarski-Welsher A., Dridi S., Reverter-Gomez A., Hudson N. J., et al. (2016). Proteomics of breast muscle tissue associated with the phenotypic expression of feed efficiency within a pedigree male broiler line: I. Highlight on mitochondria. PLoS One 11 (5), e0155679. 10.1371/journal.pone.0155679 PubMed DOI PMC
Kong B. W., Song J. J., Lee J. Y., Hargis B. M., Wing T., Lassiter K., et al. (2011). Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Poult. Sci. 90 (11), 2535–2547. 10.3382/ps.2011-01435 PubMed DOI
Kumar A., Tikoo S., Maity S., Sengupta S., Kaur A., Bachhawat A. K., et al. (2012). Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Rep. 13, 1095–1101. 10.1038/embor.2012.156 PubMed DOI PMC
Lalueza-Fox C., Rompler H., Caramelli D., Staubert C., Catalano G., Hughes D., et al. (2007). A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318 (5855), 1453–1455. 10.1126/science.1147417 PubMed DOI
Laplante M., Sabatini D. M. (2013). Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126 (8), 1713–1719. 10.1242/jcs.125773 PubMed DOI PMC
Lassiter K., Kong B. C., Piekarski-Welsher A., Dridi S., Bottje W. G. (2019). Gene expression essential for myostatin signaling and skeletal muscle development is associated with divergent feed efficiency in pedigree male broilers. Front. Physiol. 10, 126. 10.3389/fphys.2019.00126 PubMed DOI PMC
Lee J., Karnuah A. B., Rekaya R., Anthony N. B., Aggrey S. E. (2015). Transcriptomic analysis to elucidate the molecular mechanisms that underlie feed efficiency in meat-type chickens. Mol. Genet. Genomics 290 (5), 1673–1682. 10.1007/s00438-015-1025-7 PubMed DOI
Lee S-i., Kim M., Choe J. C., Jablonski P. G. (2016). Evolution of plumage coloration in the crow family (corvidae) with a focus on the color-producing microstructures in the feathers: A comparison of eight species. Anim. Cells Syst. Seoul. 20, 95–102. 10.1080/19768354.2016.1159606 DOI
Lee S-J., McPherron A. C. (2001). Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. U. S. A. 98 (16), 9306–9311. 10.1073/pnas.151270098 PubMed DOI PMC
Lee S. J., Glass D. J. (2011). Treating cancer cachexia to treat cancer. Skelet. muscle 1 (1), 2–5. 10.1186/2044-5040-1-2 PubMed DOI PMC
Lee S. J., Reed L. A., Davies M. V., Girgenrath S., Goad M. E., Tomkinson K. N., et al. (2005). Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc. Natl. Acad. Sci. U. S. A. 102 (50), 18117–18122. 10.1073/pnas.0505996102 PubMed DOI PMC
Lewis T. S., Shapiro P. S., Ahn N. G. (1998). Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49–139. 10.1016/s0065-230x(08)60765-4 PubMed DOI
Li D. Y., Ren W. J. (2007). Influence of exercise on the structure and function of myosin. Chin. J. Tissue Eng. Res. 11 (32), 6458–6464.
Li S., Wang C., Yu W., Zhao S., Gong Y. (2012). Identification of genes related to white and black plumage formation by RNA-seq from white and black feather bulbs in ducks. PLoS One 7, e36592. 10.1371/journal.pone.0036592 PubMed DOI PMC
Lin S. J., Foley J., Jiang T. X., Yeh C. Y., Wu P., Foley A., et al. (2013). Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge. Science 340, 1442–1445. 10.1126/science.1230374 PubMed DOI PMC
Liu H., Luo Q., Zhang J., Mo C., Wang Y., Li J. (2019). Endothelins (EDN1, EDN2, EDN3) and their receptors (EDNRA, EDNRB, EDNRB2) in chickens: Functional analysis and tissue distribution. Gen. Comp. Endocrinol. 283, 113231. 10.1016/j.ygcen.2019.113231 PubMed DOI
Liu S. F. (2013). The experimental research of annexin V, vimentin and MYL3 different expression and significance in endometriosis with blood stasis syndrome. Chengdu, China: Chengdu University of Traditional Chinese Medicine.
Liu Y. Y., Li L. L., Xia X., Xue X. D., Fu J. H. (2012). Research progress on the correlation between tight junction proteins and lung diseases. J. Clin. Ped. 30 (5), 492–495.
