A paradigm shift in the detection of bloodborne pathogens: conventional approaches to recent detection techniques
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39574968
PubMed Central
PMC11579516
DOI
10.17179/excli2024-7392
PII: 2024-7392
Knihovny.cz E-zdroje
- Klíčová slova
- biosensors, bloodborne pathogens, diagnosis, rapid detection techniques, transmission,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Bloodborne pathogens (BBPs) pose formidable challenges in the realm of infectious diseases, representing significant risks to both human and animal health worldwide. The review paper provides a thorough examination of bloodborne pathogens, highlighting the serious worldwide threat they pose and the effects they have on animal and human health. It addresses the potential dangers of exposure that healthcare workers confront, which have affected 3 million people annually, and investigates the many pathways by which these viruses can spread. The limitations of traditional detection techniques like PCR and ELISA have been criticized, which has led to the investigation of new detection methods driven by advances in sensor technology. The objective is to increase the amount of knowledge that is available regarding bloodborne infections as well as effective strategies for their management and detection. This review provides a thorough overview of common bloodborne infections, including their patterns of transmission, and detection techniques.
Biomedical Research Center University Hospital Hradec Kralove 50003 Hradec Kralove Czech Republic
Faculty of Science University of Hradec Kralove Rokitanskeho 62 500 03 Hradec Kralove Czech Republic
Health Research Center Jazan University P O Box 114 Jazan 82511 Saudi Arabia
School of Health Sciences University of Petroleum and Energy Studies Dehradun Uttarakhand India
Zobrazit více v PubMed
Abdullah HH, Amanzougaghene N, Dahmana H, Louni M, Raoult D, Mediannikov O. Multiple vector-borne pathogens of domestic animals in Egypt. PLoS Negl Trop Dis. 2021;15(9):e0009767. doi: 10.1371/journal.pntd.0009767. doi: 10.1371/journal.pntd.0009767. Available from: PubMed DOI PMC
Abebe E, Gugsa G, Ahmed M. Review on major food-borne zoonotic bacterial pathogens. J Trop Med. 2020;2020:4674235. doi: 10.1155/2020/4674235. doi: 10.1155/2020/4674235. Available from: PubMed DOI PMC
Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M, et al. Enzyme-linked immunosorbent assay specific to dengue virus type 1 Nonstructural Protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol. 2002;40:376–381. doi: 10.1128/JCM.40.02.376-381.2002. doi: 10.1128/JCM.40.02.376-381.2002. Available from: PubMed DOI PMC
Anderson RC, Ricke SC, Lungu B, Johnson MG, Oliver C, Horrocks SM, et al. Food safety issues and the microbiology of Beef. In: Ricke SC, editor. Microbiologically safe foods. Chichester: Wiley-Blackwell; 2009. pp. 113–145. Available from: DOI
Andersson T, Bläckberg A, Lood R, Ertürk Bergdahl G. Development of a molecular imprinting-based surface plasmon resonance biosensor for rapid and sensitive detection of Staphylococcus aureus alpha hemolysin from human serum. Front Cell Infect Microbiol. 2020;10:571578. doi: 10.3389/fcimb.2020.571578. doi: 10.3389/fcimb.2020.571578. Available from: PubMed DOI PMC
