Oxidative Photocyclization of Aromatic Schiff Bases in Synthesis of Phenanthridines and Other Aza-PAHs

. 2020 Aug 15 ; 21 (16) : . [epub] 20200815

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32824231

Grantová podpora
17-02578S Grantová Agentura České Republiky
20-19353S Grantová Agentura České Republiky
20-07833S Grantová Agentura České Republiky

The oxidative photocyclization of aromatic Schiff bases was investigated as a potential method for synthesis of phenanthridine derivatives, biologically active compounds with medical applications. Although it is possible to prepare the desired phenanthridines using such an approach, the reaction has to be performed in the presence of acid and TEMPO to increase reaction rate and yield. The reaction kinetics was studied on a series of substituted imines covering the range from electron-withdrawing to electron-donating substituents. It was found that imines with electron-withdrawing substituents react one order of magnitude faster than imines bearing electron-donating groups. The 1H NMR monitoring of the reaction course showed that a significant part of the Z isomer in the reaction is transformed into E isomer which is more prone to photocyclization. The portion of the Z isomer transformed showed a linear correlation to the Hammett substituent constants. The reaction scope was expanded towards synthesis of larger aromatic systems, namely to the synthesis of strained aromatic systems, e.g., helicenes. In this respect, it was found that the scope of oxidative photocyclization of aromatic imines is limited to the formation of no more than five ortho-fused aromatic rings.

Zobrazit více v PubMed

Nakanishi T., Masuda A., Suwa M., Akiyama Y., Hoshino-Abe N., Suzuki M. Synthesis of derivatives of NK109, 7-OH benzo[c]phenanthridine alkaloid, and evaluation of their cytotoxicities and reduction-resistant properties. Bioorg. Med. Chem. Lett. 2000;10:2321–2323. doi: 10.1016/S0960-894X(00)00467-4. PubMed DOI

Phillips S.D., Castle R.N. A Review of the chemistry of the antitumor Benzo[c]phenanthridine Alkaloids Nitidine and Fagaronine an of the related antitumor alkaloid coralyne. J. Heterocycl. Chem. 1981;18:223–232. doi: 10.1002/jhet.5570180202. DOI

Bernardo P.H., Wan K.F., Sivaraman T., Xu J., Moore F.K., Hung A.W., Mok H.Y.K., Yu V.C., Chai C.L.L. Structure-activity relationship studies of phenanthridine-based Bcl-XL inhibitors. J. Med. Chem. 2008;51:6699–6710. doi: 10.1021/jm8005433. PubMed DOI

Nakanishi T., Suzuki M., Saimoto A., Kabasawa T. Structural considerations of NK109, an antitumor benzo[c]phenanthridine alkaloid. J. Nat. Prod. 1999;62:864–867. doi: 10.1021/np990005d. PubMed DOI

Abdel-Halim O.B., Morikawa T., Ando S., Matsuda H., Yoshikawa M. New crinine-type alkaloids with inhibitory effect on induction of inducible nitric oxide synthase from Crinum yemense. J. Nat. Prod. 2004;67:1119–1124. doi: 10.1021/np030529k. PubMed DOI

Stevens N., O’Connor N., Vishwasrao H., Samaroo D., Kandel E.R., Akins D.L., Drain C.M., Turro N.J. Two Color RNA Intercalating Probe for Cell Imaging Applications. J. Am. Chem. Soc. 2008;130:7182–7183. doi: 10.1021/ja8008924. PubMed DOI PMC

Tumir L.M., Stojković M.R., Piantanida I. Come-back of phenanthridine and phenanthridinium derivatives in the 21st century. Beilstein J. Org. Chem. 2014;10:2930–2954. doi: 10.3762/bjoc.10.312. PubMed DOI PMC

Jiang H., Cheng Y., Wang R., Zheng M., Zhang Y., Yu S. Synthesis of 6-alkylated phenanthridine derivatives using photoredox neutral somophilic isocyanide insertion. Angew. Chem. Int. Ed. 2013;52:13289–13292. doi: 10.1002/anie.201308376. PubMed DOI

