Oxidative Photocyclization of Aromatic Schiff Bases in Synthesis of Phenanthridines and Other Aza-PAHs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-02578S
Grantová Agentura České Republiky
20-19353S
Grantová Agentura České Republiky
20-07833S
Grantová Agentura České Republiky
PubMed
32824231
PubMed Central
PMC7461585
DOI
10.3390/ijms21165868
PII: ijms21165868
Knihovny.cz E-zdroje
- Klíčová slova
- Schiff bases, azahelicenes, imines, phenanthridines, photocyclization,
- MeSH
- cykloadiční reakce metody MeSH
- fenantridiny chemická syntéza MeSH
- fotochemické oxidanty chemie MeSH
- fotochemické procesy MeSH
- oxidace-redukce MeSH
- Schiffovy báze chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenantridiny MeSH
- fotochemické oxidanty MeSH
- Schiffovy báze MeSH
The oxidative photocyclization of aromatic Schiff bases was investigated as a potential method for synthesis of phenanthridine derivatives, biologically active compounds with medical applications. Although it is possible to prepare the desired phenanthridines using such an approach, the reaction has to be performed in the presence of acid and TEMPO to increase reaction rate and yield. The reaction kinetics was studied on a series of substituted imines covering the range from electron-withdrawing to electron-donating substituents. It was found that imines with electron-withdrawing substituents react one order of magnitude faster than imines bearing electron-donating groups. The 1H NMR monitoring of the reaction course showed that a significant part of the Z isomer in the reaction is transformed into E isomer which is more prone to photocyclization. The portion of the Z isomer transformed showed a linear correlation to the Hammett substituent constants. The reaction scope was expanded towards synthesis of larger aromatic systems, namely to the synthesis of strained aromatic systems, e.g., helicenes. In this respect, it was found that the scope of oxidative photocyclization of aromatic imines is limited to the formation of no more than five ortho-fused aromatic rings.
Zobrazit více v PubMed
Nakanishi T., Masuda A., Suwa M., Akiyama Y., Hoshino-Abe N., Suzuki M. Synthesis of derivatives of NK109, 7-OH benzo[c]phenanthridine alkaloid, and evaluation of their cytotoxicities and reduction-resistant properties. Bioorg. Med. Chem. Lett. 2000;10:2321–2323. doi: 10.1016/S0960-894X(00)00467-4. PubMed DOI
Phillips S.D., Castle R.N. A Review of the chemistry of the antitumor Benzo[c]phenanthridine Alkaloids Nitidine and Fagaronine an of the related antitumor alkaloid coralyne. J. Heterocycl. Chem. 1981;18:223–232. doi: 10.1002/jhet.5570180202. DOI
Bernardo P.H., Wan K.F., Sivaraman T., Xu J., Moore F.K., Hung A.W., Mok H.Y.K., Yu V.C., Chai C.L.L. Structure-activity relationship studies of phenanthridine-based Bcl-XL inhibitors. J. Med. Chem. 2008;51:6699–6710. doi: 10.1021/jm8005433. PubMed DOI
Nakanishi T., Suzuki M., Saimoto A., Kabasawa T. Structural considerations of NK109, an antitumor benzo[c]phenanthridine alkaloid. J. Nat. Prod. 1999;62:864–867. doi: 10.1021/np990005d. PubMed DOI