Aouadi A, Leulmi H, Boucheikhchoukh M, Benakhla A, Raoult D, Parola P. Molecular evidence of tick-borne hemoprotozoan-parasites (theileria ovis and Babesia ovis) and bacteria in ticks and blood from small ruminants in northern Algeria. Comp Immunol Microbiol Infect Dis. 2017;50:34–9. doi: 10.1016/j.cimid.2016.11.008. doi: 10.1016/j.cimid.2016.11.008. Available from: PubMed DOI
Atias D, Liebes Y, Chalifa-Caspi V, Bremand L, Lobel L, Marks RS, et al. Chemiluminescent optical fiber immunosensor for the detection of IGM antibody to dengue virus in humans. Sens Actuators B Chem. 2009;140:206–15. doi: 10.1016/j.snb.2009.03.044. doi: 10.1016/j.snb.2009.03.044. Available from: DOI
Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. doi: 10.1016/j.peptides.2015.04.012. doi: 10.1016/j.peptides.2015.04.012. Available from: PubMed DOI
Babamiri B, Salimi A, Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens Bioelectron. 2018;117:332–9. doi: 10.1016/j.bios.2018.06.003. doi: 10.1016/j.bios.2018.06.003. Available from: PubMed DOI
Bachour Junior B, Batistuti MR, Pereira AS, de Sousa Russo EM, Mulato M. Electrochemical aptasensor for NS1 detection: Towards a fast dengue biosensor. Talanta. 2021;233:122527. doi: 10.1016/j.talanta.2021.122527. doi: 10.1016/j.talanta.2021.122527. Available from: PubMed DOI
Balloux F, van Dorp L. Q&A: What are pathogens, and what have they done to and for us? BMC Biol. 2017;15(1):91. doi: 10.1186/s12915-017-0433-z. doi: 10.1186/s12915-017-0433-z. Available from: PubMed DOI PMC
Baneth G. Tick-borne infections of animals and humans: A common ground. Int J Parasitol. 2014;44:591–6. doi: 10.1016/j.ijpara.2014.03.011. doi: 10.1016/j.ijpara.2014.03.011. Available from: PubMed DOI
Barbosa A, Reiss A, Jackson B, Warren K, Paparini A, Gillespie G, et al. Prevalence, genetic diversity and potential clinical impact of blood-borne and enteric protozoan parasites in native mammals from northern Australia. Vet Parasitol. 2017;238:94–105. doi: 10.1016/j.vetpar.2017.04.007. doi: 10.1016/j.vetpar.2017.04.007. Available from: PubMed DOI
Beltrami EM, Williams IT, Shapiro CN, Chamberland ME. Risk and management of blood-borne infections in health care workers. Clin Microbiol Rev. 2000;13:385–407. doi: 10.1128/cmr.13.3.385-407.2000. doi: 10.1128/cmr.13.3.385-407.2000. Available from: PubMed DOI PMC
Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas' disease in the United States. Clin Microbiol Rev. 2011;24:655–81. doi: 10.1128/cmr.00005-11. doi: 10.1128/cmr.00005-11. Available from: PubMed DOI PMC
Biagetti M, Cuccioloni M, Bonfili L, Cecarini V, Sebastiani C, Curcio L, et al. Chimeric DNA/LNA-based biosensor for the rapid detection of African Swine Fever virus. Talanta. 2018;184:35–41. doi: 10.1016/j.talanta.2018.02.095. doi: 10.1016/j.talanta.2018.02.095. Available from: PubMed DOI
Call DR, Borucki MK, Loge FJ. Detection of bacterial pathogens in environmental samples using DNA microarrays. J Microbiol Methods. 2003;53:235–43. doi: 10.1016/s0167-7012(03)00027-7. doi: 10.1016/s0167-7012(03)00027-7. Available from: PubMed DOI
Camejo Leonor M, Mendez MD. Treasure Island (FL): StatPearls Publ; 2024. Rubella. StatPearls [Internet] PubMed
Cavalcanti IT, Guedes MIF, Sotomayor MDPT, Yamanaka H, Dutra RF. A label-free immunosensor based on recordable compact disk chip for early diagnostic of the Dengue Virus Infection. Biochem Eng J. 2012;67:225–30. doi: 10.1016/j.bej.2012.06.016. doi: 10.1016/j.bej.2012.06.016. Available from: DOI