Lopez G., de Lange K., Leeson S. (2007). Partitioning of retained energy in broilers and birds with intermediate growth rate. Poult. Sci. 86 (10), 2162–2171. 10.1093/ps/86.10.2162 PubMed DOI
Losos J. B., Arnold S. J., Bejerano G., Brodie E. D., Hibbett D., Hoekstra H. E., et al. (2013). Evolutionary biology for the 21st century. PLoS Biol. 11 (1), e1001466. 10.1371/journal.pbio.1001466 PubMed DOI PMC
Luan X., Liu D., Cao Z., Luo L., Liu M., Gao M., et al. (2014). Transcriptome profiling identifies differentially expressed genes in huoyan goose ovaries between the laying period and ceased period. PLoS One 9, e113211. 10.1371/journal.pone.0113211 PubMed DOI PMC
Macias M. J., Martin-Malpartida P., Massague J. (2015). Structural determinants of Smad function in TGF-β signaling. Trends biochem. Sci. 40 (6), 296–308. 10.1016/j.tibs.2015.03.012 PubMed DOI PMC
Mann K., Macek B., Olsen J. V. (2006). Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics 6 (13), 3801–3810. 10.1002/pmic.200600120 PubMed DOI
Marziano V., Pugliese A., Merler S., Ajelli M. (2017). Detecting a surprisingly low transmission distance in the early phase of the 2009 influenza pandemic. Sci. Rep. 7 (1), 12324–12329. 10.1038/s41598-017-12415-2 PubMed DOI PMC
Massague J., Seoane J., Wotton D. (2005). Smad transcription factors. Genes Dev. 19 (23), 2783–2810. 10.1101/gad.1350705 PubMed DOI
Massague J. (2012). TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13 (10), 616–630. 10.1038/nrm3434 PubMed DOI PMC
Mazerbourg S., Bondy C. A., Zhou J., Monget P. (2003). The insulin-like growth factor system: A key determinant role in the growth and selection of ovarian follicles? A comparative species study. Reprod. Domest. Anim. 38, 247–258. 10.1046/j.1439-0531.2003.00440.x PubMed DOI
McFarland D. C., Velleman S. G., Pesall J. E., Liu C. (2006). Effect of myostatin on Turkey myogenic satellite cells and embryonic myoblasts. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144 (4), 501–508. 10.1016/j.cbpa.2006.04.020 PubMed DOI
McPherron A. C., Lawler A. M., Lee S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387 (6628), 83–90. 10.1038/387083a0 PubMed DOI
Meister A. (1983). Selective modification of glutathione metabolism. Science 220, 472–477. 10.1126/science.6836290 PubMed DOI
Meyskens F. L., Farmer P., Fruehauf J. P. (2001). Redox regulation in human melanocytes and melanoma. Pigment. Cell Res. 14, 148–154. 10.1034/j.1600-0749.2001.140303.x PubMed DOI
Milewska M., Grabiec K., Grzelkowska-Kowalczyk K. (2014). Interactions of proliferation and differentiation signaling pathways in myogenesis. Postepy Hig. Med. Dosw. 68, 516–526. 10.5604/17322693.1101617 PubMed DOI
Minvielle F., Bed'hom B., Coville J. L., Ito S., Inoue-Murayama M., Gourichon D. (2010). The "silver" Japanese quail and the MITF gene: Causal mutation, associated traits and homology with the "blue" chicken plumage. BMC Genet. 11 (1), 15–17. 10.1186/1471-2156-11-15 PubMed DOI PMC
Mishra S. K., Chen B., Zhu Q., Xu Z., Ning C., Yin H., et al. (2020). Transcriptome analysis reveals differentially expressed genes associated with high rates of egg production in chicken hypothalamic-pituitary-ovarian axis. Sci. Rep. 10 (1), 5976–5978. 10.1038/s41598-020-62886-z PubMed DOI PMC
