Label-Free Electrochemical Biosensors for the Determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
RFBR 19-53-26001
Russian Foundation for Basic Research
GACR 20-01417J
Grantová Agentura České Republiky
PubMed
32824351
PubMed Central
PMC7472106
DOI
10.3390/s20164600
PII: s20164600
Knihovny.cz E-resources
- Keywords
- Flavivirus, electrochemical biosensors, label-free,
- MeSH
- Biosensing Techniques * MeSH
- Dengue * diagnosis MeSH
- Flavivirus * MeSH
- Zika Virus Infection * diagnosis MeSH
- Encephalitis, Japanese * diagnosis MeSH
- Humans MeSH
- Zika Virus MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
A highly effective way to improve prognosis of viral infectious diseases and to determine the outcome of infection is early, fast, simple, and efficient diagnosis of viral pathogens in biological fluids. Among a wide range of viral pathogens, Flaviviruses attract a special attention. Flavivirus genus includes more than 70 viruses, the most familiar being dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV). Haemorrhagic and encephalitis diseases are the most common severe consequences of flaviviral infection. Currently, increasing attention is being paid to the development of electrochemical immunological methods for the determination of Flaviviruses. This review critically compares and evaluates recent research progress in electrochemical biosensing of DENV, ZIKV, and JEV without labelling. Specific attention is paid to comparison of detection strategies, electrode materials, and analytical characteristics. The potential of so far developed biosensors is discussed together with an outlook for further development in this field.
See more in PubMed
Aleyas A.G., George J.A., Han Y.W., Kim H.K., Kim S.J., Yoon H.A., Eo S.K. Flaviviruses Induce Pro-inflammatory and Anti-inflammatory Cytokines from Murine Dendritic Cells through MyD88-dependent Pathway. Immune Netw. 2007;7:66. doi: 10.4110/in.2007.7.2.66. DOI
Chong H.Y., Leow C.Y., Abdul Majeed A.B., Leow C.H. Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res. 2019;274:197770. doi: 10.1016/j.virusres.2019.197770. PubMed DOI
Nazmi A., Dutta K., Hazra B., Basu A. Role of pattern recognition receptors in flavivirus infections. Virus Res. 2014;185:32–40. doi: 10.1016/j.virusres.2014.03.013. PubMed DOI
Charrel R.N. Diagnosis of arboviral infections-A quagmire of cross reactions and complexities. Travel Med. Infect. Dis. 2016;14:11–12. doi: 10.1016/j.tmaid.2016.01.006. PubMed DOI
Daep C.A., Muñoz-Jordán J.L., Eugenin E.A. Flaviviruses, an expanding threat in public health: Focus on dengue, West Nile, and Japanese encephalitis virus. J. Neurovirol. 2014;20:539–560. doi: 10.1007/s13365-014-0285-z. PubMed DOI PMC
Li X.F., Dong H.L., Wang H.J., Huang X.Y., Qiu Y.F., Ji X., Ye Q., Li C., Liu Y., Deng Y.Q., et al. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-02975-w. PubMed DOI PMC
Guy B., Jackson N. Dengue vaccine: Hypotheses to understand CYD-TDV-induced protection. Nat. Rev. Microbiol. 2015;14:45–54. doi: 10.1038/nrmicro.2015.2. PubMed DOI
Chokephaibulkit K., Houillon G., Feroldi E., Bouckenooghe A. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children. Expert Rev. Vaccines. 2016;15:153–166. doi: 10.1586/14760584.2016.1123097. PubMed DOI
Heinz F.X., Stiasny K. Flaviviruses and flavivirus vaccines. Vaccine. 2012;30:4301–4306. doi: 10.1016/j.vaccine.2011.09.114. PubMed DOI
Wang D., Zheng Y., Kang X., Zhang X., Hao H., Chen W., Liu L., Li X., Li L., Yuan Q., et al. A multiplex ELISA-based protein array for screening diagnostic antigens and diagnosis of Flaviviridae infection. Eur. J. Clin. Microbiol. Infect. Dis. 2015;34:1327–1336. doi: 10.1007/s10096-015-2353-6. PubMed DOI