Chaudhary VS, Kumar D, Kumar S. Gold-immobilized photonic crystal fiber-based SPR biosensor for detection of malaria disease in human body. IEEE Sens J. 2021;21:17800–7. doi: 10.1109/jsen.2021.3085829. doi: 10.1109/jsen.2021.3085829. Available from: DOI
Chen J, Chen D, Xie Y, Yuan T, Chen X. Progress of microfluidics for biology and medicine. Nano-Micro Lett. 2013;5(1):66–80. doi: 10.1007/bf03354852. doi: 10.1007/bf03354852. Available from: DOI
Chen S, Wang Y, Choi S. Applications and technology of electronic nose for clinical diagnosis. Open J Appl Biosens. 2013;2(2):39–50. doi: 10.4236/ojab.2013.22005. doi: 10.4236/ojab.2013.22005. Available from: DOI
Chen Y, Qian C, Liu C, Shen H, Wang Z, Ping J, et al. Nucleic acid amplification free biosensors for pathogen detection. Biosens Bioelectron. 2020;153:112049. doi: 10.1016/j.bios.2020.112049. doi: 10.1016/j.bios.2020.112049. Available from: PubMed DOI
Chen YT, Liao YY, Chen CC, Hsiao HH, Huang JJ. Surface plasmons coupled two-dimensional photonic crystal biosensors for Epstein-Barr virus protein detection. Sens Actuators B Chem. 2019;291:81–8. doi: 10.1016/j.snb.2019.04.059. doi: 10.1016/j.snb.2019.04.059. Available from: DOI
Chen Z, Liu Q, Liu JQ, Xu BL, Lv S, Xia S, et al. Tick-borne pathogens and associated co-infections in ticks collected from domestic animals in Central China. Parasit Vectors. 2014;7(1):237. doi: 10.1186/1756-3305-7-237. doi: 10.1186/1756-3305-7-237. Available from: PubMed DOI PMC
Cho IH, Kim DH, Park S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater Res. 2020;24(1):22. doi: 10.1186/s40824-019-0181-y. doi: 10.1186/s40824-019-0181-y. Available from: PubMed DOI PMC
Chuang CS, Wu CY, Juan PH, Hou NC, Fan YJ, Wei PK, et al. lmp1gene detection using a capped gold nanowire array surface plasmon resonance sensor in a microfluidic chip. Analyst. 2020;145(1):52–60. doi: 10.1039/c9an01419e. doi: 10.1039/c9an01419e. Available from: PubMed DOI
Cleveland JL, Gray SK, Harte JA, Robison VA, Moorman AC, Gooch BF. Transmission of blood-borne pathogens in US dental health care settings. J Am Dent Assoc. 2016;147:729–738. doi: 10.1016/j.adaj.2016.03.020. doi: 10.1016/j.adaj.2016.03.020. Available from: PubMed DOI PMC
Contini C, Seraceni S, Cultrera R, Incorvaia C, Sebastiani A, Picot S. Evaluation of a real-time PCR-based assay using the LightCycler system for detection of Toxoplasma gondii bradyzoite genes in blood specimens from patients with toxoplasmic retinochoroiditis. Int J Parasitol. 2005;35:275–283. doi: 10.1016/j.ijpara.2004.11.016. doi: 10.1016/j.ijpara.2004.11.016. Available from: PubMed DOI
Cordeiro TAR, Gonçalves MVC, Franco DL, Reis AB, Martins HR, Ferreira LF. Label-free electrochemical impedance immunosensor based on modified screen-printed gold electrodes for the diagnosis of canine visceral leishmaniasis. Talanta. 2019;195:327–332. doi: 10.1016/j.talanta.2018.11.087. doi: 10.1016/j.talanta.2018.11.087. Available from: PubMed DOI
Cox A, Tilley A, McOdimba F, Fyfe J, Eisler M, Hide G, et al. A PCR based assay for detection and differentiation of African trypanosome species in blood. Exp Parasitol. 2005;111(1):24–29. doi: 10.1016/j.exppara.2005.03.014. doi: 10.1016/j.exppara.2005.03.014. Available from: PubMed DOI
Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60(1):91–100. doi: 10.1042/EBc20150010. doi: 10.1042/EBc20150010. Available from: PubMed DOI PMC
Damhorst GL, Murtagh M, Rodriguez WR, Bashir R. Microfluidics and nanotechnology for detection of global infectious diseases. Proc IEEE. 2015;103:150–160. doi: 10.1109/jproc.2014.2385078. doi: 10.1109/jproc.2014.2385078. Available from: DOI
Darwish NT, Alrawi AH, Sekaran SD, Alias Y, Khor SM. Electrochemical immunosensor based on antibody-nanoparticle hybrid for specific detection of the dengue virus NS1 Biomarker. J Electrochem Soc. 2016;163(3):B19–B25. doi: 10.1149/2.0471603jes. doi: 10.1149/2.0471603jes. Available from: DOI
de la Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7:821–824. doi: 10.1038/nnano.2012.186. doi: 10.1038/nnano.2012.186. Available from: PubMed DOI
Defaye B, Moutailler S, Pasqualini V, Quilichini Y. Distribution of tick-borne pathogens in domestic animals and their ticks in the countries of the Mediterranean Basin between 2000 and 2021: A systematic review. Microorganisms. 2022;10(6):1236. doi: 10.3390/microorganisms10061236. doi: 10.3390/microorganisms10061236. Available from: PubMed DOI PMC
Denault D, Gardner H. Treasure Island (FL): StatPearls Publ; 2022. OSHA bloodborne pathogen standards. StatPearls [Internet] PubMed
Deuffic-Burban S, Delarocque-Astagneau E, Abiteboul D, Bouvet E, Yazdanpanah Y. Blood-borne viruses in health care workers: Prevention and Management. J Clin Virol. 2011;52(1):4–10. doi: 10.1016/j.jcv.2011.05.016. doi: 10.1016/j.jcv.2011.05.016. Available from: PubMed DOI
Devi S, Sharma N, Ahmed T, Huma ZI, Kour S, Sahoo B, et al. Aptamer-based diagnostic and therapeutic approaches in animals: Current potential and challenges. Saudi J Biol Sci. 2021;28:5081–5093. doi: 10.1016/j.sjbs.2021.05.031. doi: 10.1016/j.sjbs.2021.05.031. Available from: PubMed DOI PMC
Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, et al. The microbiology of bloodstream infection: 20-year trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother. 2019;63(7):e00355–e00319. doi: 10.1128/AAC.00355-19. doi: 10.1128/AAC.00355-19. Available from: PubMed DOI PMC
Dong J, Olano JP, McBride JW, Walker DH. Emerging pathogens: Challenges and successes of molecular diagnostics. J Mol Diagn. 2008;10:185–197. doi: 10.2353/jmoldx.2008.070063. doi: 10.2353/jmoldx.2008.070063. Available from: PubMed DOI PMC
Duncan R, Kourout M, Grigorenko E, Fisher C, Dong M. Advances in multiplex nucleic acid diagnostics for blood-borne pathogens: Promises and pitfalls. Expert Rev Mol Diagn. 2016;16(1):83–95. doi: 10.1586/14737159.2016.1112272. doi: 10.1586/14737159.2016.1112272. Available from: PubMed DOI
Dunn JJ, Baldanti F, Puchhammer-Stockl E, Panning M, Perez O, Harvala H. Measles is back – considerations for laboratory diagnosis. J Clin Virol. 2020;128:104430. doi: 10.1016/j.jcv.2020.104430.. doi: 10.1016/j.jcv.2020.104430.. Available from: PubMed DOI
EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016;14(12):4634. doi: 10.2903/j.efsa.2016.4634. doi: 10.2903/j.efsa.2016.4634. Available from: PubMed DOI PMC
EFSA (European Food Safety Authority) Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, et al. Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age. EFSA J. 2017;15(5):4849. doi: 10.2903/j.efsa.2017.4849. doi: 10.2903/j.efsa.2017.4849. Available from: PubMed DOI PMC