Mitra T., Bilic I., Hess M., Liebhart D. (2016). The 60S ribosomal protein L13 is the most preferable reference gene to investigate gene expression in selected organs from turkeys and chickens, in context of different infection models. Vet. Res. 47 (1), 105. 10.1186/s13567-016-0388-z PubMed DOI PMC
Miura H., Ozaki N., Sawada M., Isobe K., Ohta T., Nagatsu T. (2008). A link between stress and depression: Shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 11, 198–209. 10.1080/10253890701754068 PubMed DOI
Mogilicherla K., Athe R. P., Chatterjee R. N., Bhattacharya T. K. (2022). Identification of suitable reference genes for normalization of quantitative real‐time PCR‐based gene expression in chicken (Gallus gallus). Anim. Genet. 1-7. PubMed
Moisa S. J., Shike D. W., Graugnard D. E., Rodriguezzas S. L., Everts R. E., Lewin H. A., et al. (2013). Bioinformatics analysis of transcriptome dynamics during growth in angus cattle longissimus muscle. Bioinform. Biol. Insights 7, 253–270. 10.4137/BBI.S12328 PubMed DOI PMC
Morissette M. R., Cook S. A., Foo S., McKoy G., Ashida N., Novikov M., et al. (2006). Myostatin regulates cardiomyocyte growth through modulation of Akt signaling. Circ. Res. 99 (1), 15–24. 10.1161/01.RES.0000231290.45676.d4 PubMed DOI PMC
Muroya S., Tanabe R., Nakajima I., Chikuni K. (2000). Molecular characteristics and site specific distribution of the pigment of the silky fowl. J. Vet. Med. Sci. 62, 391–395. 10.1292/jvms.62.391 PubMed DOI
Nagaraja S. C., Aggrey S. E., Yao J., Zadworny D., Fairfull R. W., Kuhnlein U. (2000). Trait association of a genetic marker near the IGF-I gene in egg-laying chickens. J. Hered. 91, 150–156. 10.1093/jhered/91.2.150 PubMed DOI
Nan H., Kraft P., Hunter D. J., Han J. (2009). Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians. Int. J. Cancer 125 (4), 909–917. 10.1002/ijc.24327 PubMed DOI PMC
Nascimento C. S., Barbosa L. T., Brito C., Fernandes R. P., Mann R. S., Pinto A. P., et al. (2015). Identification of suitable reference genes for real time quantitative polymerase chain reaction assays on pectoralis major muscle in chicken (Gallus gallus). PLoS One 10 (5), e0127935. 10.1371/journal.pone.0127935 PubMed DOI PMC
Ng C. S., Chen C. K., Fan W. L., Wu P., Wu S. M., Chen J. J., et al. (2015). Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics 16 (1), 756–816. 10.1186/s12864-015-1966-6 PubMed DOI PMC
Nguyen D. X., Chiang A. C., Zhang X. H., Kim J. Y., Kris M. G., Ladanyi M., et al. (2009). WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62. 10.1016/j.cell.2009.04.030 PubMed DOI PMC
Niemann H., Kuhla B., Flachowsky G. (2011). Perspectives for feed-efficient animal production. J. Anim. Sci. 89 (12), 4344–4363. 10.2527/jas.2011-4235 PubMed DOI
Ninomiya-Tsuji J., Kishimoto K., Hiyama A., Inoue J. I., Cao Z., Matsumoto K. (1999). The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398 (6724), 252–256. 10.1038/18465 PubMed DOI
Nisoli E., Clementi E., Paolucci C., Cozzi V., Tonello C., Sciorati C., et al. (2003). Mitochondrial biogenesis in mammals: The role of endogenous nitric oxide. Science 299 (5608), 896–899. 10.1126/science.1079368 PubMed DOI
Norris B. J., Whan V. A. (2008). A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res. 18 (8), 1282–1293. 10.1101/gr.072090.107 PubMed DOI PMC
Nys Y., Guyot N. (2011). “Egg formation and chemistry,” in Improving the safety and quality of eggs and egg products (Woodhead Publishing; ), 83–132.
