• This record comes from PubMed

Label-Free Electrochemical Biosensors for the Determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis

. 2020 Aug 16 ; 20 (16) : . [epub] 20200816

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
RFBR 19-53-26001 Russian Foundation for Basic Research
GACR 20-01417J Grantová Agentura České Republiky

A highly effective way to improve prognosis of viral infectious diseases and to determine the outcome of infection is early, fast, simple, and efficient diagnosis of viral pathogens in biological fluids. Among a wide range of viral pathogens, Flaviviruses attract a special attention. Flavivirus genus includes more than 70 viruses, the most familiar being dengue virus (DENV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV). Haemorrhagic and encephalitis diseases are the most common severe consequences of flaviviral infection. Currently, increasing attention is being paid to the development of electrochemical immunological methods for the determination of Flaviviruses. This review critically compares and evaluates recent research progress in electrochemical biosensing of DENV, ZIKV, and JEV without labelling. Specific attention is paid to comparison of detection strategies, electrode materials, and analytical characteristics. The potential of so far developed biosensors is discussed together with an outlook for further development in this field.

See more in PubMed

Aleyas A.G., George J.A., Han Y.W., Kim H.K., Kim S.J., Yoon H.A., Eo S.K. Flaviviruses Induce Pro-inflammatory and Anti-inflammatory Cytokines from Murine Dendritic Cells through MyD88-dependent Pathway. Immune Netw. 2007;7:66. doi: 10.4110/in.2007.7.2.66. DOI

Chong H.Y., Leow C.Y., Abdul Majeed A.B., Leow C.H. Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res. 2019;274:197770. doi: 10.1016/j.virusres.2019.197770. PubMed DOI

Nazmi A., Dutta K., Hazra B., Basu A. Role of pattern recognition receptors in flavivirus infections. Virus Res. 2014;185:32–40. doi: 10.1016/j.virusres.2014.03.013. PubMed DOI

Charrel R.N. Diagnosis of arboviral infections-A quagmire of cross reactions and complexities. Travel Med. Infect. Dis. 2016;14:11–12. doi: 10.1016/j.tmaid.2016.01.006. PubMed DOI

Daep C.A., Muñoz-Jordán J.L., Eugenin E.A. Flaviviruses, an expanding threat in public health: Focus on dengue, West Nile, and Japanese encephalitis virus. J. Neurovirol. 2014;20:539–560. doi: 10.1007/s13365-014-0285-z. PubMed DOI PMC

Li X.F., Dong H.L., Wang H.J., Huang X.Y., Qiu Y.F., Ji X., Ye Q., Li C., Liu Y., Deng Y.Q., et al. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nat. Commun. 2018;9:1–11. doi: 10.1038/s41467-018-02975-w. PubMed DOI PMC

Guy B., Jackson N. Dengue vaccine: Hypotheses to understand CYD-TDV-induced protection. Nat. Rev. Microbiol. 2015;14:45–54. doi: 10.1038/nrmicro.2015.2. PubMed DOI

Chokephaibulkit K., Houillon G., Feroldi E., Bouckenooghe A. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children. Expert Rev. Vaccines. 2016;15:153–166. doi: 10.1586/14760584.2016.1123097. PubMed DOI

Heinz F.X., Stiasny K. Flaviviruses and flavivirus vaccines. Vaccine. 2012;30:4301–4306. doi: 10.1016/j.vaccine.2011.09.114. PubMed DOI

Wang D., Zheng Y., Kang X., Zhang X., Hao H., Chen W., Liu L., Li X., Li L., Yuan Q., et al. A multiplex ELISA-based protein array for screening diagnostic antigens and diagnosis of Flaviviridae infection. Eur. J. Clin. Microbiol. Infect. Dis. 2015;34:1327–1336. doi: 10.1007/s10096-015-2353-6. PubMed DOI

Tabachnick W.J. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu. Rev. Virol. 2016;3:125–145. doi: 10.1146/annurev-virology-110615-035630. PubMed DOI

Pierson T.C., Diamond M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020;5:796–812. doi: 10.1038/s41564-020-0714-0. PubMed DOI PMC

Ali S., Gugliemini O., Harber S., Harrison A., Houle L., Ivory J., Kersten S., Khan R., Kim J., LeBoa C., et al. Environmental and Social Change Drive the Explosive Emergence of Zika Virus in the Americas. PLoS Negl. Trop. Dis. 2017;11:e0005135. doi: 10.1371/journal.pntd.0005135. PubMed DOI PMC