Eksin E, Erdem A. Recent progress on optical biosensors developed for nucleic acid detection related to infectious viral diseases. Micromachines. 2023;14(2):295. doi: 10.3390/mi14020295. doi: 10.3390/mi14020295. Available from: PubMed DOI PMC
El-Dakhly KM, Arafa WM, Soliman S, Abdel-Fatah OR, Wahba AA, Esteve-Gasent MD, et al. Molecular detection, phylogenetic analysis, and genetic diversity of Theileria annulata, Babesia Bigemina, and Anaplasma marginale in cattle in three districts of Egypt. Acta Parasitol. 2020;65:620–627. doi: 10.2478/s11686-020-00189-z. doi: 10.2478/s11686-020-00189-z. Available from: PubMed DOI
Faria AM, Mazon T. Early diagnosis of Zika infection using a ZnO nanostructures-based rapid electrochemical biosensor. Talanta. 2019;203:153–160. doi: 10.1016/j.talanta.2019.04.080. doi: 10.1016/j.talanta.2019.04.080. Available from: PubMed DOI
Figueroa-Miranda G, Wu C, Zhang Y, Nörbel L, Lo Y, Tanner JA, et al. Polyethylene glycol-mediated blocking and monolayer morphology of an electrochemical aptasensor for malaria biomarker detection in human serum. Bioelectrochemistry. 2020;136:107589. doi: 10.1016/j.bioelechem.2020.107589. doi: 10.1016/j.bioelechem.2020.107589. Available from: PubMed DOI
Fischer C, Torres MC, Patel P, Moreira-Soto A, Gould EA, Charrel RN, et al. Lineage-specific real-time RT-PCR for yellow fever virus outbreak surveillance, Brazil. Emerg Infect Dis. 2017;23:1867–1871. doi: 10.3201/eid2311.171131. doi: 10.3201/eid2311.171131. Available from: PubMed DOI PMC
Foudeh AM, Fatanat Didar T, Veres T, Tabrizian M. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip. 2012;12:3249–3266. doi: 10.1039/c2lc40630f. doi: 10.1039/c2lc40630f. Available from: PubMed DOI
Fronczek CF. Lab-on-a-chip biosensors for the rapid detection of pathogens in clinical and field samples. University of Arizona, Thesis. 2013. Available from: https://repository.arizona.edu/handle/10150/311459.
Gil Rosa B, Akingbade OE, Guo X, Gonzalez-Macia L, Crone MA, Cameron LP, et al. Multiplexed immunosensors for point-of-care diagnostic applications. Biosens Bioelectron. 2022;203:114050. doi: 10.1016/j.bios.2022.114050.. doi: 10.1016/j.bios.2022.114050.. Available from: PubMed DOI
Giri S, Kindo AJ. A review of candida species causing blood stream infection. Indian J Med Microbiol. 2012;30:270–278. doi: 10.4103/0255-0857.99484. doi: 10.4103/0255-0857.99484. Available from: PubMed DOI
Grabias B, Essuman E, Quakyi IA, Kumar S. Sensitive real-time PCR detection of Plasmodium falciparum parasites in whole blood by erythrocyte membrane protein 1 gene amplification. Malar J. 2019;18(1):288. doi: 10.1186/s12936-019-2743-9. doi: 10.1186/s12936-019-2743-9. Available from: PubMed DOI PMC
Gray ER, Turbé V, Lawson VE, Page RH, Cook ZC, Bridget Ferns R, et al. Ultra-rapid, sensitive and specific digital diagnosis of HIV with a dual-channel SAW biosensor in a pilot clinical study. NPJ Digit Med. 2018;1(1):30. doi: 10.1038/s41746-018-0041-5. doi: 10.1038/s41746-018-0041-5. Available from: PubMed DOI PMC
Grigorenko E, Fisher C, Patel S, Winkelman V, Williamson P, Chancey C, et al. Highly multiplex real-time PCR-based screening for blood-borne pathogens on an OpenArray platform. J Mol Diagn. 2017;19:549–560. doi: 10.1016/j.jmoldx.2017.03.004. doi: 10.1016/j.jmoldx.2017.03.004. Available from: PubMed DOI