Olias P., Adam I., Meyer A., Scharff C., Gruber A. D. (2014). Reference genes for quantitative gene expression studies in multiple avian species. PLoS One 9 (6), e99678. 10.1371/journal.pone.0099678 PubMed DOI PMC
Olivares C., Solano F. (2009). New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment. Cell Melanoma Res. 22 (6), 750–760. 10.1111/j.1755-148X.2009.00636.x PubMed DOI
Ouyang H., Wang Z., Chen X., Yu J., Li Z., Nie Q. (2017). Proteomic analysis of chicken skeletal muscle during embryonic development. Front. Physiol. 8, 281. 10.3389/fphys.2017.00281 PubMed DOI PMC
Ozsolak F., Milos P. M. (2011). RNA sequencing: Advances, challenges, and opportunities. Nat. Rev. Genet. 12 (2), 87–98. 10.1038/nrg2934 PubMed DOI PMC
Packer A. I., Jane-Wit D., Mclean L., Panteleyev A. A., Christiano A. M., Wolgemuth D. J. (2000). Hoxa4 expression in developing mouse hair follicles and skin. Mech. Dev. 99, 153–157. 10.1016/s0925-4773(00)00471-8 PubMed DOI
Pampouille E., Hennequet-Antier C., Praud C., Juanchich A., Brionne A., Godet E., et al. (2019). Differential expression and co-expression gene network analyses reveal molecular mechanisms and candidate biomarkers involved in breast muscle myopathies in chicken. Sci. Rep. 9 (1), 14905–14907. 10.1038/s41598-019-51521-1 PubMed DOI PMC
Paolacci A. R., Tanzarella O. A., Porceddu E., Ciaffi M. (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 10, 11. 10.1186/1471-2199-10-11 PubMed DOI PMC
Parvez S., Kang M. K., Chung H. S., Cho C. W., Hong M. C., Shin M. K., et al. (2006). Survey and mechanism of skin depigmenting and lightening agents. Phytother. Res. 20 (11), 921–934. 10.1002/ptr.1954 PubMed DOI
Pertinez S. P., Wilson P. W., Icken W., Cavero D., Bain M. M., Jones A. C., et al. (2020). Transcriptome analysis of the uterus of hens laying eggs differing in cuticle deposition. BMC Genomics 21 (1), 516–525. 10.1186/s12864-020-06882-7 PubMed DOI PMC
Pfaffl M. W., Tichopad A., Prgomet C., Neuvians T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-excel based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515. 10.1023/b:bile.0000019559.84305.47 PubMed DOI
Plonka P. M., Passeron T., Brenner M., Tobin D. J., Shibahara S., Thomas A., et al. (2009). What are melanocytes really doing all day long?.Exp. Dermatol. 18 (9), 799–819. 10.1111/j.1600-0625.2009.00912.x PubMed DOI PMC
Prum R. O. (2005). Evolution of the morphological innovations of feathers. J. Exp. Zool. B Mol. Dev. Evol. 304 (6), 570–579. 10.1002/jez.b.21073 PubMed DOI
Raingeaud J., Whitmarsh A. J., Barrett T., Derijard B., Davis R. J. (1996). MKK3-and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 16 (3), 1247–1255. 10.1128/mcb.16.3.1247 PubMed DOI PMC
Rajkumar U., Muthukumar M., Haunshi S., Niranjan M., Raju M. V., Rama Rao S. V., et al. (2016). Comparative evaluation of carcass traits and meat quality in native Aseel chickens and commercial broilers. Br. Poult. Sci. 57 (3), 339–347. 10.1080/00071668.2016.1162282 PubMed DOI
Reddy I. J., David C. G., Sarma P. V., Singh K. (2002). The possible role of prolactin in laying performance and steroid hormone secretion in domestic hen (Gallus domesticus). Gen. Comp. Endocrinol. 127, 249–255. 10.1016/s0016-6480(02)00034-5 PubMed DOI
Rehfeldt C., Fiedler I., Dietl G., Ender K. (2000). Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livest. Prod. Sci. 66 (2), 177–188. 10.1016/s0301-6226(00)00225-6 DOI
Roberts D. W., Newton R. A., Beaumont K. A., Helen Leonard J., Sturm R. A. (2006). Quantitative analysis of MC1R gene expression in human skin cell cultures. Pigment. Cell Res. 19 (1), 76–89. 10.1111/j.1600-0749.2005.00286.x PubMed DOI
Rose-Martel M., Du J., Hincke M. T. (2012). Proteomic analysis provides new insight into the chicken eggshell cuticle. J. Proteomics 75 (9), 2697–2706. 10.1016/j.jprot.2012.03.019 PubMed DOI