Liu Y., Liu J., Du S., Shan C., Nie K., Zhang R., Li X.F., Zhang R., Wang T., Qin C.F., et al. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature. 2017;545:482–486. doi: 10.1038/nature22365. PubMed DOI PMC

Baronti C., Sire J., de Lamballerie X., Quérat G. Nonstructural NS1 proteins of several mosquito-borne Flavivirus do not inhibit TLR3 signaling. Virology. 2010;404:319–330. doi: 10.1016/j.virol.2010.05.020. PubMed DOI

Lindenbach B.D., Rice C.M. Molecular biology of flaviviruses. Adv. Virus Res. 2003;59:23–61. PubMed

Young P.R., Hilditch P.A., Bletchly C., Halloran W. An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J. Clin. Microbiol. 2000;38:1053–1057. doi: 10.1128/JCM.38.3.1053-1057.2000. PubMed DOI PMC

Alcon S., Talarmin A., Debruyne M., Falconar A., Deubel V., Flamand M. Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J. Clin. Microbiol. 2002;40:376–381. doi: 10.1128/JCM.40.02.376-381.2002. PubMed DOI PMC

Herrada C.A., Kabir M.A., Altamirano R., Asghar W. Advances in Diagnostic Methods for Zika Virus Infection. J. Med. Dev. 2018;12:0408021–04080211. doi: 10.1115/1.4041086. PubMed DOI PMC

Wellinghausen N., Abele-Horn M., Donoso Mantke O., Enders M., Fingerle V., Gärtner B., Hagedorn J., Rabenau H.F., Reiter-Owona I., Tintelnot K., et al. Immunological Methods for the Detection of Infectious Diseases. Dustri-Verlag Dr. Karl Feistle; Oberhaching, Germany: 2017.

Parkash O., Shueb R.H. Diagnosis of dengue infection using conventional and biosensor based techniques. Viruses. 2015;7:5410–5427. doi: 10.3390/v7102877. PubMed DOI PMC

Zainuddin A.A., Nordin A.N., Rahim R.A. Recent trends in dengue detection methods using biosensors. IIUM Eng. J. 2018;19:134–153. doi: 10.31436/iiumej.v19i2.931. DOI

Alzate D., Cajigas S., Robledo S., Muskus C., Orozco J. Genosensors for differential detection of Zika virus. Talanta. 2020;210:120648. doi: 10.1016/j.talanta.2019.120648. PubMed DOI

Ohan N.W., Heikkila J.J. Reverse transcription-polymerase chain reaction: An overview of the technique and its applications. Biotechnol. Adv. 1993;11:13–29. doi: 10.1016/0734-9750(93)90408-F. PubMed DOI

Sinawang P.D., Rai V., Ionescu R.E., Marks R.S. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron. 2016;77:400–408. doi: 10.1016/j.bios.2015.09.048. PubMed DOI

Moço A.C.R., Guedes P.H., Flauzino J.M.R., da Silva H.S., Vieira J.G., Castro A.C.H., Gomes É.V.R., Tolentino F.M., Soares M.M.C.N., Madurro J.M., et al. Electrochemical Detection of Zika Virus in Biological Samples: A Step for Diagnosis Point-of-care. Electroanalysis. 2019;31:1580–1587. doi: 10.1002/elan.201900068. DOI

Hien H.T., Giang H.T., Trung T., Van Tuan C. Enhancement of biosensing performance using a polyaniline/multiwalled carbon nanotubes nanocomposite. J. Mater. Sci. 2017;52:1694–1703. doi: 10.1007/s10853-016-0461-z. DOI

Singhal C., Pundir C.S., Narang J. A genosensor for detection of consensus DNA sequence of Dengue virus using ZnO/Pt-Pd nanocomposites. Biosens. Bioelectron. 2017;97:75–82. doi: 10.1016/j.bios.2017.05.047. PubMed DOI

Khristunova Y., Korotkova E., Kratochvil B., Barek J., Dorozhko E., Vyskocil V., Plotnikov E., Voronova O., Sidelnikov V. Preparation and Investigation of Silver Nanoparticle–Antibody Bioconjugates for. Sensors. 2019;19:2103. doi: 10.3390/s19092103. PubMed DOI PMC

Darwish N.T., Alias Y.B., Khor S.M. An introduction to dengue-disease diagnostics. TrAC-Trends Anal. Chem. 2015;67:45–55. doi: 10.1016/j.trac.2015.01.005. DOI