Tabachnick W.J. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu. Rev. Virol. 2016;3:125–145. doi: 10.1146/annurev-virology-110615-035630. PubMed DOI
Pierson T.C., Diamond M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020;5:796–812. doi: 10.1038/s41564-020-0714-0. PubMed DOI PMC
Ali S., Gugliemini O., Harber S., Harrison A., Houle L., Ivory J., Kersten S., Khan R., Kim J., LeBoa C., et al. Environmental and Social Change Drive the Explosive Emergence of Zika Virus in the Americas. PLoS Negl. Trop. Dis. 2017;11:e0005135. doi: 10.1371/journal.pntd.0005135. PubMed DOI PMC
Liu Y., Liu J., Du S., Shan C., Nie K., Zhang R., Li X.F., Zhang R., Wang T., Qin C.F., et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature. 2017;545:482–486. doi: 10.1038/nature22365. PubMed DOI PMC
Baronti C., Sire J., de Lamballerie X., Quérat G. Nonstructural NS1 proteins of several mosquito-borne Flavivirus do not inhibit TLR3 signaling. Virology. 2010;404:319–330. doi: 10.1016/j.virol.2010.05.020. PubMed DOI
Lindenbach B.D., Rice C.M. Molecular biology of flaviviruses. Adv. Virus Res. 2003;59:23–61. PubMed
Young P.R., Hilditch P.A., Bletchly C., Halloran W. An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J. Clin. Microbiol. 2000;38:1053–1057. doi: 10.1128/JCM.38.3.1053-1057.2000. PubMed DOI PMC
Alcon S., Talarmin A., Debruyne M., Falconar A., Deubel V., Flamand M. Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J. Clin. Microbiol. 2002;40:376–381. doi: 10.1128/JCM.40.02.376-381.2002. PubMed DOI PMC
Herrada C.A., Kabir M.A., Altamirano R., Asghar W. Advances in Diagnostic Methods for Zika Virus Infection. J. Med. Dev. 2018;12:0408021–04080211. doi: 10.1115/1.4041086. PubMed DOI PMC
Wellinghausen N., Abele-Horn M., Donoso Mantke O., Enders M., Fingerle V., Gärtner B., Hagedorn J., Rabenau H.F., Reiter-Owona I., Tintelnot K., et al. Immunological Methods for the Detection of Infectious Diseases. Dustri-Verlag Dr. Karl Feistle; Oberhaching, Germany: 2017.
Parkash O., Shueb R.H. Diagnosis of dengue infection using conventional and biosensor based techniques. Viruses. 2015;7:5410–5427. doi: 10.3390/v7102877. PubMed DOI PMC
Zainuddin A.A., Nordin A.N., Rahim R.A. Recent trends in dengue detection methods using biosensors. IIUM Eng. J. 2018;19:134–153. doi: 10.31436/iiumej.v19i2.931. DOI
Alzate D., Cajigas S., Robledo S., Muskus C., Orozco J. Genosensors for differential detection of Zika virus. Talanta. 2020;210:120648. doi: 10.1016/j.talanta.2019.120648. PubMed DOI
Ohan N.W., Heikkila J.J. Reverse transcription-polymerase chain reaction: An overview of the technique and its applications. Biotechnol. Adv. 1993;11:13–29. doi: 10.1016/0734-9750(93)90408-F. PubMed DOI
Sinawang P.D., Rai V., Ionescu R.E., Marks R.S. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron. 2016;77:400–408. doi: 10.1016/j.bios.2015.09.048. PubMed DOI
Moço A.C.R., Guedes P.H., Flauzino J.M.R., da Silva H.S., Vieira J.G., Castro A.C.H., Gomes É.V.R., Tolentino F.M., Soares M.M.C.N., Madurro J.M., et al. Electrochemical Detection of Zika Virus in Biological Samples: A Step for Diagnosis Point-of-care. Electroanalysis. 2019;31:1580–1587. doi: 10.1002/elan.201900068. DOI
Hien H.T., Giang H.T., Trung T., Van Tuan C. Enhancement of biosensing performance using a polyaniline/multiwalled carbon nanotubes nanocomposite. J. Mater. Sci. 2017;52:1694–1703. doi: 10.1007/s10853-016-0461-z. DOI