Roulin A. (2004). The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol. Rev. Camb. Philos. Soc. 79, 815–848. 10.1017/s1464793104006487 PubMed DOI
Rowe R. W., Goldspink G. (1969). Muscle fibre growth in five different muscles in both sexes of mice. J. Anat. 104 (3), 519–530. PubMed PMC
Saravanperumal S. A., Pediconi D., Renieri C., La Terza A. (2014). Alternative splicing of the sheep MITF gene:Novel transcripts detectable in skin. Gene 552 (1), 165–175. 10.1016/j.gene.2014.09.031 PubMed DOI
Sartorelli V., Huang J., Hamamori Y., Kedes L. (1997). Molecular mechanisms of myogenic coactivation by p300: Direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17, 1010–1026. 10.1128/mcb.17.2.1010 PubMed DOI PMC
Schaffler A., Scholmerich J., Buechler C. (2006). The role of 'adipotropins' and the clinical importance of a potential hypothalamic-pituitary-adipose axis. Nat. Clin. Pract. Endocrinol. Metab. 2 (7), 374–383. 10.1038/ncpendmet0197 PubMed DOI
Schiaffino S., Dyar K. A., Ciciliot S., Blaauw B., Sandri M. (2013). Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280 (17), 4294–4314. 10.1111/febs.12253 PubMed DOI
Schiaffino S., Mammucari C. (2011). Regulation of skeletal muscle growth by the IGF1-akt/PKB pathway: Insights from genetic models. Skelet. Muscle 1 (1), 4. 10.1186/2044-5040-1-4 PubMed DOI PMC
Schulz R. A., Yutzey K. E. (2004). Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev. Biol. 266, 1–16. 10.1016/j.ydbio.2003.10.008 PubMed DOI
Senf S. M., Howard T. M., Ahn B., Ferreira L. F., Judge A. R. (2013). Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration. PLoS One 8 (4), e62687. 10.1371/journal.pone.0062687 PubMed DOI PMC
Sharma M., Kambadur R., Matthews K. G., Somers W. G., Devlin G. P., Conaglen J. V., et al. (1999). Myostatin, a transforming growth factor‐β superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J. Cell. Physiol. 180 (1), 1–9. 10.1002/(SICI)1097-4652(199907)180:1<1::AID-JCP1>3.0.CO;2-V PubMed DOI
Shi Y., Hata A., Lo R. S., Massague J., Pavletich N. P. (1997). A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388 (6637), 87–93. 10.1038/40431 PubMed DOI
Shiue Y. L., Chen L. R., Chen C. F., Chen Y. L., Ju J. P., Chao C. H., et al. (2006). Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland. Theriogenology 66, 1274–1283. 10.1016/j.theriogenology.2006.03.037 PubMed DOI
Shyu K. G., Lu M. J., Wang B. W., Sun H. Y., Chang H. (2006). Myostatin expression in ventricular myocardium in a rat model of volume‐overload heart failure. Eur. J. Clin. Invest. 36 (10), 713–719. 10.1111/j.1365-2362.2006.01718.x PubMed DOI
Silver N., Best S., Jiang J., Thein S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7 (1), 33–39. 10.1186/1471-2199-7-33 PubMed DOI PMC
Silversides F., Villeneuve P. (1999). Ovarian follicular growth and maturity and follicular production of progesterone and oestradiol in response to porcine luteinising hormone and porcine follicle stimulating hormone in albino (S* AS) hens in vivo and in vitro . Br. Poult. Sci. 40, 545–551. 10.1080/00071669987340 PubMed DOI
Smythe G. M., Rando T. A. (2006). Altered caveolin-3 expression disrupts PI(3) kinase signaling leading to death of cultured muscle cells. Exp. Cell Res. 312 (15), 2816–2825. 10.1016/j.yexcr.2006.05.010 PubMed DOI
Solano F., Briganti S., Picardo M., Ghanem G. (2006). Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment. Cell Res. 19 (6), 550–571. 10.1111/j.1600-0749.2006.00334.x PubMed DOI
Spangenburg E. E., Abraha T., Childs T. E., Pattison J. S., Booth F. W. (2003). Skeletal muscle IGF-binding protein-3 and-5 expressions are age, muscle, and load dependent. Am. J. Physiol. Endocrinol. Metab. 284 (2), E340–E350. 10.1152/ajpendo.00253.2002 PubMed DOI
Stapane L., Le Roy N., Hincke M. T., Gautron J. (2019). The glycoproteins EDIL3 and MFGE8 regulate vesicle-mediated eggshell calcification in a new model for avian biomineralization. J. Biol. Chem. 294 (40), 14526–14545. 10.1074/jbc.RA119.009799 PubMed DOI PMC