Cecchetto J., Fernandes F.C.B., Lopes R., Bueno P.R. The capacitive sensing of NS1 Flavivirus biomarker. Biosens. Bioelectron. 2017;87:949–956. doi: 10.1016/j.bios.2016.08.097. PubMed DOI

Silva M.M.S., Dias A.C.M.S., Cordeiro M.T., Marques E., Goulart M.O.F., Dutra R.F. A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein. Talanta. 2014;128:505–510. doi: 10.1016/j.talanta.2014.06.009. PubMed DOI

Fang X., Tan O.K., Tse M.S., Ooi E.E. A label-free immunosensor for diagnosis of dengue infection with simple electrical measurements. Biosens. Bioelectron. 2010;25:1137–1142. doi: 10.1016/j.bios.2009.09.037. PubMed DOI

Kaushik A., Tiwari S., Jayant R.D., Vashist A., Nikkhah-Moshaie R., El-Hage N., Nair M. Electrochemical Biosensors for Early Stage Zika Diagnostics. Trends Biotechnol. 2017;35:308–317. doi: 10.1016/j.tibtech.2016.10.001. PubMed DOI PMC

Ricotta V., Yu Y., Clayton N., Chuang Y.C., Wang Y., Mueller S., Levon K., Simon M., Rafailovich M. A chip-based potentiometric sensor for a Zika virus diagnostic using 3D surface molecular imprinting. Analyst. 2019;144:4266–4280. doi: 10.1039/C9AN00580C. PubMed DOI

Ozer T., Geiss B.J., Henry C.S. Review—Chemical and Biological Sensors for Viral Detection. J. Electrochem. Soc. 2020;167:037523. doi: 10.1149/2.0232003JES. PubMed DOI PMC

Cecchetto J., Carvalho F.C., Santos A., Fernandes F.C.B., Bueno P.R. An impedimetric biosensor to test neat serum for dengue diagnosis. Sens. Actuators B Chem. 2015;213:150–154. doi: 10.1016/j.snb.2015.02.068. DOI

van Tuan C., Huy T.Q., Van Hieu N., Tuan M.A., Trung T. Polyaniline Nanowires-Based Electrochemical Immunosensor for Label Free Detection of Japanese Encephalitis Virus. Anal. Lett. 2013;46:1229–1240. doi: 10.1080/00032719.2012.755688. DOI

Channon R.B., Yang Y., Feibelman K.M., Geiss B.J., Dandy D.S., Henry C.S. Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. Anal. Chem. 2018;90:7777–7783. doi: 10.1021/acs.analchem.8b02042. PubMed DOI PMC

Syahir A., Usui K., Tomizaki K., Kajikawa K., Mihara H. Label and Label-Free Detection Techniques for Protein Microarrays. Microarrays. 2015;4:228–244. doi: 10.3390/microarrays4020228. PubMed DOI PMC

Sang S., Wang Y., Feng Q., Wei Y., Ji J., Zhang W. Progress of new label-free techniques for biosensors: A review. Crit. Rev. Biotechnol. 2015;36:1–17. doi: 10.3109/07388551.2014.991270. PubMed DOI

Zhang L., Yuan R., Chai Y., Chen S., Wang N., Zhu Q. Layer-by-layer self-assembly of films of nano-Au and Co(bpy)33+ for the determination of Japanese B encephalitis vaccine. Biochem. Eng. J. 2006;28:231–236. doi: 10.1016/j.bej.2005.11.014. DOI

Figueiredo A., Vieira N.C.S., Dos Santos J.F., Janegitz B.C., Aoki S.M., Junior P.P., Lovato R.L., Nogueira M.L., Zucolotto V., Guimarães F.E.G. Electrical detection of dengue biomarker using egg yolk immunoglobulin as the biological recognition element. Sci. Rep. 2015;5:7865. doi: 10.1038/srep07865. PubMed DOI PMC

Senapati S., Slouka Z., Shah S.S., Behura S.K., Shi Z., Stack M.S., Severson D.W., Chang H.C. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosens. Bioelectron. 2014;60:92–100. doi: 10.1016/j.bios.2014.04.008. PubMed DOI PMC

Yuan R., Zhang L., Li Q., Chai Y., Cao S. A label-free amperometric immunosenor based on multi-layer assembly of polymerized o-phenylenediamine and gold nanoparticles for determination of Japanese B encephalitis vaccine. Anal. Chim. Acta. 2005;531:1–5. doi: 10.1016/j.aca.2004.10.072. DOI