Singhal C., Pundir C.S., Narang J. A genosensor for detection of consensus DNA sequence of Dengue virus using ZnO/Pt-Pd nanocomposites. Biosens. Bioelectron. 2017;97:75–82. doi: 10.1016/j.bios.2017.05.047. PubMed DOI
Khristunova Y., Korotkova E., Kratochvil B., Barek J., Dorozhko E., Vyskocil V., Plotnikov E., Voronova O., Sidelnikov V. Preparation and Investigation of Silver Nanoparticle–Antibody Bioconjugates for. Sensors. 2019;19:2103. doi: 10.3390/s19092103. PubMed DOI PMC
Darwish N.T., Alias Y.B., Khor S.M. An introduction to dengue-disease diagnostics. TrAC-Trends Anal. Chem. 2015;67:45–55. doi: 10.1016/j.trac.2015.01.005. DOI
Cecchetto J., Fernandes F.C.B., Lopes R., Bueno P.R. The capacitive sensing of NS1 Flavivirus biomarker. Biosens. Bioelectron. 2017;87:949–956. doi: 10.1016/j.bios.2016.08.097. PubMed DOI
Silva M.M.S., Dias A.C.M.S., Cordeiro M.T., Marques E., Goulart M.O.F., Dutra R.F. A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein. Talanta. 2014;128:505–510. doi: 10.1016/j.talanta.2014.06.009. PubMed DOI
Fang X., Tan O.K., Tse M.S., Ooi E.E. A label-free immunosensor for diagnosis of dengue infection with simple electrical measurements. Biosens. Bioelectron. 2010;25:1137–1142. doi: 10.1016/j.bios.2009.09.037. PubMed DOI
Kaushik A., Tiwari S., Jayant R.D., Vashist A., Nikkhah-Moshaie R., El-Hage N., Nair M. Electrochemical Biosensors for Early Stage Zika Diagnostics. Trends Biotechnol. 2017;35:308–317. doi: 10.1016/j.tibtech.2016.10.001. PubMed DOI PMC
Ricotta V., Yu Y., Clayton N., Chuang Y.C., Wang Y., Mueller S., Levon K., Simon M., Rafailovich M. A chip-based potentiometric sensor for a Zika virus diagnostic using 3D surface molecular imprinting. Analyst. 2019;144:4266–4280. doi: 10.1039/C9AN00580C. PubMed DOI
Ozer T., Geiss B.J., Henry C.S. Review—Chemical and Biological Sensors for Viral Detection. J. Electrochem. Soc. 2020;167:037523. doi: 10.1149/2.0232003JES. PubMed DOI PMC
Cecchetto J., Carvalho F.C., Santos A., Fernandes F.C.B., Bueno P.R. An impedimetric biosensor to test neat serum for dengue diagnosis. Sens. Actuators B Chem. 2015;213:150–154. doi: 10.1016/j.snb.2015.02.068. DOI
van Tuan C., Huy T.Q., Van Hieu N., Tuan M.A., Trung T. Polyaniline Nanowires-Based Electrochemical Immunosensor for Label Free Detection of Japanese Encephalitis Virus. Anal. Lett. 2013;46:1229–1240. doi: 10.1080/00032719.2012.755688. DOI
Channon R.B., Yang Y., Feibelman K.M., Geiss B.J., Dandy D.S., Henry C.S. Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. Anal. Chem. 2018;90:7777–7783. doi: 10.1021/acs.analchem.8b02042. PubMed DOI PMC
Syahir A., Usui K., Tomizaki K., Kajikawa K., Mihara H. Label and Label-Free Detection Techniques for Protein Microarrays. Microarrays. 2015;4:228–244. doi: 10.3390/microarrays4020228. PubMed DOI PMC
Sang S., Wang Y., Feng Q., Wei Y., Ji J., Zhang W. Progress of new label-free techniques for biosensors: A review. Crit. Rev. Biotechnol. 2015;36:1–17. doi: 10.3109/07388551.2014.991270. PubMed DOI
Zhang L., Yuan R., Chai Y., Chen S., Wang N., Zhu Q. Layer-by-layer self-assembly of films of nano-Au and Co(bpy)33+ for the determination of Japanese B encephalitis vaccine. Biochem. Eng. J. 2006;28:231–236. doi: 10.1016/j.bej.2005.11.014. DOI
Figueiredo A., Vieira N.C.S., Dos Santos J.F., Janegitz B.C., Aoki S.M., Junior P.P., Lovato R.L., Nogueira M.L., Zucolotto V., Guimarães F.E.G. Electrical detection of dengue biomarker using egg yolk immunoglobulin as the biological recognition element. Sci. Rep. 2015;5:7865. doi: 10.1038/srep07865. PubMed DOI PMC