Guatelli JC, Gingeras TR, Richman DD. Nucleic acid amplification in vitro: Detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection. Clin Microbiol Rev. 1989;2:217–226. doi: 10.1128/cmr.2.2.217. doi: 10.1128/cmr.2.2.217. Available from: PubMed DOI PMC
Hailemariam Z, Krücken J, Baumann M, Ahmed JS, Clausen P-H, Nijhof AM. Molecular detection of tick-borne pathogens in cattle from southwestern Ethiopia. PLoS One. 2017;12(11):e0188248. doi: 10.1371/journal.pone.0188248. doi: 10.1371/journal.pone.0188248. Available from: PubMed DOI PMC
Hemben A, Ashley J, Tothill I. Development of an immunosensor for pfhrp 2 as a biomarker for malaria detection. Biosensors (Basel) 2017;7(4):28. doi: 10.3390/bios7030028. doi: 10.3390/bios7030028. Available from: PubMed DOI PMC
Hill DE, Dubey JP. Toxoplasma gondii as a parasite in food: Analysis and control. In: Thakur S, Kniel KE, editors. Preharvest food safety. Chichester: Wiley; 2018. pp. 227–247. Available from: DOI
Hsia CC, Chizhikov VE, Yang AX, Selvapandiyan A, Hewlett I, Duncan R, et al. Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples. Biochem Biophys Res Commun. 20078;356:1017–23. doi: 10.1016/j.bbrc.2007.03.087. doi: 10.1016/j.bbrc.2007.03.087. Available from: PubMed DOI
Hsieh H-Y, Luo J-X, Shen Y-H, Lo S-C, Hsu Y-C, Tahara H, et al. A nanofluidic preconcentrator integrated with an aluminum-based nanoplasmonic sensor for Epstein-Barr Virus Detection. Sens Actuators B Chem. 2022;355:131327. doi: 10.1016/j.snb.2021.131327. doi: 10.1016/j.snb.2021.131327. Available from: DOI
Huang H-K, Huang N-T. A microfluidic Microwell device integrating surface-enhanced Raman scattering for rapid antibiotic susceptibility test of blood-borne pathogen. 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2019. Available from: DOI
Huang R, Xi Z, Deng Y, He N. Fluorescence based aptasensors for the determination of hepatitis B virus E antigen. Sci Rep. 2016;6:31103. doi: 10.1038/srep31103. doi: 10.1038/srep31103. Available from: PubMed DOI PMC
Hunter S. The Five W's of Bloodborne Pathogens: Who, What, When, Where, and Why. Murray, KY: Murray State University; 2017. (Integrated Studies, no. 70). Available from: https://digitalcommons.murraystate.edu/bis437/70.
Ikeda M, Yamaguchi N, Nasu M. Rapid on-chip flow cytometric detection of listeria monocytogenes in milk. J Health Sci. 2009;55:851–6. doi: 10.1248/jhs.55.851. doi: 10.1248/jhs.55.851. Available from: DOI
Jain U, Shakya S, Saxena K. Nano-biosensing devices detecting biomarkers of communicable and non-communicable diseases of animals. In: Pudake RN, Jain U, Kole C, editors. Biosensors in agriculture: recent trends and future perspectives. Cham: Springer; 2021. pp. 415–434. Available from: DOI
Janik-Karpinska E, Ceremuga M, Niemcewicz M, Podogrocki M, Stela M, Cichon N, et al. Immunosensors - the future of pathogen real-time detection. Sensors (Basel) 2022;22(24):9757. doi: 10.3390/s22249757.. doi: 10.3390/s22249757.. Available from: PubMed DOI PMC
Jankowska KI, Nagarkatti R, Acharyya N, Dahiya N, Stewart CF, Macpherson RW, et al. Complete inactivation of blood borne pathogen Trypanosoma cruzi in stored human platelet concentrates and plasma treated with 405 nm violet-blue light. Front Med. 2020;7:617373. doi: 10.3389/fmed.2020.617373. doi: 10.3389/fmed.2020.617373. Available from: PubMed DOI PMC