Stelnicki E. J., Komuves L. G., Kwong A. O., Holmes D., Klein P., Rozenfeld S., et al. (1998). HOX homeobox genes exhibit spatial and temporal changes in expression during human skin development. J. Invest. Dermatol. 110, 110–115. 10.1046/j.1523-1747.1998.00092.x PubMed DOI
Stewart C. E., Rotwein P. (1996). Growth, differentiation, and survival: Multiple physiological functions for insulin-like growth factors. Physiol. Rev. 76 (4), 1005–1026. 10.1152/physrev.1996.76.4.1005 PubMed DOI
Stickland N. C. (1983). Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri). J. Anat. 137, 323–333. PubMed PMC
Sulem P., Gudbjartsson D. F., Stacey S. N., Helgason A., Rafnar T., Magnusson K. P., et al. (2007). Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat. Genet. 39 (12), 1443–1452. 10.1038/ng.2007.13 PubMed DOI
Sun T., Xiao C., Deng J., Yang Z., Zou L., Du W., et al. (2021). Transcriptome analysis reveals key genes and pathways associated with egg production in Nandan-Yao domestic chicken. Comp. Biochem. Physiol. Part D. Genomics Proteomics 40, 100889. 10.1016/j.cbd.2021.100889 PubMed DOI
Sun Y., Huang Y., Hu G., Zhang X., Ruan Z., Zhao X., et al. (2016). Comparative transcriptomic study of muscle provides new insights into the growth superiority of a novel grouper hybrid. PLoS One 11 (12), e0168802. 10.1371/journal.pone.0168802 PubMed DOI PMC
Sylva M., Moorman A. F., van den Hof M. J. (2013). Follistatin-like 1 in vertebrate development. Birth Defects Res. C Embryo Today 99 (1), 61–69. 10.1002/bdrc.21030 PubMed DOI
Takada F., Vander Woude D. L., Tong H. Q., Thompson T. G., Watkins S. C., Kunkel L. M., et al. (2001). Myozenin: An α-actinin-and γ-filamin-binding protein of skeletal muscle Z lines. Proc. Natl. Acad. Sci. U. S. A. 98 (4), 1595–1600. 10.1073/pnas.041609698 PubMed DOI PMC
Talbot R. T., Hanks M. C., Sterling R. J., Sang H. M., Sharp P. J. (1991). Pituitary prolactin messenger ribonucleic acid levels in incubating and laying hens: Effects of manipulating plasma levels of vasoactive intestinal polypeptide. Endocrinology 129, 496–502. 10.1210/endo-129-1-496 PubMed DOI
Ten Dijke P., Ichijo H., Franzen P., Schulz P., Saras J., Toyoshima H., et al. (1993). Activin receptor-like kinases: A novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 8 (10), 2879–2887. PubMed
Timson B. F., Dudenhoeffer G. A. (1990). Skeletal muscle fibre number in the rat from youth to adulthood. J. Anat. 173, 33–36. PubMed PMC
Tripathi A. K., Aparnathi M. K., Vyavahare S. S., Ramani U. V., Rank D. N., Joshi C. G. (2012). Myostatin gene silencing by RNA interference in chicken embryo fibroblast cells. J. Biotechnol. 160 (3-4), 140–145. 10.1016/j.jbiotec.2012.03.001 PubMed DOI
Truscott K. N., Brandner K., Pfanner N. (2003). Mechanisms of protein import into mitochondria. Curr. Biol. 13 (8), R326–R337. 10.1016/s0960-9822(03)00239-2 PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (7), RESEARCH0034–2. 10.1186/gb-2002-3-7-research0034 PubMed DOI PMC
Viollet B., Andreelli F., Jorgensen S. B., Perrin C., Flamez D., Mu J., et al. (2003a). Physiological role of AMP-activated protein kinase (AMPK): Insights from knockout mouse models. Biochem. Soc. Trans. 31 (1), 216–219. 10.1042/bst0310216 PubMed DOI
Viollet B., Andreelli F., Jorgensen S. B., Perrin C., Geloen A., Flamez D., et al. (2003b). The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111 (1), 91–98. 10.1172/JCI16567 PubMed DOI PMC
Wang C., Ma W. (2019). Hypothalamic and pituitary transcriptome profiling using RNA-sequencing in high-yielding and low-yielding laying hens. Sci. Rep. 9, 10285. 10.1038/s41598-019-46807-3 PubMed DOI PMC