Senapati S., Slouka Z., Shah S.S., Behura S.K., Shi Z., Stack M.S., Severson D.W., Chang H.C. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosens. Bioelectron. 2014;60:92–100. doi: 10.1016/j.bios.2014.04.008. PubMed DOI PMC
Yuan R., Zhang L., Li Q., Chai Y., Cao S. A label-free amperometric immunosenor based on multi-layer assembly of polymerized o-phenylenediamine and gold nanoparticles for determination of Japanese B encephalitis vaccine. Anal. Chim. Acta. 2005;531:1–5. doi: 10.1016/j.aca.2004.10.072. DOI
Silva M.M.S., Dias A.C.M.S., Silva B.V.M., Gomes-Filho S.L.R., Kubota L.T., Goulart M.O.F., Dutra R.F. Electrochemical detection of dengue virus NS1 protein with a poly(allylamine)/carbon nanotube layered immunoelectrode. J. Chem. Technol. Biotechnol. 2015;90:194–200. doi: 10.1002/jctb.4305. DOI
Rashid J.I.A., Yusof N.A., Abdullah J., Hashim U., Hajian R. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor. Mater. Sci. Eng. C. 2014;45:270–276. doi: 10.1016/j.msec.2014.09.010. PubMed DOI
Faria H.A.M., Zucolotto V. Label-free electrochemical DNA biosensor for zika virus identification. Biosens. Bioelectron. 2019;131:149–155. doi: 10.1016/j.bios.2019.02.018. PubMed DOI
Kaushik A., Yndart A., Kumar S., Jayant R.D., Vashist A., Brown A.N., Li C.Z., Nair M. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci. Rep. 2018;8:9700. doi: 10.1038/s41598-018-28035-3. PubMed DOI PMC
Santos A., Bueno P.R., Davis J.J. A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosens. Bioelectron. 2018;100:519–525. doi: 10.1016/j.bios.2017.09.014. PubMed DOI
Justino C.I.L., Rocha-Santos T.A., Duarte A.C. Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC-Trends Anal. Chem. 2010;29:1172–1183. doi: 10.1016/j.trac.2010.07.008. DOI
Armbruster D.A., Pry T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008;29:S49–S52. PubMed PMC
Long G.L., Winefordner J.D. Limit of Detection. Anal. Chem. 1983;55:712A–724A.
Shrivastava A., Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011;2:21. doi: 10.4103/2229-5186.79345. DOI
Lim J.M., Kim J.H., Ryu M.Y., Cho C.H., Park T.J., Park J.P. An electrochemical peptide sensor for detection of dengue fever biomarker NS1. Anal. Chim. Acta. 2018;1026:109–116. doi: 10.1016/j.aca.2018.04.005. PubMed DOI
Alves F., Leoni D., Tenório M., Marques E., Júnior D.O., Amalia R., Dutra F., Del M., Taboada P. Novel electrochemical genosensor for Zika virus based on a poly- (3-amino- 4-hydroxybenzoic acid) -modified pencil carbon graphite electrode. Sens. Actuators B. Chem. 2019;296:126681. doi: 10.1016/j.snb.2019.126681. DOI
Peh A.E.K., Li S.F.Y. Dengue virus detection using impedance measured across nanoporous alumina membrane. Biosens. Bioelectron. 2013;42:391–396. doi: 10.1016/j.bios.2012.10.054. PubMed DOI
Lisdat F., Schäfer D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 2008;391:1555–1567. doi: 10.1007/s00216-008-1970-7. PubMed DOI
Kafka J., Pänke O., Abendroth B., Lisdat F. A label-free DNA sensor based on impedance spectroscopy. Electrochim. Acta. 2008;53:7467–7474. doi: 10.1016/j.electacta.2008.01.031. DOI
Gan T., Shi Z., Sun J., Liu Y. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations-exchanged montmorillonite catalyst. Talanta. 2014;121:187–193. doi: 10.1016/j.talanta.2014.01.002. PubMed DOI
Randviir E.P., Banks C.E. Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Anal. Methods. 2013;5:1098–1115. doi: 10.1039/c3ay26476a. PubMed DOI
George A., Amrutha M.S., Srinivasan R., Srivastava P., Sai V.V.R., Sunil S. Label-Free Detection of Chikungunya Non-Structural Protein 3 Using Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2019;166:1356–1363. doi: 10.1149/2.1081914jes. DOI