Li X., Liang D., Huang W., Sun H., Wang L., Ren M., Wang B., Ma Y. Metal-free photocatalyzed cross coupling of aryl (heteroaryl) bromides with isonitriles. Tetrahedron. 2017;73:7094–7099. doi: 10.1016/j.tet.2017.10.074. DOI

Lysén M., Kristensen J.L., Vedsø P., Begtrup M. Convergent synthesis of 6-substituted phenanthridines via anionic ring closure. Org. Lett. 2002;4:257–259. doi: 10.1021/ol0170051. PubMed DOI

Bowman W.R., Lyon J.E., Pritchard G.J. Palladium and radical routes to phenanthridines. Arkivoc. 2012;7:210–227. doi: 10.3998/ark.5550190.0013.714. DOI

Evoniuk C.J., Gomes G.D.P., Ly M., White F.D., Alabugin I.V. Coupling Radical Homoallylic Expansions with C-C Fragmentations for the Synthesis of Heteroaromatics: Quinolines from Reactions of o-Alkenylarylisonitriles with Aryl, Alkyl, and Perfluoroalkyl Radicals. J. Org. Chem. 2017;82:4265–4278. doi: 10.1021/acs.joc.7b00262. PubMed DOI

Wang Q., Dong X., Xiao T., Zhou L. PhI(OAc) 2 -Mediated Synthesis of 6-(Trifluoromethyl)phenanthridines by Oxidative Cyclization of 2-Isocyanobiphenyls with CF3SiMe3 under Metal-Free Conditions. Org. Lett. 2013;15:4846–4849. doi: 10.1021/ol4022589. PubMed DOI

Tobisu M., Koh K., Furukawa T., Chatani N. Modular synthesis of phenanthridine derivatives by oxidative cyclization of 2-isocyanobiphenyls with organoboron reagents. Angew. Chem. Int. Ed. 2012;51:11363–11366. doi: 10.1002/anie.201206115. PubMed DOI

Zhang B., Mück-Lichtenfeld C., Daniliuc C.G., Studer A. 6-Trifluoromethyl-phenanthridines through radical trifluoromethylation of isonitriles. Angew. Chem. Int. Ed. 2013;52:10792–10795. doi: 10.1002/anie.201306082. PubMed DOI

Leifert D., Daniliuc C.G., Studer A. 6-Aroylated phenanthridines via base promoted homolytic aromatic substitution (BHAS) Org. Lett. 2013;15:6286–6289. doi: 10.1021/ol403147v. PubMed DOI

Pan C., Zhang H., Han J., Cheng Y., Zhu C. Metal-free radical oxidative decarboxylation/cyclization of acyl peroxides and 2-isocyanobiphenyls. Chem. Commun. 2015;51:3786–3788. doi: 10.1039/C4CC10015H. PubMed DOI

Zhou Y., Wu C., Dong X., Qu J. Synthesis of 6-Trichloromethylphenanthridines by Transition Metal-Free Radical Cyclization of 2-Isocyanobiphenyls. J. Org. Chem. 2016;81:5202–5208. doi: 10.1021/acs.joc.6b00885. PubMed DOI

Youn S.W., Bihn J.H. Trifluoroacetic acid-mediated facile construction of 6-substituted phenanthridines. Tetrahedron Lett. 2009;50:4598–4601. doi: 10.1016/j.tetlet.2009.05.071. DOI

Zheng Y.-H., Lu H.-Y., Li M., Chen C.-F. Synthesis, Structures, and Optical Properties of Aza[4]helicenes. Eur. J. Org. Chem. 2013;2013:3059–3066. doi: 10.1002/ejoc.201300002. DOI

Tang C., Yuan Y., Jiao N. Metal-free nitrogenation of 2-acetylbiphenyls: Expeditious synthesis of phenanthridines. Org. Lett. 2015;17:2206–2209. doi: 10.1021/acs.orglett.5b00797. PubMed DOI

