Exotic Compositional Ordering in Manganese-Nickel-Arsenic (Mn-Ni-As) Intermetallics
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
263241
Norges Forskningsråd
PubMed
32809237
PubMed Central
PMC7756800
DOI
10.1002/anie.202006135
Knihovny.cz E-resources
- Keywords
- electron diffraction, intermetallics, neutron diffraction, solid-state structures,
- Publication type
- Journal Article MeSH
In this work we benefited from recent advances in tools for crystal-structure analysis that enabled us to describe an exotic nanoscale phenomenon in structural chemistry. The Mn0.60 Ni0.40 As sample of the Mn1-x Nix As solid solution, exhibits an incommensurate compositional modulation intimately coupled with positional modulations. The average structure is of the simple NiAs type, but in contrast to a normal solid solution, we observe that manganese and nickel segregate periodically at the nano-level into ordered MnAs and NiAs layers with thickness of 2-4 face-shared octahedra. The detailed description was obtained by combination of 3D electron diffraction, scanning transmission electron microscopy, and neutron diffraction. The distribution of the manganese and nickel layers is perfectly described by a modulation vector q=0.360(3) c*. Displacive modulations are observed for all elements as a consequence of the occupational modulation, and as a means to achieve acceptable Ni-As and Mn-As distances. This modulated evolution of magnetic MnAs and non-magnetic NiAs-layers with periodicity at approximately 10 Å level, may provide an avenue for spintronics.
See more in PubMed
McConnell J. D. C., Heine V., Phys. Rev. B 1985, 31, 6140–6142. PubMed
Howard C. J., Carpenter M. A., Acta Crystallogr. Sect. B 2010, 66, 40–50. PubMed
Gillie L. J., Hadermann J., Pérez O., Martin C., Hervieu M., Suard E., J. Solid State Chem. 2004, 177, 3383–3391.
Norén L., Withers R. L., Berger R., J. Solid State Chem. 2000, 151, 260–266.
Boström M., Lidin S., J. Alloys Compd. 2004, 376, 49–57.
Lind H., Boström M., Petříček V., Lidin S., Acta Crystallogr. Sect. B 2003, 59, 720–729. PubMed
Piao S. Y., Palatinus L., Lidin S., Inorg. Chem. 2008, 47, 1079–1086. PubMed
Li C., Pramana S. S., Skinner S. J., Dalton Trans. 2019, 48, 1633–1646. PubMed
Fredrickson D. C., Lee S., Hoffmann R., Inorg. Chem. 2004, 43, 6159–6167. PubMed
Sato N., Ouchi H., Takagiwa Y., Kimura K., Chem. Mater. 2016, 28, 529–533.
Rohrer F. E., Lind H., Eriksson L., Larsson A.-K., Lidin S., Z. Kristallogr. - Cryst. Mater. 2001, 216, 190–198.
Palatinus L., Klementová M., Dřínek V., Jarošová M., Petříček V., Inorg. Chem. 2011, 50, 3743–3751. PubMed
Fjellvåg H., Kjekshus A., Andresen A., Ziéba A., J. Magn. Magn. Mater. 1986, 61, 61–80.
Gemmi M., Mugnaioli E., Gorelik T. E., Kolb U., Palatinus L., Boullay P., Hovmöller S., Abrahams J. P., ACS Cent. Sci. 2019, 5, 1315–1329. PubMed PMC
Steciuk G., Palatinus L., Rohlíček J., Ouhenia S., Chateigner D., Sci. Rep. 2019, 9, 9156. PubMed PMC
Alsén N., Geol. Foeren. Stockholm Foerh. 1925, 47, 19–72.
Wilson R., Kasper J., Acta Crystallogr. 1964, 17, 95–101.
Petříček V., Eigner V., Dušek M., Čejchan A., Z. Kristallogr. - Cryst. Mater. 2016, 231, 301–312.
Palatinus L., Petříček V., Corrêa C. A., Acta Crystallogr. Sect. A 2015, 71, 235–244. PubMed
Palatinus L., Corrêa C. A., Steciuk G., Jacob D., Roussel P., Boullay P., Klementová M., Gemmi M., Kopeček J., Domeneghetti M. C., Cámara F., Petříček V., Acta Crystallogr. Sect. B 2015, 71, 740–751. PubMed