Garrote B.L., Santos A., Bueno P.R. Perspectives on and Precautions for the Uses of Electric Spectroscopic Methods in Label-free Biosensing Applications. ACS Sens. 2019;4:2216–2227. doi: 10.1021/acssensors.9b01177. PubMed DOI
Forzani E.S., Li X., Tao N. Hybrid amperometric and conductometric chemical sensor based on conducting polymer nanojunctions. Anal. Chem. 2007;79:5217–5224. doi: 10.1021/ac0703202. PubMed DOI
Poghossian A., Schöning M.J. Label-Free Sensing of Biomolecules with Field-Effect Devices for Clinical Applications. Electroanalysis. 2014;26:1197–1213. doi: 10.1002/elan.201400073. DOI
Cui J., Gao L., Chen S., Huang Z., Wang X. Electrochemical voltammetric behaviors of synthetic dengue virus RNAs at ITO sensing electrode. J. Electroanal. Chem. 2019;851:113463. doi: 10.1016/j.jelechem.2019.113463. DOI
Brainina K., Kozitsina A., Beikin J. Electrochemical immunosensor for Forest-Spring encephalitis based on protein a labeled with colloidal gold. Anal. Bioanal. Chem. 2003;376:481–485. doi: 10.1007/s00216-003-1912-3. PubMed DOI
Kim J.H., Cho C.H., Ryu M.Y., Kim J.G., Lee S.J., Park T.J., Park J.P. Development of peptide biosensor for the detection of dengue fever biomarker, nonstructural 1. PLoS ONE. 2019;14:e0222144. doi: 10.1371/journal.pone.0222144. PubMed DOI PMC
Abdul Rashid J.I., Yusof N.A., Abdullah J., Hashim U., Hajian R. Surface modifications to boost sensitivities of electrochemical biosensors using gold nanoparticles/silicon nanowires and response surface methodology approach. J. Mater. Sci. 2016;51:1083–1097. doi: 10.1007/s10853-015-9438-6. DOI
Lai H.C., Chin S.F., Pang S.C., Henry Sum M.S., Perera D. Carbon Nanoparticles Based Electrochemical Biosensor Strip for Detection of Japanese Encephalitis Virus. J. Nanomater. 2017;2017:1–7. doi: 10.1155/2017/3615707. DOI
Khristunova E., Barek J., Kratochvíl B., Korotkova E., Dorozhko E., Vyskočil V. Comparison of Two Immunoanalytical Methods for Determination of Antibodies to Tick-Borne Encephalitis Virus. Chem. Listy. 2020;114 in press. PubMed
Lu L., Liu B., Liu C., Xie G. Amperometric immunosensor for myeloperoxidase in human serum based on a multi-wall carbon nanotubes-ionic liquid-cerium dioxide film-modified electrode. Bull. Korean Chem. Soc. 2010;31:3259–3264. doi: 10.5012/bkcs.2010.31.11.3259. DOI
Oliveira M.D.L., Nogueira M.L., Correia M.T.S., Coelho L.C.B.B., Andrade C.A.S. Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sens. Actuators B Chem. 2011;155:789–795. doi: 10.1016/j.snb.2011.01.049. DOI
Balmaseda A., Hammond S.N., Pérez L., Tellez Y., Saborío I., Mercado J.C., Cuadra R., Rocha J., Pérez M.A., Silva S., et al. Serotype-specific differences in clinical manifestations of dengue. Am. J. Trop. Med. Hyg. 2006;74:449–456. doi: 10.4269/ajtmh.2006.74.449. PubMed DOI
Anusha J.R., Kim B.C., Yu K.H., Raj C.J. Electrochemical biosensing of mosquito-borne viral disease, dengue: A review. Biosens. Bioelectron. 2019;142:111511. doi: 10.1016/j.bios.2019.111511. PubMed DOI
Dejnirattisai W., Wongwiwat W., Supasa S., Zhang X., Dai X., Rouvinsky A., Jumnainsong A., Edwards C., Quyen N.T.H., Duangchinda T., et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 2015;16:170–177. doi: 10.1038/ni.3058. PubMed DOI PMC
Jiang C., Wang G., Hein R., Liu N., Luo X., Davis J.J. Antifouling Strategies for Selective in Vitro and in Vivo Sensing. Chem. Rev. 2020;120:3852–3889. doi: 10.1021/acs.chemrev.9b00739. PubMed DOI
Nawaz M.H., Hayat A., Catanante G., Latif U., Marty J.L. Development of a portable and disposable NS1 based electrochemical immunosensor for early diagnosis of dengue virus. Anal. Chim. Acta. 2018;1026:1–7. doi: 10.1016/j.aca.2018.04.032. PubMed DOI