Chan T.L., Wu Y., Wong S.M., Kwong F.Y., Mao F. Intramolecular Direct C–H Bond Arylation from Aryl Chlorides: A Transition-Metal-Free Approach for Facile Access of Phenanthridines. Org. Lett. 2012;14:5306–5309. doi: 10.1021/ol302489n. PubMed DOI

Peng J., Chen T., Chen C., Li B. Palladium-Catalyzed Intramolecular C–H Activation/C–C Bond Formation: A Straightforward Synthesis of Phenanthridines. J. Org. Chem. 2011;76:9507–9513. doi: 10.1021/jo2017108. PubMed DOI

Evoniuk C.J., Gomes G.D.P., Hill S.P., Fujita S., Hanson K., Alabugin I.V. Coupling N–H Deprotonation, C–H Activation, and Oxidation: Metal-Free C(sp 3)–H Aminations with Unprotected Anilines. J. Am. Chem. Soc. 2017;139:16210–16221. doi: 10.1021/jacs.7b07519. PubMed DOI

Evoniuk C.J., Hill S.P., Hanson K., Alabugin I.V. Double C-H amination by consecutive SET oxidations. Chem. Commun. 2016;52:7138–7141. doi: 10.1039/C6CC03106D. PubMed DOI

Mallory F.B., Mallory C.W. Photocyclization of Stilbenes and Related Molecules. Org. React. 1984;30:1–456. doi: 10.1002/0471264180.or030.01. DOI

Hugelshofer P., Kalvoda J., Schaffner K. Photochemische Reaktionen. 8. Mitteilung. Lichtkatalysierte Cyclodehydrierung von 1,2-Diaryläthylenen und Azobenzol. Helv. Chim. Acta. 1960;43:1322–1332. doi: 10.1002/hlca.19600430517. DOI

Mallory F.B., Wood C.S. The Photocyclization of Anils to Phenanthridines. Tetrahedron Lett. 1965;6:2643–2648. doi: 10.1016/S0040-4039(00)90222-3. DOI

Pratt A.C. The photochemistry of imines. Chem. Soc. Rev. 1977;6:63–81. doi: 10.1039/cs9770600063. DOI

Badger G.M., Joshua C.P., Lewis G.E. Photocatalysed cyclization of benzalaniline. Tetrahedron Lett. 1964;5:3711–3713. doi: 10.1016/S0040-4039(01)89365-5. DOI

Perkampus H.-H., Behjati B. Darstellung einiger diazaphenanthrene durch photocyclisierung der benzylidenaminopyridine und pyridinalaniline. J. Heterocycl. Chem. 1974;11:511–514. doi: 10.1002/jhet.5570110412. DOI

Scholz M., Dietz F., Mühlstädt M. Chemie angeregter zustände. V. mitt.: Photocyclisierung von benzalanthronen. Tetrahedron Lett. 1970;11:2835–2838. doi: 10.1016/S0040-4039(01)98353-4. DOI

Thompson C.M., Docter S. Lewis acid promoted photocyclization of arylimines. Studies directed towards the synthesis of pentacyclic natural products. Tetrahedron Lett. 1988;29:5213–5216. doi: 10.1016/S0040-4039(00)80719-4. DOI

Yang Y., Da Costa R.C., Smilgies D.M., Campbell A.J., Fuchter M.J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant. Adv. Mater. 2013;25:2624–2628. doi: 10.1002/adma.201204961. PubMed DOI PMC

Wallabregue A., Sherin P., Guin J., Besnard C., Vauthey E., Lacour J. Modular Synthesis of pH-Sensitive Fluorescent Diaza[4]helicenes. Eur. J. Org. Chem. 2014;2014:6431–6438. doi: 10.1002/ejoc.201402863. DOI

