Identification of suitable reference genes for normalization of quantitative real-time PCR-based gene expression in chicken (Gallus gallus)
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CRG/2018/002246
Department of Science and Technology (SERB)
PubMed
35993244
DOI
10.1111/age.13252
Knihovny.cz E-zdroje
- Klíčová slova
- chicken, normalization, organ tissues, quantitative real-time PCR, reference gene,
- MeSH
- exprese genu MeSH
- kosterní svaly MeSH
- kur domácí * genetika MeSH
- kvantitativní polymerázová řetězová reakce veterinární MeSH
- referenční standardy MeSH
- stanovení celkové genové exprese * veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The recent availability of genome information greatly facilitates the fundamental research on chicken. In different organs, gene expression patterns can provide clues to understanding the biological functions. For rapid and accurate quantification of gene expression, quantitative real-time PCR (qPCR) has become one of the most widely used methods. However, the success of qPCR data normalization depends on the use of a suitable reference gene and a single reference gene is not universally suitable for all the experiments. Therefore, reference gene validation is a crucial step for different organ tissues of chicken where suitable reference genes for qPCR analysis in varieties of tissues have not been investigated exhaustively so far. In this study, we have selected 30 Gallus gallus candidate reference genes from NCBI, amplified and studied their expression profiles by qPCR in different organ tissues (breast muscle, thigh muscle, heart, liver, spleen, gizzard, and bursa) of chicken. The result showed that, for breast muscle HSP10 and RPL23, thigh muscle RPL14 and RPL13, liver ALB and HSP70, spleen ALB and GAPDH, heart CYCS and TUBA8B, gizzard RPL5 and 18S rRNA, and bursa EEF1A1 and PGK2 are most stable genes respectively. The results also showed that for different organ tissues, individual or a combination of reference genes should be selected for data normalization. In this study, we have identified and validated 30 reference genes in seven different organ tissues to provide accurate transcript normalization and quantification, which can be useful for gene expression studies in other avian species.
Directorate of Poultry Research Hyderabad India
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Zobrazit více v PubMed
Ahn, K., Bae, J.H., Nam, K.H., Lee, C.E., Park, K.D., Lee, H.K. et al. (2011) Identification of reference genes for normalization of gene expression in thoroughbred and Jeju native horse (Jeju pony) tissues. Genes & Genomics, 33, 245-250. https://doi.org/10.1007/s13258-010-0114-6
Andersen, C.L., Jensen, J.L. & Ørntoft, T.F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
Bages, S., Estany, J., Tor, M. & Pena, R.N. (2015) Investigating reference genes for quantitative real-time PCR analysis across four chicken tissues. Gene, 561, 82-87. https://doi.org/10.1016/j.gene.2015.02.016
Borowska, D., Rothwell, L., Bailey, R.A., Watson, K. & Kaiser, P. (2016) Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs. Veterinary Immunology and Immunopathology, 170, 20-24. https://doi.org/10.1016/j.vetimm.2016.01.001
Bustin, S.A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25, 169-193. https://doi.org/10.1677/jme.0.0250169
Bustin, S.A. (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29, 23-39. https://doi.org/10.1677/jme.0.0290023
Bustin, S.A., Benes, V., Nolan, T. & Pfaffl, M.W. (2005) Quantitative real-time RTPCR-a perspective. Journal of Molecular Endocrinology, 34, 597-601. https://doi.org/10.1677/jme.1.01755
Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M. et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611-622. https://doi.org/10.1373/clinchem.2008.112797
De Boever, S., Vangestel, C., De Backer, P., Croubels, S. & Sys, S.U. (2008) Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens. Veterinary Immunology and Immunopathology, 122, 312-317. https://doi.org/10.1016/j.vetimm.2007.12.002
Exposito-Rodriguez, M., Borges, A.A., Borges-Perez, A. & Perez, J.A. (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology, 8, 131.