Abdel-Halim O.B., Morikawa T., Ando S., Matsuda H., Yoshikawa M. New crinine-type alkaloids with inhibitory effect on induction of inducible nitric oxide synthase from Crinum yemense. J. Nat. Prod. 2004;67:1119–1124. doi: 10.1021/np030529k. PubMed DOI
Stevens N., O’Connor N., Vishwasrao H., Samaroo D., Kandel E.R., Akins D.L., Drain C.M., Turro N.J. Two Color RNA Intercalating Probe for Cell Imaging Applications. J. Am. Chem. Soc. 2008;130:7182–7183. doi: 10.1021/ja8008924. PubMed DOI PMC
Tumir L.M., Stojković M.R., Piantanida I. Come-back of phenanthridine and phenanthridinium derivatives in the 21st century. Beilstein J. Org. Chem. 2014;10:2930–2954. doi: 10.3762/bjoc.10.312. PubMed DOI PMC
Jiang H., Cheng Y., Wang R., Zheng M., Zhang Y., Yu S. Synthesis of 6-alkylated phenanthridine derivatives using photoredox neutral somophilic isocyanide insertion. Angew. Chem. Int. Ed. 2013;52:13289–13292. doi: 10.1002/anie.201308376. PubMed DOI
Li X., Liang D., Huang W., Sun H., Wang L., Ren M., Wang B., Ma Y. Metal-free photocatalyzed cross coupling of aryl (heteroaryl) bromides with isonitriles. Tetrahedron. 2017;73:7094–7099. doi: 10.1016/j.tet.2017.10.074. DOI
Lysén M., Kristensen J.L., Vedsø P., Begtrup M. Convergent synthesis of 6-substituted phenanthridines via anionic ring closure. Org. Lett. 2002;4:257–259. doi: 10.1021/ol0170051. PubMed DOI
Bowman W.R., Lyon J.E., Pritchard G.J. Palladium and radical routes to phenanthridines. Arkivoc. 2012;7:210–227. doi: 10.3998/ark.5550190.0013.714. DOI
Evoniuk C.J., Gomes G.D.P., Ly M., White F.D., Alabugin I.V. Coupling Radical Homoallylic Expansions with C-C Fragmentations for the Synthesis of Heteroaromatics: Quinolines from Reactions of o-Alkenylarylisonitriles with Aryl, Alkyl, and Perfluoroalkyl Radicals. J. Org. Chem. 2017;82:4265–4278. doi: 10.1021/acs.joc.7b00262. PubMed DOI
Wang Q., Dong X., Xiao T., Zhou L. PhI(OAc) 2 -Mediated Synthesis of 6-(Trifluoromethyl)phenanthridines by Oxidative Cyclization of 2-Isocyanobiphenyls with CF3SiMe3 under Metal-Free Conditions. Org. Lett. 2013;15:4846–4849. doi: 10.1021/ol4022589. PubMed DOI
Tobisu M., Koh K., Furukawa T., Chatani N. Modular synthesis of phenanthridine derivatives by oxidative cyclization of 2-isocyanobiphenyls with organoboron reagents. Angew. Chem. Int. Ed. 2012;51:11363–11366. doi: 10.1002/anie.201206115. PubMed DOI
Zhang B., Mück-Lichtenfeld C., Daniliuc C.G., Studer A. 6-Trifluoromethyl-phenanthridines through radical trifluoromethylation of isonitriles. Angew. Chem. Int. Ed. 2013;52:10792–10795. doi: 10.1002/anie.201306082. PubMed DOI
Leifert D., Daniliuc C.G., Studer A. 6-Aroylated phenanthridines via base promoted homolytic aromatic substitution (BHAS) Org. Lett. 2013;15:6286–6289. doi: 10.1021/ol403147v. PubMed DOI
Pan C., Zhang H., Han J., Cheng Y., Zhu C. Metal-free radical oxidative decarboxylation/cyclization of acyl peroxides and 2-isocyanobiphenyls. Chem. Commun. 2015;51:3786–3788. doi: 10.1039/C4CC10015H. PubMed DOI
Zhou Y., Wu C., Dong X., Qu J. Synthesis of 6-Trichloromethylphenanthridines by Transition Metal-Free Radical Cyclization of 2-Isocyanobiphenyls. J. Org. Chem. 2016;81:5202–5208. doi: 10.1021/acs.joc.6b00885. PubMed DOI