Dincer C., Bruch R., Costa-Rama E., Fernández-Abedul M.T., Merkoçi A., Manz A., Urban G.A., Güder F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019;31:1806739. doi: 10.1002/adma.201806739. PubMed DOI
Tripathy S., Joseph J., Pothuneedi S., Das D., Vanjari S.R.K., Rao A.V.S.S.N., Singh S.G. A miniaturized electrochemical platform with an integrated PDMS reservoir for label-free DNA hybridization detection using nanostructured Au electrodes. Analyst. 2019;144:6953–6961. doi: 10.1039/C9AN01076A. PubMed DOI
Tripathy S., Krishna Vanjari S.R., Singh V., Swaminathan S., Singh S.G. Electrospun manganese (III) oxide nanofiber based electrochemical DNA-nanobiosensor for zeptomolar detection of dengue consensus primer. Biosens. Bioelectron. 2017;90:378–387. doi: 10.1016/j.bios.2016.12.008. PubMed DOI
Doria G., Conde J., Veigas B., Giestas L., Almeida C., Assunção M., Rosa J., Baptista P.V. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12:1657–1687. doi: 10.3390/s120201657. PubMed DOI PMC
Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., Whitesides G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005;105:1103–1169. doi: 10.1021/cr0300789. PubMed DOI
Rai V., Hapuarachchi H.C., Ng L.C., Soh S.H., Leo Y.S., Toh C.S. Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor. PLoS ONE. 2012;7:e42346. doi: 10.1371/journal.pone.0042346. PubMed DOI PMC
Fritz J., Cooper E.B., Gaudet S., Sorger P.K., Manalis S.R. Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl. Acad. Sci. USA. 2002;99:14142–14146. doi: 10.1073/pnas.232276699. PubMed DOI PMC
Zhang G.J., Zhang L., Huang M.J., Luo Z.H.H., Tay G.K.I., Lim E.J.A., Kang T.G., Chen Y. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B Chem. 2010;146:138–144. doi: 10.1016/j.snb.2010.02.021. DOI
Cheng M.S., Ho J.S., Tan C.H., Wong J.P.S., Ng L.C., Toh C.S. Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus. Anal. Chim. Acta. 2012;725:74–80. doi: 10.1016/j.aca.2012.03.017. PubMed DOI
Darwish N.T., Alrawi A.H., Sekaran S.D., Alias Y., Khor S.M. Electrochemical Immunosensor Based on Antibody-Nanoparticle Hybrid for Specific Detection of the Dengue Virus NS1 Biomarker. J. Electrochem. Soc. 2016;163:B19–B25. doi: 10.1149/2.0471603jes. DOI
Wasik D., Mulchandani A., Yates M. Salivary Detection of Dengue Virus NS1 Protein with a Label-Free Immunosensor for Early Dengue Diagnosis. Sensors. 2018;18:2641. doi: 10.3390/s18082641. PubMed DOI PMC
Cecchetto J., Santos A., Mondini A., Cilli E.M., Bueno P.R. Serological point-of-care and label-free capacitive diagnosis of dengue virus infection. Biosens. Bioelectron. 2020;151:111972. doi: 10.1016/j.bios.2019.111972. PubMed DOI
da Cruz Santos C., Santos P.C.M., Rocha K.L.S., Thomasini R.L., de Oliveira D.B., Franco D.L., Ferreira L.F. A new tool for dengue virus diagnosis: Optimization and detection of anti-NS1 antibodies in serum samples by impedimetric transducers. Microchem. J. 2020;154:104544. doi: 10.1016/j.microc.2019.104544. DOI
Fischer M.J.E. Amine coupling through EDC/NHS: A practical approach. Methods Mol. Biol. 2010;627:55–73. PubMed
Nguyen B.T.T., Peh A.E.K., Chee C.Y.L., Fink K., Chow V.T.K., Ng M.M.L., Toh C.S. Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor. Bioelectrochemistry. 2012;88:15–21. doi: 10.1016/j.bioelechem.2012.04.006. PubMed DOI
Darwish N.T., Alias Y., Khor S.M. Indium tin oxide with zwitterionic interfacial design for biosensing applications in complex matrices. Appl. Surf. Sci. 2015;325:91–99. doi: 10.1016/j.apsusc.2014.10.167. DOI