Silva M.M.S., Dias A.C.M.S., Silva B.V.M., Gomes-Filho S.L.R., Kubota L.T., Goulart M.O.F., Dutra R.F. Electrochemical detection of dengue virus NS1 protein with a poly(allylamine)/carbon nanotube layered immunoelectrode. J. Chem. Technol. Biotechnol. 2015;90:194–200. doi: 10.1002/jctb.4305. DOI

Rashid J.I.A., Yusof N.A., Abdullah J., Hashim U., Hajian R. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor. Mater. Sci. Eng. C. 2014;45:270–276. doi: 10.1016/j.msec.2014.09.010. PubMed DOI

Faria H.A.M., Zucolotto V. Label-free electrochemical DNA biosensor for zika virus identification. Biosens. Bioelectron. 2019;131:149–155. doi: 10.1016/j.bios.2019.02.018. PubMed DOI

Kaushik A., Yndart A., Kumar S., Jayant R.D., Vashist A., Brown A.N., Li C.Z., Nair M. A sensitive electrochemical immunosensor for label-free detection of Zika-virus protein. Sci. Rep. 2018;8:9700. doi: 10.1038/s41598-018-28035-3. PubMed DOI PMC

Santos A., Bueno P.R., Davis J.J. A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosens. Bioelectron. 2018;100:519–525. doi: 10.1016/j.bios.2017.09.014. PubMed DOI

Justino C.I.L., Rocha-Santos T.A., Duarte A.C. Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC-Trends Anal. Chem. 2010;29:1172–1183. doi: 10.1016/j.trac.2010.07.008. DOI

Armbruster D.A., Pry T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008;29:S49–S52. PubMed PMC

Long G.L., Winefordner J.D. Limit of Detection. Anal. Chem. 1983;55:712A–724A.

Shrivastava A., Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011;2:21. doi: 10.4103/2229-5186.79345. DOI

Lim J.M., Kim J.H., Ryu M.Y., Cho C.H., Park T.J., Park J.P. An electrochemical peptide sensor for detection of dengue fever biomarker NS1. Anal. Chim. Acta. 2018;1026:109–116. doi: 10.1016/j.aca.2018.04.005. PubMed DOI

Alves F., Leoni D., Tenório M., Marques E., Júnior D.O., Amalia R., Dutra F., Del M., Taboada P. Novel electrochemical genosensor for Zika virus based on a poly- (3-amino- 4-hydroxybenzoic acid) -modified pencil carbon graphite electrode. Sens. Actuators B. Chem. 2019;296:126681. doi: 10.1016/j.snb.2019.126681. DOI

Peh A.E.K., Li S.F.Y. Dengue virus detection using impedance measured across nanoporous alumina membrane. Biosens. Bioelectron. 2013;42:391–396. doi: 10.1016/j.bios.2012.10.054. PubMed DOI

Lisdat F., Schäfer D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 2008;391:1555–1567. doi: 10.1007/s00216-008-1970-7. PubMed DOI

Kafka J., Pänke O., Abendroth B., Lisdat F. A label-free DNA sensor based on impedance spectroscopy. Electrochim. Acta. 2008;53:7467–7474. doi: 10.1016/j.electacta.2008.01.031. DOI

Gan T., Shi Z., Sun J., Liu Y. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations-exchanged montmorillonite catalyst. Talanta. 2014;121:187–193. doi: 10.1016/j.talanta.2014.01.002. PubMed DOI

Randviir E.P., Banks C.E. Electrochemical impedance spectroscopy: An overview of bioanalytical applications. Anal. Methods. 2013;5:1098–1115. doi: 10.1039/c3ay26476a. PubMed DOI

George A., Amrutha M.S., Srinivasan R., Srivastava P., Sai V.V.R., Sunil S. Label-Free Detection of Chikungunya Non-Structural Protein 3 Using Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2019;166:1356–1363. doi: 10.1149/2.1081914jes. DOI

Garrote B.L., Santos A., Bueno P.R. Perspectives on and Precautions for the Uses of Electric Spectroscopic Methods in Label-free Biosensing Applications. ACS Sens. 2019;4:2216–2227. doi: 10.1021/acssensors.9b01177. PubMed DOI

Forzani E.S., Li X., Tao N. Hybrid amperometric and conductometric chemical sensor based on conducting polymer nanojunctions. Anal. Chem. 2007;79:5217–5224. doi: 10.1021/ac0703202. PubMed DOI