Youn S.W., Bihn J.H. Trifluoroacetic acid-mediated facile construction of 6-substituted phenanthridines. Tetrahedron Lett. 2009;50:4598–4601. doi: 10.1016/j.tetlet.2009.05.071. DOI
Zheng Y.-H., Lu H.-Y., Li M., Chen C.-F. Synthesis, Structures, and Optical Properties of Aza[4]helicenes. Eur. J. Org. Chem. 2013;2013:3059–3066. doi: 10.1002/ejoc.201300002. DOI
Tang C., Yuan Y., Jiao N. Metal-free nitrogenation of 2-acetylbiphenyls: Expeditious synthesis of phenanthridines. Org. Lett. 2015;17:2206–2209. doi: 10.1021/acs.orglett.5b00797. PubMed DOI
Chan T.L., Wu Y., Wong S.M., Kwong F.Y., Mao F. Intramolecular Direct C–H Bond Arylation from Aryl Chlorides: A Transition-Metal-Free Approach for Facile Access of Phenanthridines. Org. Lett. 2012;14:5306–5309. doi: 10.1021/ol302489n. PubMed DOI
Peng J., Chen T., Chen C., Li B. Palladium-Catalyzed Intramolecular C–H Activation/C–C Bond Formation: A Straightforward Synthesis of Phenanthridines. J. Org. Chem. 2011;76:9507–9513. doi: 10.1021/jo2017108. PubMed DOI
Evoniuk C.J., Gomes G.D.P., Hill S.P., Fujita S., Hanson K., Alabugin I.V. Coupling N–H Deprotonation, C–H Activation, and Oxidation: Metal-Free C(sp 3)–H Aminations with Unprotected Anilines. J. Am. Chem. Soc. 2017;139:16210–16221. doi: 10.1021/jacs.7b07519. PubMed DOI
Evoniuk C.J., Hill S.P., Hanson K., Alabugin I.V. Double C-H amination by consecutive SET oxidations. Chem. Commun. 2016;52:7138–7141. doi: 10.1039/C6CC03106D. PubMed DOI
Mallory F.B., Mallory C.W. Photocyclization of Stilbenes and Related Molecules. Org. React. 1984;30:1–456. doi: 10.1002/0471264180.or030.01. DOI
Hugelshofer P., Kalvoda J., Schaffner K. Photochemische Reaktionen. 8. Mitteilung. Lichtkatalysierte Cyclodehydrierung von 1,2-Diaryläthylenen und Azobenzol. Helv. Chim. Acta. 1960;43:1322–1332. doi: 10.1002/hlca.19600430517. DOI
Mallory F.B., Wood C.S. The Photocyclization of Anils to Phenanthridines. Tetrahedron Lett. 1965;6:2643–2648. doi: 10.1016/S0040-4039(00)90222-3. DOI
Pratt A.C. The photochemistry of imines. Chem. Soc. Rev. 1977;6:63–81. doi: 10.1039/cs9770600063. DOI
Badger G.M., Joshua C.P., Lewis G.E. Photocatalysed cyclization of benzalaniline. Tetrahedron Lett. 1964;5:3711–3713. doi: 10.1016/S0040-4039(01)89365-5. DOI
Perkampus H.-H., Behjati B. Darstellung einiger diazaphenanthrene durch photocyclisierung der benzylidenaminopyridine und pyridinalaniline. J. Heterocycl. Chem. 1974;11:511–514. doi: 10.1002/jhet.5570110412. DOI
Scholz M., Dietz F., Mühlstädt M. Chemie angeregter zustände. V. mitt.: Photocyclisierung von benzalanthronen. Tetrahedron Lett. 1970;11:2835–2838. doi: 10.1016/S0040-4039(01)98353-4. DOI
Thompson C.M., Docter S. Lewis acid promoted photocyclization of arylimines. Studies directed towards the synthesis of pentacyclic natural products. Tetrahedron Lett. 1988;29:5213–5216. doi: 10.1016/S0040-4039(00)80719-4. DOI
Yang Y., Da Costa R.C., Smilgies D.M., Campbell A.J., Fuchter M.J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant. Adv. Mater. 2013;25:2624–2628. doi: 10.1002/adma.201204961. PubMed DOI PMC