Kabir MA, Zilouchian H, Younas MA, Asghar W. Dengue detection: advances in diagnostic tools from conventional technology to point of care. Biosensors (Basel) 2021;11(7):206. doi: 10.3390/bios11070206.. doi: 10.3390/bios11070206.. Available from: PubMed DOI PMC
Kashish, Soni DK, Mishra SK, Prakash R, Dubey SK. Label-free impedimetric detection of listeria monocytogenes based on poly-5-carboxy indole modified ssDNA probe. J Biotechnol. 2015;200:70–6. doi: 10.1016/j.jbiotec.2015.02.025. doi: 10.1016/j.jbiotec.2015.02.025. Available from: PubMed DOI
Kermode M, Jolley D, Langkham B, Thomas MS, Crofts N. Occupational exposure to blood and risk of bloodborne virus infection among health care workers in rural North Indian Health Care Settings. Am J Infect Control. 2005;33(1):34–41. doi: 10.1016/j.ajic.2004.07.015. doi: 10.1016/j.ajic.2004.07.015. Available from: PubMed DOI
Kham-Kjing N, Ngo-Giang-Huong N, Tragoolpua K, Khamduang W, Hongjaisee S. Highly specific and rapid detection of hepatitis C virus using RT-LAMP-coupled CRISPR-Cas12 assay. Diagnostics (Basel) 2022;12(7):1524. doi: 10.3390/diagnostics12071524.. doi: 10.3390/diagnostics12071524.. Available from: PubMed DOI PMC
Kheiri F, Sabzi RE, Jannatdoust E, Shojaeefar E, Sedghi H. A novel amperometric immunosensor based on acetone-extracted propolis for the detection of the HIV-1 P24 antigen. Biosens Bioelectron. 2011;26:4457–63. doi: 10.1016/j.bios.2011.05.002. doi: 10.1016/j.bios.2011.05.002. Available from: PubMed DOI
Khristunova E, Dorozhko E, Korotkova E, Kratochvil B, Vyskocil V, Barek J. Label-free electrochemical biosensors for the determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis. Sensors. 2020;20(16):4600. doi: 10.3390/s20164600. doi: 10.3390/s20164600. Available from: PubMed DOI PMC
Klarkowski D, O’Brien DP, Shanks L, Singh KP. Causes of false-positive HIV rapid diagnostic test results. Expert Rev Anti Infect Ther. 2013;12(1):49–62. doi: 10.1586/14787210.2014.866516. doi: 10.1586/14787210.2014.866516. Available from: PubMed DOI
Kong M, Li Z, Wu J, Hu J, Sheng Y, Wu D, et al. A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification. Talanta. 2019;205:120155. doi: 10.1016/j.talanta.2019.120155. doi: 10.1016/j.talanta.2019.120155. Available from: PubMed DOI
Konstantinou GN. Enzyme-linked immunosorbent assay (ELISA) Methods Mol Biol. 2017;1592:79–94. doi: 10.1007/978-1-4939-6925-8_7. doi: 10.1007/978-1-4939-6925-8_7. Available from: PubMed DOI
Kumar H, Bhardwaj K, Kaur T, Nepovimova E, Kuča K, Kumar V, et al. Detection of bacterial pathogens and antibiotic residues in chicken meat: a review. Foods. 2020;9(10):1504. doi: 10.3390/foods9101504. doi: 10.3390/foods9101504. Available from: PubMed DOI PMC
Lanphear BP. Trends and patterns in the transmission of bloodborne pathogens to health care workers. Epidemiol Rev. 1994;16:437–50. doi: 10.1093/oxfordjournals.epirev.a036162. doi: 10.1093/oxfordjournals.epirev.a036162. Available from: PubMed DOI
Lawal JR, Ibrahim UI, Biu AA, Musa HI. Molecular detection of avian Haemosporidian parasites in village chickens (Gallus gallus domesticus) in Gombe State, Nigeria. J Vet Med Animal Sci. 2022;5(1):1095.