Poghossian A., Schöning M.J. Label-Free Sensing of Biomolecules with Field-Effect Devices for Clinical Applications. Electroanalysis. 2014;26:1197–1213. doi: 10.1002/elan.201400073. DOI

Cui J., Gao L., Chen S., Huang Z., Wang X. Electrochemical voltammetric behaviors of synthetic dengue virus RNAs at ITO sensing electrode. J. Electroanal. Chem. 2019;851:113463. doi: 10.1016/j.jelechem.2019.113463. DOI

Brainina K., Kozitsina A., Beikin J. Electrochemical immunosensor for Forest-Spring encephalitis based on protein a labeled with colloidal gold. Anal. Bioanal. Chem. 2003;376:481–485. doi: 10.1007/s00216-003-1912-3. PubMed DOI

Kim J.H., Cho C.H., Ryu M.Y., Kim J.G., Lee S.J., Park T.J., Park J.P. Development of peptide biosensor for the detection of dengue fever biomarker, nonstructural 1. PLoS ONE. 2019;14:e0222144. doi: 10.1371/journal.pone.0222144. PubMed DOI PMC

Abdul Rashid J.I., Yusof N.A., Abdullah J., Hashim U., Hajian R. Surface modifications to boost sensitivities of electrochemical biosensors using gold nanoparticles/silicon nanowires and response surface methodology approach. J. Mater. Sci. 2016;51:1083–1097. doi: 10.1007/s10853-015-9438-6. DOI

Lai H.C., Chin S.F., Pang S.C., Henry Sum M.S., Perera D. Carbon Nanoparticles Based Electrochemical Biosensor Strip for Detection of Japanese Encephalitis Virus. J. Nanomater. 2017;2017:1–7. doi: 10.1155/2017/3615707. DOI

Khristunova E., Barek J., Kratochvíl B., Korotkova E., Dorozhko E., Vyskočil V. Comparison of Two Immunoanalytical Methods for Determination of Antibodies to Tick-Borne Encephalitis Virus. Chem. Listy. 2020;114 in press. PubMed

Lu L., Liu B., Liu C., Xie G. Amperometric immunosensor for myeloperoxidase in human serum based on a multi-wall carbon nanotubes-ionic liquid-cerium dioxide film-modified electrode. Bull. Korean Chem. Soc. 2010;31:3259–3264. doi: 10.5012/bkcs.2010.31.11.3259. DOI

Oliveira M.D.L., Nogueira M.L., Correia M.T.S., Coelho L.C.B.B., Andrade C.A.S. Detection of dengue virus serotypes on the surface of gold electrode based on Cratylia mollis lectin affinity. Sens. Actuators B Chem. 2011;155:789–795. doi: 10.1016/j.snb.2011.01.049. DOI

Balmaseda A., Hammond S.N., Pérez L., Tellez Y., Saborío I., Mercado J.C., Cuadra R., Rocha J., Pérez M.A., Silva S., et al. Serotype-specific differences in clinical manifestations of dengue. Am. J. Trop. Med. Hyg. 2006;74:449–456. doi: 10.4269/ajtmh.2006.74.449. PubMed DOI

Anusha J.R., Kim B.C., Yu K.H., Raj C.J. Electrochemical biosensing of mosquito-borne viral disease, dengue: A review. Biosens. Bioelectron. 2019;142:111511. doi: 10.1016/j.bios.2019.111511. PubMed DOI

Dejnirattisai W., Wongwiwat W., Supasa S., Zhang X., Dai X., Rouvinsky A., Jumnainsong A., Edwards C., Quyen N.T.H., Duangchinda T., et al. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 2015;16:170–177. doi: 10.1038/ni.3058. PubMed DOI PMC

Jiang C., Wang G., Hein R., Liu N., Luo X., Davis J.J. Antifouling Strategies for Selective in Vitro and in Vivo Sensing. Chem. Rev. 2020;120:3852–3889. doi: 10.1021/acs.chemrev.9b00739. PubMed DOI

Nawaz M.H., Hayat A., Catanante G., Latif U., Marty J.L. Development of a portable and disposable NS1 based electrochemical immunosensor for early diagnosis of dengue virus. Anal. Chim. Acta. 2018;1026:1–7. doi: 10.1016/j.aca.2018.04.032. PubMed DOI

Dincer C., Bruch R., Costa-Rama E., Fernández-Abedul M.T., Merkoçi A., Manz A., Urban G.A., Güder F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019;31:1806739. doi: 10.1002/adma.201806739. PubMed DOI