Wang H. B., Li H., Wang Q. G., Zhang X. Y., Wang S. Z., Wang Y. X., et al. (2007). Profiling of chicken adipose tissue gene expression by genome array. BMC Genomics 8 (1), 193–194. 10.1186/1471-2164-8-193 PubMed DOI PMC
Weatherley A., Gill H. (1985). Dynamics of increase in muscle fibers in fishes in relation to size and growth. Experientia 41 (3), 353–354. 10.1007/bf02004500 DOI
Weatherley A., Gill H., Lobo A. (1988). Recruitment and maximal diameter of axial muscle fibres in teleosts and their relationship to somatic growth and ultimate size. J. Fish. Biol. 33 (6), 851–859. 10.1111/j.1095-8649.1988.tb05532.x DOI
Weyman C. M., Wolfman A. (1998). Mitogen-activated protein kinase kinase (MEK) activity is required for inhibition of skeletal muscle differentiation by insulin-like growth factor 1 or fibroblast growth factor .. Endocrinology 139 (4), 1794–1800. 10.1210/endo.139.4.5950 PubMed DOI
Widelitz R. B. (2008). Wnt signaling in skin organogenesis. Organogenesis 4, 123–133. 10.4161/org.4.2.5859 PubMed DOI PMC
Woodman S. E., Sotgia F., Galbiati F., Minetti C., Lisanti M. P. (2004). Caveolinopathies: Mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology 62 (4), 538–543. 10.1212/wnl.62.4.538 PubMed DOI
Wu J. W., Hu M., Chai J., Seoane J., Huse M., Li C., et al. (2001). Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol. Cell 8 (6), 1277–1289. 10.1016/s1097-2765(01)00421-x PubMed DOI
Wu Y., Zhou S., Smas C. M. (2010). Downregulated expression of the secreted glycoprotein follistatin-like 1 (Fstl1) is a robust hallmark of preadipocyte to adipocyte conversion. Mech. Dev. 127 (3-4), 183–202. 10.1016/j.mod.2009.12.003 PubMed DOI PMC
Xie F., Xiao P., Chen D., Xu L., Zhang B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 80, 75–84. 10.1007/s11103-012-9885-2 PubMed DOI
Xue Q., Zhang G., Li T., Ling J., Zhang X., Wang J. (2017). Transcriptomic profile of leg muscle during early growth in chicken. PLoS One 12 (3), e0173824. 10.1371/journal.pone.0173824 PubMed DOI PMC
Yaba A., Demir N. (2012). The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J. Ovarian Res. 5, 38. 10.1186/1757-2215-5-38 PubMed DOI PMC
Yamada T., Hasegawa S., Inoue Y., Date Y., Yamamoto N., Mizutani H., et al. (2013). Wnt/β-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. J. Invest. Dermatol. 133 (12), 2753–2762. 10.1038/jid.2013.235 PubMed DOI
Yamaguchi Y., Itami S., Watabe H., Yasumoto K. I., Abdel-Malek Z. A., Kubo T., et al. (2004). Mesenchymal–epithelial interactions in the skin: Increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. J. Cell Biol. 165 (2), 275–285. 10.1083/jcb.200311122 PubMed DOI PMC
Yamaguchi Y., Passeron T., Watabe H., Yasumoto K., Rouzaud F., Hoashi T., et al. (2007). The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes: Mechanisms underlying its suppression of melanocyte function and proliferation. J. Invest. Dermatol. 127, 1217–1225. 10.1038/sj.jid.5700629 PubMed DOI
Yan X., Liao H., Cheng M., Shi X., Lin X., Feng X. H., et al. (2016). Smad7 protein interacts with receptor-regulated smads (R-Smads) to inhibit transforming growth factor-β (TGF-β)/Smad signaling. J. Biol. Chem. 291 (1), 382–392. 10.1074/jbc.M115.694281 PubMed DOI PMC
Yang F., Lei X., Rodriguez-Palacios A., Tang C., Yue H. (2013a). Selection of reference genes for quantitative real-time PCR analysis in chicken embryo fibroblasts infected with avian leukosis virus subgroup J. BMC Res. Notes 6, 402. 10.1186/1756-0500-6-402 PubMed DOI PMC
Yang J., Li X. Y., Cao Y. H., Pokharel K., Hu X. J., Chen Z. H., et al. (2019). Comparative mRNA and miRNA expression in European mouflon (Ovis musimon) and sheep (Ovis aries) provides novel insights into the genetic mechanisms for female reproductive success. Heredity 2 (122), 172–186. 10.1038/s41437-018-0090-1 PubMed DOI PMC
Yang Y. J., Zhao R., He X. Y., Li L. P., Wang K. W., Zhao L., et al. (2013b). A novel splicing mutation of KIT results in piebaldism and auburn hair color in a Chinese family. Biomed. Res. Int. 2013, 689756. 10.1155/2013/689756 PubMed DOI PMC