Saleh N., Moore B., Srebro M., Vanthuyne N., Toupet L., Williams J.A.G., Roussel C., Deol K.K., Muller G., Autschbach J., et al. Acid/Base-Triggered Switching of Circularly Polarized Luminescence and Electronic Circular Dichroism in Organic and Organometallic Helicenes. Chem. A Eur. J. 2015;21:1673–1681. doi: 10.1002/chem.201405176. PubMed DOI PMC

Matsushima T., Kobayashi S., Watanabe S. Air-Driven Potassium Iodide-Mediated Oxidative Photocyclization of Stilbene Derivatives. J. Org. Chem. 2016;81:7799–7806. doi: 10.1021/acs.joc.6b01450. PubMed DOI

Žádný J., Velíšek P., Jakubec M., Sýkora J., Církva V., Storch J. Exploration of 9-bromo[7]helicene reactivity. Tetrahedron. 2013;69:6213–6218. doi: 10.1016/j.tet.2013.05.039. DOI

Amal Joseph P.J., Priyadarshini S., Lakshmi Kantam M., Maheswaran H. Copper catalyzed ipso-nitration of iodoarenes, bromoarenes and heterocyclic haloarenes under ligand-free conditions. Tetrahedron Lett. 2012;53:1511–1513. doi: 10.1016/j.tetlet.2012.01.056. DOI

Huang X., Anderson K.W., Zim D., Jiang L., Klapars A., Buchwald S.L. Expanding Pd-catalyzed C-N bond-forming processes: The first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions. J. Am. Chem. Soc. 2003;125:6653–6655. doi: 10.1021/ja035483w. PubMed DOI

Církva V., Jakubík P., Strašák T., Hrbáč J., Sýkora J., Císařová I., Vacek J., Žádný J., Storch J. Preparation and Physicochemical Properties of [6]Helicenes Fluorinated at Terminal Rings. J. Org. Chem. 2019;84:1980–1993. doi: 10.1021/acs.joc.8b02870. PubMed DOI

Talele H.R., Chaudhary A.R., Patel P.R., Bedekar A.V. Expeditious synthesis of helicenes using an improved protocol of photocyclodehydrogenation of stilbenes. Arkivoc. 2011;9:15–37. doi: 10.3998/ark.5550190.0012.902. DOI

Laarhoven W.H., Cuppen T.H.J.H.M., Nivard R.J.F. Photodehydrocyclizations in stilbene-like compounds-III. Effect of steric factors. Tetrahedron. 1970;26:4865–4881. doi: 10.1016/S0040-4020(01)93139-4. DOI

Ito N., Hirose T., Matsuda K. Facile photochemical synthesis of 5,10-disubstituted [5]helicenes by removing molecular orbital degeneracy. Org. Lett. 2014;16:2502–2505. doi: 10.1021/ol5008718. PubMed DOI

Lefebvre Q., Jentsch M., Rueping M. Continuous flow photocyclization of stilbenes-scalable synthesis of functionalized phenanthrenes and helicenes. Beilstein J. Org. Chem. 2013;9:1883–1890. doi: 10.3762/bjoc.9.221. PubMed DOI PMC

Jakubec M., Beránek T., Jakubík P., Sýkora J., Žádný J., Církva V., Storch J. 2-Bromo[6]helicene as a Key Intermediate for [6]Helicene Functionalization. J. Org. Chem. 2018;83:3607–3616. doi: 10.1021/acs.joc.7b03234. PubMed DOI

Hacker A.S., Pavano M., Wood J.E., Immoos C.E., Hashimoto H., Genis S.P., Frantz D.K. Synthesis and Electronic Properties of Fluoreno[2,1-a]fluorenedione and Fluoreno[1,2-a]fluorenedione. J. Org. Chem. 2018;83:510–515. doi: 10.1021/acs.joc.7b02699. PubMed DOI

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI

Farrugia L.J. ORTEP-3 for Windows—A version of ORTEP-III with a Graphical User Interface (GUI) J. Appl. Crystallogr. 1997;30:565. doi: 10.1107/S0021889897003117. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...