Tripathy S., Joseph J., Pothuneedi S., Das D., Vanjari S.R.K., Rao A.V.S.S.N., Singh S.G. A miniaturized electrochemical platform with an integrated PDMS reservoir for label-free DNA hybridization detection using nanostructured Au electrodes. Analyst. 2019;144:6953–6961. doi: 10.1039/C9AN01076A. PubMed DOI

Tripathy S., Krishna Vanjari S.R., Singh V., Swaminathan S., Singh S.G. Electrospun manganese (III) oxide nanofiber based electrochemical DNA-nanobiosensor for zeptomolar detection of dengue consensus primer. Biosens. Bioelectron. 2017;90:378–387. doi: 10.1016/j.bios.2016.12.008. PubMed DOI

Doria G., Conde J., Veigas B., Giestas L., Almeida C., Assunção M., Rosa J., Baptista P.V. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12:1657–1687. doi: 10.3390/s120201657. PubMed DOI PMC

Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., Whitesides G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005;105:1103–1169. doi: 10.1021/cr0300789. PubMed DOI

Rai V., Hapuarachchi H.C., Ng L.C., Soh S.H., Leo Y.S., Toh C.S. Ultrasensitive cDNA detection of dengue virus RNA using electrochemical nanoporous membrane-based biosensor. PLoS ONE. 2012;7:e42346. doi: 10.1371/journal.pone.0042346. PubMed DOI PMC

Fritz J., Cooper E.B., Gaudet S., Sorger P.K., Manalis S.R. Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl. Acad. Sci. USA. 2002;99:14142–14146. doi: 10.1073/pnas.232276699. PubMed DOI PMC

Zhang G.J., Zhang L., Huang M.J., Luo Z.H.H., Tay G.K.I., Lim E.J.A., Kang T.G., Chen Y. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B Chem. 2010;146:138–144. doi: 10.1016/j.snb.2010.02.021. DOI

Cheng M.S., Ho J.S., Tan C.H., Wong J.P.S., Ng L.C., Toh C.S. Development of an electrochemical membrane-based nanobiosensor for ultrasensitive detection of dengue virus. Anal. Chim. Acta. 2012;725:74–80. doi: 10.1016/j.aca.2012.03.017. PubMed DOI

Darwish N.T., Alrawi A.H., Sekaran S.D., Alias Y., Khor S.M. Electrochemical Immunosensor Based on Antibody-Nanoparticle Hybrid for Specific Detection of the Dengue Virus NS1 Biomarker. J. Electrochem. Soc. 2016;163:B19–B25. doi: 10.1149/2.0471603jes. DOI

Wasik D., Mulchandani A., Yates M. Salivary Detection of Dengue Virus NS1 Protein with a Label-Free Immunosensor for Early Dengue Diagnosis. Sensors. 2018;18:2641. doi: 10.3390/s18082641. PubMed DOI PMC

Cecchetto J., Santos A., Mondini A., Cilli E.M., Bueno P.R. Serological point-of-care and label-free capacitive diagnosis of dengue virus infection. Biosens. Bioelectron. 2020;151:111972. doi: 10.1016/j.bios.2019.111972. PubMed DOI

da Cruz Santos C., Santos P.C.M., Rocha K.L.S., Thomasini R.L., de Oliveira D.B., Franco D.L., Ferreira L.F. A new tool for dengue virus diagnosis: Optimization and detection of anti-NS1 antibodies in serum samples by impedimetric transducers. Microchem. J. 2020;154:104544. doi: 10.1016/j.microc.2019.104544. DOI

Fischer M.J.E. Amine coupling through EDC/NHS: A practical approach. Methods Mol. Biol. 2010;627:55–73. PubMed

Nguyen B.T.T., Peh A.E.K., Chee C.Y.L., Fink K., Chow V.T.K., Ng M.M.L., Toh C.S. Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor. Bioelectrochemistry. 2012;88:15–21. doi: 10.1016/j.bioelechem.2012.04.006. PubMed DOI

Darwish N.T., Alias Y., Khor S.M. Indium tin oxide with zwitterionic interfacial design for biosensing applications in complex matrices. Appl. Surf. Sci. 2015;325:91–99. doi: 10.1016/j.apsusc.2014.10.167. DOI

Arshad R., Rhouati A., Hayat A., Nawaz M.H., Yameen M.A., Mujahid A., Latif U. MIP-Based Impedimetric Sensor for Detecting Dengue Fever Biomarker. Appl. Biochem. Biotechnol. 2020 doi: 10.1007/s12010-020-03285-y. PubMed DOI