Wallabregue A., Sherin P., Guin J., Besnard C., Vauthey E., Lacour J. Modular Synthesis of pH-Sensitive Fluorescent Diaza[4]helicenes. Eur. J. Org. Chem. 2014;2014:6431–6438. doi: 10.1002/ejoc.201402863. DOI
Saleh N., Moore B., Srebro M., Vanthuyne N., Toupet L., Williams J.A.G., Roussel C., Deol K.K., Muller G., Autschbach J., et al. Acid/Base-Triggered Switching of Circularly Polarized Luminescence and Electronic Circular Dichroism in Organic and Organometallic Helicenes. Chem. A Eur. J. 2015;21:1673–1681. doi: 10.1002/chem.201405176. PubMed DOI PMC
Matsushima T., Kobayashi S., Watanabe S. Air-Driven Potassium Iodide-Mediated Oxidative Photocyclization of Stilbene Derivatives. J. Org. Chem. 2016;81:7799–7806. doi: 10.1021/acs.joc.6b01450. PubMed DOI
Žádný J., Velíšek P., Jakubec M., Sýkora J., Církva V., Storch J. Exploration of 9-bromo[7]helicene reactivity. Tetrahedron. 2013;69:6213–6218. doi: 10.1016/j.tet.2013.05.039. DOI
Amal Joseph P.J., Priyadarshini S., Lakshmi Kantam M., Maheswaran H. Copper catalyzed ipso-nitration of iodoarenes, bromoarenes and heterocyclic haloarenes under ligand-free conditions. Tetrahedron Lett. 2012;53:1511–1513. doi: 10.1016/j.tetlet.2012.01.056. DOI
Huang X., Anderson K.W., Zim D., Jiang L., Klapars A., Buchwald S.L. Expanding Pd-catalyzed C-N bond-forming processes: The first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions. J. Am. Chem. Soc. 2003;125:6653–6655. doi: 10.1021/ja035483w. PubMed DOI
Církva V., Jakubík P., Strašák T., Hrbáč J., Sýkora J., Císařová I., Vacek J., Žádný J., Storch J. Preparation and Physicochemical Properties of [6]Helicenes Fluorinated at Terminal Rings. J. Org. Chem. 2019;84:1980–1993. doi: 10.1021/acs.joc.8b02870. PubMed DOI
Talele H.R., Chaudhary A.R., Patel P.R., Bedekar A.V. Expeditious synthesis of helicenes using an improved protocol of photocyclodehydrogenation of stilbenes. Arkivoc. 2011;9:15–37. doi: 10.3998/ark.5550190.0012.902. DOI
Laarhoven W.H., Cuppen T.H.J.H.M., Nivard R.J.F. Photodehydrocyclizations in stilbene-like compounds-III. Effect of steric factors. Tetrahedron. 1970;26:4865–4881. doi: 10.1016/S0040-4020(01)93139-4. DOI
Ito N., Hirose T., Matsuda K. Facile photochemical synthesis of 5,10-disubstituted [5]helicenes by removing molecular orbital degeneracy. Org. Lett. 2014;16:2502–2505. doi: 10.1021/ol5008718. PubMed DOI
Lefebvre Q., Jentsch M., Rueping M. Continuous flow photocyclization of stilbenes-scalable synthesis of functionalized phenanthrenes and helicenes. Beilstein J. Org. Chem. 2013;9:1883–1890. doi: 10.3762/bjoc.9.221. PubMed DOI PMC
Jakubec M., Beránek T., Jakubík P., Sýkora J., Žádný J., Církva V., Storch J. 2-Bromo[6]helicene as a Key Intermediate for [6]Helicene Functionalization. J. Org. Chem. 2018;83:3607–3616. doi: 10.1021/acs.joc.7b03234. PubMed DOI
Hacker A.S., Pavano M., Wood J.E., Immoos C.E., Hashimoto H., Genis S.P., Frantz D.K. Synthesis and Electronic Properties of Fluoreno[2,1-a]fluorenedione and Fluoreno[1,2-a]fluorenedione. J. Org. Chem. 2018;83:510–515. doi: 10.1021/acs.joc.7b02699. PubMed DOI
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Farrugia L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Crystallogr. 1997;30:565. doi: 10.1107/S0021889897003117. DOI