Ye X., Brown S. R., Nones K., Coutinho L. L., Dekkers J. C., Lamont S. J. (2007). Associations of myostatin gene polymorphisms with performance and mortality traits in broiler chickens. Genet. Sel. Evol. 39 (1), 73–89. 10.1186/1297-9686-39-1-73 PubMed DOI PMC
Yu S., Wang G., Liao J., Tang M., Sun W. (2018). Transcriptome profile analysis of mechanisms of black and white plumage determination in black-bone chicken. Cell. Physiol. biochem. 46 (6), 2373–2384. 10.1159/000489644 PubMed DOI
Yuceyar N., Ayhan O., Karasoy H., Tolun A. (2015). Homozygous MYH7 R1820W mutation results in recessive myosin storage myopathy: Scapuloperoneal and respiratory weakness with dilated cardiomyopathy. Neuromuscul. Disord. 25 (4), 340–344. 10.1016/j.nmd.2015.01.007 PubMed DOI
Yue H., Lei X. W., Yang F. L., Li M. Y., Tang C. (2010). Reference gene selection for normalization of PCR analysis in chicken embryo fibroblast infected with H5N1 AIV. Virol. Sin. 25 (6), 425–431. 10.1007/s12250-010-3114-4 PubMed DOI PMC
Zhang C., Wang J., Wang G., Ji Z., Hou L., Liu Z., et al. (2016b). Molecular cloning and mRNA expression analysis of sheep MYL3 and MYL4 genes. Gene 577 (2), 209–214. 10.1016/j.gene.2015.11.041 PubMed DOI
Zhang H. Q. (2014). cDNA cloning and tissue expression of TNNT1, TNNT2 and TNNI2 in tianfu goat. Sichuan, China: Sichuan Agricultural University.
Zhang J., Gao Y-Y., Huang Y-Q., Fan Q., Lu X-T., Wang C-K. (2018). Selection of housekeeping genes for quantitative gene expression analysis in yellow-feathered broilers. Ital. J. Anim. Sci. 17 (2), 540–546. 10.1080/1828051x.2017.1365633 DOI
Zhang J., Liu F., Cao J., Liu X. (2015a). Skin transcriptome profiles associated with skin color in chickens. PLoS One 10, e0127301. 10.1371/journal.pone.0127301 PubMed DOI PMC
Zhang J. W., Lin H. J., Han L. (2015). Research progress of intestinal epithelial tight junctions. China Med. Her. 12 (6), 160–163.
Zhang S. Z., Xu Y., Xie H. Q., Li X. Q., Wei Y. Q., Yang Z. M. (2009). The possible role of myosin light chain in myoblast proliferation. Biol. Res. 42 (1), 121–132. PubMed
Zhang X. D., Wang H. H., Zhang C. X., Li Q. H., Chen X. H., Lou L. F. (2015b). Analysis of skin color change and related gene expression after crossing of Dongxiang black chicken and ISA layer. Genet. Mol. Res. 14, 11551–11561. 10.4238/2015.September.28.7 PubMed DOI
Zhang Z., Jiang X., Li Q., Yang Z., Qiu M., Jiang X., et al. (2016a). Differential expression of MYH7 gene in different tissues of chicken. China Poult. 38 (24), 52–54.
Zhao L., Xing T., Huang J., Qiao Y., Chen Y., Huang M. (2018). Involvement of μ/m‐calpain in the proteolysis and meat quality changes during postmortem storage of chicken breast muscle. Anim. Sci. J. 89 (2), 423–431. 10.1111/asj.12921 PubMed DOI
Zheng X., Zhang B., Zhang Y., Zhong H., Nie R., Li J., et al. (2020). Transcriptome analysis of feather follicles reveals candidate genes and pathways associated with pheomelanin pigmentation in chickens. Sci. Rep. 10 (1), 12088–12111. 10.1038/s41598-020-68931-1 PubMed DOI PMC
Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108 (8), 1167–1174. 10.1172/JCI13505 PubMed DOI PMC
Zhou J., Kumar T. R., Matzuk M. M., Bondy C. (1997). Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary. Mol. Endocrinol. 11, 1924–1933. 10.1210/mend.11.13.0032 PubMed DOI
Zhou N., Lee W. R., Abasht B. (2015). Messenger RNA sequencing and pathway analysis provide novel insights into the biological basis of chickens' feed efficiency. BMC Genomics 16 (1), 195–220. 10.1186/s12864-015-1364-0 PubMed DOI PMC
Zhu Z., Li Y., Mo D., Li K., Zhao S. (2006). Molecular characterization and expression analysis of the porcine caveolin-3 gene. Biochem. Biophys. Res. Commun. 346 (1), 7–13. 10.1016/j.bbrc.2006.04.132 PubMed DOI