Uzun L., Turner A.P.F. Molecularly-imprinted polymer sensors: Realising their potential. Biosens. Bioelectron. 2016;76:131–144. doi: 10.1016/j.bios.2015.07.013. PubMed DOI

Cieplak M., Kutner W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 2016;34:922–941. doi: 10.1016/j.tibtech.2016.05.011. PubMed DOI

Vieira N.C.S., Figueiredo A., Dos Santos J.F., Aoki S.M., Guimarães F.E.G., Zucolotto V. Label-free electrical recognition of a dengue virus protein using the SEGFET simplified measurement system. Anal. Methods. 2014;6:8882–8885. doi: 10.1039/C4AY01803F. DOI

Luna D.M.N., Avelino K.Y.P.S., Cordeiro M.T., Andrade C.A.S., Oliveira M.D.L. Electrochemical immunosensor for dengue virus serotypes based on 4-mercaptobenzoic acid modified gold nanoparticles on self-assembled cysteine monolayers. Sens. Actuators B Chem. 2015;220:565–572. doi: 10.1016/j.snb.2015.05.067. DOI

Navakul K., Warakulwit C., Yenchitsomanus P.T., Panya A., Lieberzeit P.A., Sangma C. A novel method for dengue virus detection and antibody screening using a graphene-polymer based electrochemical biosensor. Nanomed. Nanotechnol. Biol. Med. 2017;13:549–557. doi: 10.1016/j.nano.2016.08.009. PubMed DOI

Wang S.M., Sekaran S.D. Early diagnosis of dengue infection using a commercial dengue duo rapid test kit for the detection of NS1, IGM, and IGG. Am. J. Trop. Med. Hyg. 2010;83:690–695. doi: 10.4269/ajtmh.2010.10-0117. PubMed DOI PMC

Alere SD Product Catalogo. [(accessed on 3 May 2018)];2016 Available online: https://www.globalpointofcare.abbott/en/product-details/sd-bioline-dengue-duo-ns1-ag---ab-combo.html.

Andries A.-C., Duong V., Ong S., Ros S., Sakuntabhai A., Horwood P., Dussart P., Buchy P. Evaluation of the performances of six commercial kits designed for dengue NS1 and anti-dengue IgM, IgG and IgA detection in urine and saliva clinical specimens. BMC Infect. Dis. 2016;16:201. doi: 10.1186/s12879-016-1551-x. PubMed DOI PMC

Human Membrane Attack Complex(MAC) ELISA Kit. Cat No. MBS268481. [(accessed on 24 April 2016)];:1–8. Available online: https://www.mybiosource.com/human-elisa-kits/membrane-attack-complex-mac/268481.

World Health Organization . Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. World Health Organization; Geneva, Switzerland: 2009. PubMed

Bosch I., De Puig H., Hiley M., Carré-Camps M., Perdomo-Celis F., Narváez C.F., Salgado D.M., Senthoor D., Grady M.O., Phillips E., et al. Rapid antigen tests for dengue virus serotypes and zika virus in patient serum. Sci. Transl. Med. 2017;9:eaan1589. doi: 10.1126/scitranslmed.aan1589. PubMed DOI PMC

Sikka V., Chattu V.K., Popli R.K., Galwankar S.C., Kelkar D., Sawicki S.G., Stawicki S.P., Papadimos T.J. The emergence of zika virus as a global health security threat: A review and a consensus statement of the INDUSEM Joint working Group (JWG) J. Glob. Infect. Dis. 2016;8:3–15. PubMed PMC

Cao-Lormeau V.M., Blake A., Mons S., Lastère S., Roche C., Vanhomwegen J., Dub T., Baudouin L., Teissier A., Larre P., et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet. 2016;387:1531–1539. doi: 10.1016/S0140-6736(16)00562-6. PubMed DOI PMC

Faria A.M., Mazon T. Early diagnosis of Zika infection using a ZnO nanostructures-based rapid electrochemical biosensor. Talanta. 2019;203:153–160. doi: 10.1016/j.talanta.2019.04.080. PubMed DOI

Cabral-miranda G., Cardoso A.R., Ferreira C.S., Sales M.G.F., Martin F. Biosensor-based selective detection of Zika virus specific antibodies in infected individuals. Biosens. Bioelectron. 2018;113:101–107. doi: 10.1016/j.bios.2018.04.058. PubMed DOI