Arshad R., Rhouati A., Hayat A., Nawaz M.H., Yameen M.A., Mujahid A., Latif U. MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker. Appl. Biochem. Biotechnol. 2020 doi: 10.1007/s12010-020-03285-y. PubMed DOI
Uzun L., Turner A.P.F. Molecularly-imprinted polymer sensors: Realising their potential. Biosens. Bioelectron. 2016;76:131–144. doi: 10.1016/j.bios.2015.07.013. PubMed DOI
Cieplak M., Kutner W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 2016;34:922–941. doi: 10.1016/j.tibtech.2016.05.011. PubMed DOI
Vieira N.C.S., Figueiredo A., Dos Santos J.F., Aoki S.M., Guimarães F.E.G., Zucolotto V. Label-free electrical recognition of a dengue virus protein using the SEGFET simplified measurement system. Anal. Methods. 2014;6:8882–8885. doi: 10.1039/C4AY01803F. DOI
Luna D.M.N., Avelino K.Y.P.S., Cordeiro M.T., Andrade C.A.S., Oliveira M.D.L. Electrochemical immunosensor for dengue virus serotypes based on 4-mercaptobenzoic acid modified gold nanoparticles on self-assembled cysteine monolayers. Sens. Actuators B Chem. 2015;220:565–572. doi: 10.1016/j.snb.2015.05.067. DOI
Navakul K., Warakulwit C., Yenchitsomanus P.T., Panya A., Lieberzeit P.A., Sangma C. A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Nanomed. Nanotechnol. Biol. Med. 2017;13:549–557. doi: 10.1016/j.nano.2016.08.009. PubMed DOI
Wang S.M., Sekaran S.D. Early diagnosis of dengue infection using a commercial dengue duo rapid test kit for the detection of NS1, IGM, and IGG. Am. J. Trop. Med. Hyg. 2010;83:690–695. doi: 10.4269/ajtmh.2010.10-0117. PubMed DOI PMC
Alere SD Product Catalogo. [(accessed on 3 May 2018)];2016 Available online: https://www.globalpointofcare.abbott/en/product-details/sd-bioline-dengue-duo-ns1-ag---ab-combo.html.
Andries A.-C., Duong V., Ong S., Ros S., Sakuntabhai A., Horwood P., Dussart P., Buchy P. Evaluation of the performances of six commercial kits designed for dengue NS1 and anti-dengue IgM, IgG and IgA detection in urine and saliva clinical specimens. BMC Infect. Dis. 2016;16:201. doi: 10.1186/s12879-016-1551-x. PubMed DOI PMC
Human Membrane Attack Complex(MAC) ELISA Kit. Cat No. MBS268481. [(accessed on 24 April 2016)];:1–8. Available online: https://www.mybiosource.com/human-elisa-kits/membrane-attack-complex-mac/268481.
World Health Organization . Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. World Health Organization; Geneva, Switzerland: 2009. PubMed
Bosch I., De Puig H., Hiley M., Carré-Camps M., Perdomo-Celis F., Narváez C.F., Salgado D.M., Senthoor D., Grady M.O., Phillips E., et al. Rapid antigen tests for dengue virus serotypes and zika virus in patient serum. Sci. Transl. Med. 2017;9:eaan1589. doi: 10.1126/scitranslmed.aan1589. PubMed DOI PMC
Sikka V., Chattu V.K., Popli R.K., Galwankar S.C., Kelkar D., Sawicki S.G., Stawicki S.P., Papadimos T.J. The emergence of zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint working Group (JWG) J. Glob. Infect. Dis. 2016;8:3–15. PubMed PMC
Cao-Lormeau V.M., Blake A., Mons S., Lastère S., Roche C., Vanhomwegen J., Dub T., Baudouin L., Teissier A., Larre P., et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet. 2016;387:1531–1539. doi: 10.1016/S0140-6736(16)00562-6. PubMed DOI PMC
Faria A.M., Mazon T. Early diagnosis of Zika infection using a ZnO nanostructures-based rapid electrochemical biosensor. Talanta. 2019;203:153–160. doi: 10.1016/j.talanta.2019.04.080. PubMed DOI
Cabral-miranda G., Cardoso A.R., Ferreira C.S., Sales M.G.F., Martin F. Biosensor-based selective detection of Zika virus specific antibodies in infected individuals. Biosens. Bioelectron. 2018;113:101–107. doi: 10.1016/j.bios.2018.04.058. PubMed DOI