Guenin, S., Mauriat, M., Pelloux, J., Wuytswinkel, O.V., Bellini, C. & Gutierrez, L. (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany, 60(2), 487-493. https://doi.org/10.1093/jxb/ern305
Hellemans, J., Mortier, G., Paepe, A.D., Speleman, F. & Vandesompele, J. (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8(2), R19. https://doi.org/10.1186/gb-2007-8-2-r19
Huggett, J., Dheda, K., Bustin, S. & Zumla, A. (2005) Real-time RT-PCR normalisation: strategies and considerations. Genes and Immunity, 6, 279-284. https://doi.org/10.1038/sj.gene.6364190
Khan, S., Roberts, J. & Wu, S. (2017) Reference gene selection for gene expression study in shell gland and spleen of laying hens challenged with infectious bronchitis virus. Scientific Reports, 7(1), 14271. https://doi.org/10.1038/s41598-017-14693-2
Kuchipudi, S.V., Tellabati, M., Nelli, R.K., White, G.A., Perez, B.B., Sebastian, S. et al. (2012) 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virology Journal, 9(1), 1-7. https://doi.org/10.1186/1743-422X-9-230
Lisowski, P., Pierzchała, M., Goscik, J., Pareek, C.S. & Zwierzchowski, L. (2008) Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. Journal of Applied Genetics, 49, 367-372. https://doi.org/10.1007/BF03195635
Martinez-Giner, M., Noguera, J.L., Balcells, I., Fernandez-Rodriguez, A. & Pena, R.N. (2013) Selection of internal control genes for real-time quantitative PCR in ovary and uterus of sows across pregnancy. PLoS One, 8, e66023. https://doi.org/10.1371/journal.pone.0066023
Mitra, T., Bilic, I., Hess, M. & Liebhart, D. (2016) The 60S ribosomal protein L13 is the most preferable reference gene to investigate gene expression in selected organs from turkeys and chickens, in context of different infection models. Veterinary Research, 47(1), 105. https://doi.org/10.1186/s13567-016-0388-z
Najafpanah, M.J., Sadeghi, M. & Bakhtiarizadeh, M.R. (2013) Reference genes selection for quantitative real-time PCR using RankAggreg method in different tissues of Capra hircus. PLoS One, 8, e83041. https://doi.org/10.1371/journal.pone.0083041
Nascimento, C.S., Barbosa, L.T., Brito, C., Fernandes, R.P.M., Mann, R.S., Pinto, A.P.G. et al. (2015) Identification of suitable reference genes for real time quantitative polymerase chain reaction assays on pectoralis major muscle in chicken (Gallus gallus). PLoS One, 10, e0127935. https://doi.org/10.1371/journal.pone.0127935
Olias, P., Adam, I., Meyer, A., Scharff, C. & Gruber, A.D. (2014) Reference genes for quantitative gene expression studies in multiple avian species. PLoS One, 9(6), e99678. https://doi.org/10.1371/journal.pone.0099678
Paolacci, A.R., Tanzarella, O.A., Porceddu, E. & Ciaffi, M. (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology, 10, 11. https://doi.org/10.1186/1471-2199-10-11
Pfaffl, M.W., Tichopad, A., Prgomet, C. & Neuvians, T.P. (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47
Prasad, A.R., Bhattacharya, T.K., Kumar, P., Sagar, N.G., Bhushan, B., Vishnu, P.G. et al. (2018) Expression profile of acetyl-CoA carboxylase a (ACACA) gene in layer chicken during juvenile stage. Journal of Animal Research, 8(3), 525-529. https://doi.org/10.30954/2277-940X.06.2018.31
Samiullah, S., Roberts, J. & Wu, S.B. (2017) Reference gene selection for the shell gland of laying hens in response to time-points of eggshell formation and nicarbazin. PLoS One, 12, 7. https://doi.org/10.1371/journal.pone.0180432
Silver, N., Best, S., Jiang, J. & Thein, S.L. (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7(1), 33. https://doi.org/10.1186/1471-2199-7-33
Suzuki, T., Higgins, P.J. & Crawford, D.R. (2000) Control selection for RNA quantitation. BioTechniques, 29, 332-337.
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van, R.N., De Paepe, A. et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(7), 1. https://doi.org/10.1186/gb-2002-3-7-research0034
Xie, F., Xiao, P., Chen, D., Xu, L. & Zhang, B. (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology, 80, 75-84.
Yang, F., Lei, X., Rodriguez-Palacios, A., Tang, C. & Yue, H. (2013a) Selection of reference genes for quantitative real-time PCR analysis in chicken embryo fibroblasts infected with avian leukosis virus subgroup. BMC Research Notes, 6, 402. https://doi.org/10.1186/1756-0500-6-402
Yang, C.G., Wang, X.L., Tian, J., Liu, W., Wu, F., Jiang, M. et al. (2013b) Evaluation of reference genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia (Oreochromis niloticus). Gene, 527, 183-192. https://doi.org/10.1016/j.gene.2013.06.013
Yue, H., Lei, X.W., Yang, F.L., Li, M.Y. & Tang, C. (2010) Reference gene selection for normalization of PCR analysis in chicken embryo fibroblast infected with H5N1 AIV. Virologica Sinica, 25(6), 425-431. https://doi.org/10.1007/s12250-010-3114-4
Zang, R., Bai, J., Xu, H., Zhang, L., Yang, J., Yang, L. et al. (2011) Selection of suitable reference genes for real-time quantitative PCR studies in Lanzhou fat-tailed sheep (Ovis aries). Asian Journal of Animal Veterinary Advances, 6, 789-804. https://doi.org/10.3923/ajava.2011.789.804
Zhang, J., Gao, Y.-Y., Huang, Y.-Q., Fan, Q., Lu, X.-T. & Wang, C.-K. (2018) Selection of housekeeping genes for quantitative gene expression analysis in yellow-feathered broilers. Italian Journal of Animal Science, 17(2), 540-546. https://doi.org/10.1080/1828051X.2017.1365633