Song H., Qi J., Haywood J., Shi Y., Gao G.F. Zika virus NS1 structure reveals diversity of electrostatic surfaces among flaviviruses. Nat. Struct. Mol. Biol. 2016;23:456–458. doi: 10.1038/nsmb.3213. PubMed DOI

Xu X., Song H., Qi J., Liu Y., Wang H., Su C., Shi Y., Gao G.F. Contribution of intertwined loop to membrane association revealed by Zika virus full-length NS 1 structure. EMBO J. 2016;35:2170–2178. doi: 10.15252/embj.201695290. PubMed DOI PMC

Afsahi S., Lerner M.B., Goldstein J.M., Lee J., Tang X., Bagarozzi D.A., Pan D., Locascio L., Walker A., Barron F., et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 2018;100:85–88. doi: 10.1016/j.bios.2017.08.051. PubMed DOI

da Fonseca Alves R., da Silva A.G., Ferreira L.F., Franco D.L. Synthesis and characterization of a material derived from 4-mercaptobenzoic acid: A novel platform for oligonucleotide immobilization. Talanta. 2017;165:69–75. doi: 10.1016/j.talanta.2016.12.025. PubMed DOI

Tancharoen C., Sukjee W., Thepparit C., Jaimipuk T., Auewarakul P., Thitithanyanont A., Sangma C. Electrochemical Biosensor Based on Surface Imprinting for Zika Virus Detection in Serum. ACS Sens. 2019;4:69–75. doi: 10.1021/acssensors.8b00885. PubMed DOI

Limitations P.U.S.E. Rx ONLY ZIKV DetectTM IgM Capture ELISA Instructions for Use For Use Under an Emergency Use Authorization Only. [(accessed on 21 May 2018)];2018 :1–18. Available online: https://www.fda.gov/media/99521/download.

Granger D., Hilgart H., Misner L., Christensen J., Bistodeau S., Palm J., Strain A.K., Konstantinovski M., Liu D., Tran A., et al. Serologic testing for zika virus: Comparison of three zika virus IgM screening enzyme-linked immunosorbent assays and initial laboratory experiences. J. Clin. Microbiol. 2017;55:2127–2136. doi: 10.1128/JCM.00580-17. PubMed DOI PMC

Anti-Zika Virus ELISA (IgG) First Specifi c Serological Test Worldwide for the Detection of Antibodies Against Zika Virus. [(accessed on 9 July 2017)];2015 :1–2. Available online: https://www.euroimmun.com/documents/Indications/Infections/Zika-virus/EI_2668_D_UK_B.pdf.

Zhang L., Yuan R., Huang X., Chai Y., Cao S. Potentiometric immunosensor based on antiserum of Japanese B encephalitis immobilized in nano-Au/polymerized o-phenylenediamine film. Electrochem. Commun. 2004;6:1222–1226. doi: 10.1016/j.elecom.2004.09.020. DOI

Pasinszki T., Krebsz M., Tung T.T., Losic D. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sensors. 2017;17:1919. doi: 10.3390/s17081919. PubMed DOI PMC

Chin S.F., Lim L.S., Pang S.C., Sia M., Sum H. Carbon nanoparticle modified screen printed carbon electrode as a disposable electrochemical immunosensor strip for the detection of Japanese encephalitis virus. Microchim. Acta. 2016:491–497. doi: 10.1007/s00604-016-2029-7. DOI

Huy T.Q., Hanh N.T.H., Thuy N.T., Van Chung P., Nga P.T., Tuan M.A. A novel biosensor based on serum antibody immobilization for rapid detection of viral antigens. Talanta. 2011;86:271–277. doi: 10.1016/j.talanta.2011.09.012. PubMed DOI PMC

JE DetectTM IgM ANTIBODY CAPTURE ELISA (MAC-ELISA) [(accessed on 8 July 2018)]; Available online: https://inbios.com/je-detect-igm-antibody-capture-elisa-for-japanese-encephalitis-intl-2/

Robinson J.S., Featherstone D., Vasanthapuram R., Biggerstaff B.J., Desai A., Ramamurty N., Chowdhury A.H., Sandhu H.S., Cavallaro K.F., Johnson B.W. Evaluation of three commercially available Japanese encephalitis virus IgM enzyme-linked immunosorbent assays. Am. J. Trop. Med. Hyg. 2010;83:1146–1155. doi: 10.4269/ajtmh.2010.10-0212. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...