Song H., Qi J., Haywood J., Shi Y., Gao G.F. Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nat. Struct. Mol. Biol. 2016;23:456–458. doi: 10.1038/nsmb.3213. PubMed DOI
Xu X., Song H., Qi J., Liu Y., Wang H., Su C., Shi Y., Gao G.F. Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS 1 structure. EMBO J. 2016;35:2170–2178. doi: 10.15252/embj.201695290. PubMed DOI PMC
Afsahi S., Lerner M.B., Goldstein J.M., Lee J., Tang X., Bagarozzi D.A., Pan D., Locascio L., Walker A., Barron F., et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 2018;100:85–88. doi: 10.1016/j.bios.2017.08.051. PubMed DOI
da Fonseca Alves R., da Silva A.G., Ferreira L.F., Franco D.L. Synthesis and characterization of a material derived from 4-mercaptobenzoic acid: A novel platform for oligonucleotide immobilization. Talanta. 2017;165:69–75. doi: 10.1016/j.talanta.2016.12.025. PubMed DOI
Tancharoen C., Sukjee W., Thepparit C., Jaimipuk T., Auewarakul P., Thitithanyanont A., Sangma C. Electrochemical Biosensor Based on Surface Imprinting for Zika Virus Detection in Serum. ACS Sens. 2019;4:69–75. doi: 10.1021/acssensors.8b00885. PubMed DOI
Limitations P.U.S.E. Rx ONLY ZIKV DetectTM IgM Capture ELISA Instructions for Use For Use Under an Emergency Use Authorization Only. [(accessed on 21 May 2018)];2018 :1–18. Available online: https://www.fda.gov/media/99521/download.
Granger D., Hilgart H., Misner L., Christensen J., Bistodeau S., Palm J., Strain A.K., Konstantinovski M., Liu D., Tran A., et al. Serologic testing for zika virus: Comparison of three zika virus IgM screening enzyme-linked immunosorbent assays and initial laboratory experiences. J. Clin. Microbiol. 2017;55:2127–2136. doi: 10.1128/JCM.00580-17. PubMed DOI PMC
Anti-Zika Virus ELISA (IgG) First Specifi c Serological Test Worldwide for the Detection of Antibodies Against Zika Virus. [(accessed on 9 July 2017)];2015 :1–2. Available online: https://www.euroimmun.com/documents/Indications/Infections/Zika-virus/EI_2668_D_UK_B.pdf.
Zhang L., Yuan R., Huang X., Chai Y., Cao S. Potentiometric immunosensor based on antiserum of Japanese B encephalitis immobilized in nano-Au/polymerized o-phenylenediamine film. Electrochem. Commun. 2004;6:1222–1226. doi: 10.1016/j.elecom.2004.09.020. DOI
Pasinszki T., Krebsz M., Tung T.T., Losic D. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sensors. 2017;17:1919. doi: 10.3390/s17081919. PubMed DOI PMC
Chin S.F., Lim L.S., Pang S.C., Sia M., Sum H. Carbon nanoparticle modified screen printed carbon electrode as a disposable electrochemical immunosensor strip for the detection of Japanese encephalitis virus. Microchim. Acta. 2016:491–497. doi: 10.1007/s00604-016-2029-7. DOI
Huy T.Q., Hanh N.T.H., Thuy N.T., Van Chung P., Nga P.T., Tuan M.A. A novel biosensor based on serum antibody immobilization for rapid detection of viral antigens. Talanta. 2011;86:271–277. doi: 10.1016/j.talanta.2011.09.012. PubMed DOI PMC
JE DetectTM IgM ANTIBODY CAPTURE ELISA (MAC-ELISA) [(accessed on 8 July 2018)]; Available online: https://inbios.com/je-detect-igm-antibody-capture-elisa-for-japanese-encephalitis-intl-2/
Robinson J.S., Featherstone D., Vasanthapuram R., Biggerstaff B.J., Desai A., Ramamurty N., Chowdhury A.H., Sandhu H.S., Cavallaro K.F., Johnson B.W. Evaluation of three commercially available Japanese encephalitis virus IgM enzyme-linked immunosorbent assays. Am. J. Trop. Med. Hyg. 2010;83:1146–1155. doi: 10.4269/ajtmh.2010.10-0212. PubMed DOI PMC