Lazcka O, Campo FJ, Muñoz FX. Pathogen detection: A perspective of traditional methods and biosensors. Biosens Bioelectron. 2007;22:1205–17. doi: 10.1016/j.bios.2006.06.036. doi: 10.1016/j.bios.2006.06.036. Available from: PubMed DOI
Lee JH, Kim BC, Oh BK, Choi JW. Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomed Nanotechnol Biol Med. 2013;9:1018–26. doi: 10.1016/j.nano.2013.03.005. doi: 10.1016/j.nano.2013.03.005. Available from: PubMed DOI
Lee S, Kim YS, Jo M, Jin M, Lee D, Kim S. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen. Biochem Biophys Res Commun. 2007;358(1):47–52. doi: 10.1016/j.bbrc.2007.04.057. doi: 10.1016/j.bbrc.2007.04.057. Available from: PubMed DOI
Letowski J, Brousseau R, Masson L. Designing better probes: Effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol Methods. 2004;57:269–278. doi: 10.1016/j.mimet.2004.02.002. doi: 10.1016/j.mimet.2004.02.002. Available from: PubMed DOI
Li B, Yu Q, Duan Y. Fluorescent labels in biosensors for pathogen detection. Crit Rev Biotechnol. 2013;35(1):82–93. doi: 10.3109/07388551.2013.804487. doi: 10.3109/07388551.2013.804487. Available from: PubMed DOI
Li HY, Jia WN, Li XY, Zhang L, Liu C, Wu J, et al. Advances in detection of infectious agents by Aptamer-based technologies. Emerg Microbes Infect. 2020;9:1671–1681. doi: 10.1080/22221751.2020.1792352. doi: 10.1080/22221751.2020.1792352. Available from: PubMed DOI PMC
Li J, Jin X, Feng M, Huang S, Feng J. Ultrasensitive and highly selective electrochemical biosensor for HIV gene detection based on amino-reduced graphene oxide and β-cyclodextrin modified glassy carbon electrode. Int J Electrochem Sci. 2020;15:2727–2738. doi: 10.20964/2020.03.62. doi: 10.20964/2020.03.62. Available from: DOI
Li S, Liu Y, Wang Y, Wang M, Liu C, Wang Y, et al. Rapid detection of Brucella spp. and elimination of carryover using multiple cross displacement amplification coupled with nanoparticles-based lateral flow biosensor. Front Cell Infect Microbiol. 2019;9:78. doi: 10.3389/fcimb.2019.00078. doi: 10.3389/fcimb.2019.00078. Available from: PubMed DOI PMC
Lin C, Li Y, Peng Y, Zhao S, Xu M, Zhang L, et al. Recent development of surface-enhanced Raman scattering for Biosensing. J Nanobiotechnology. 2023;21(1):90. doi: 10.1186/s12951-023-01890-7. doi: 10.1186/s12951-023-01890-7. Available from: PubMed DOI PMC
Lin S, Yang S. Molecular methods for pathogen detection in blood. Lancet. 2010;375(9710):178–179. doi: 10.1016/s0140-6736(09)61791-8. doi: 10.1016/s0140-6736(09)61791-8. Available from: PubMed DOI
Liu L, Han Z, An F, Gong X, Zhao C, Zheng W, et al. Aptamer-based biosensors for the diagnosis of sepsis. J Nanobiotechnology. 2021;19(1):49. doi: 10.1186/s12951-021-00959-5. doi: 10.1186/s12951-021-00959-5. Available from: PubMed DOI PMC
Liu Y, Huang CZ. One-step conjugation chemistry of DNA with highly scattered silver nanoparticles for sandwich detection of DNA. Analyst. 2012;137:3434–3436. doi: 10.1039/c2an35167f. doi: 10.1039/c2an35167f. Available from: PubMed DOI
Lo Y, Cheung YW, Wang L, Lee M, Figueroa-Miranda G, Liang S, et al. An electrochemical aptamer-based biosensor targeting plasmodium falciparum histidine-rich protein II for malaria diagnosis. Biosens Bioelectron. 2021;192:113472. doi: 10.1016/j.bios.2021.113472. doi: 10.1016/j.bios.2021.113472. Available from: PubMed DOI
Lu X, Dong X, Zhang K, Han X, Fang X, Zhang Y, et al. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst. 2013;138:642–650. doi: 10.1039/c2an36099c. doi: 10.1039/c2an36099c. Available from: PubMed DOI
Ludlam CA, Powderly WG, Bozzette S, Diamond M, Koerper MA, Kulkarni R, et al. Clinical perspectives of emerging pathogens in bleeding disorders. Lancet. 2006;367(9506):252–261. doi: 10.1016/s0140-6736(06)68036-7. doi: 10.1016/s0140-6736(06)68036-7. Available from: PubMed DOI PMC
Luz JGG, Souto DEP, Machado-Assis GF, de Lana M, Kubota LT, Luz RCS, et al. Development and evaluation of a SPR-based immunosensor for detection of anti-Trypanosoma cruzi antibodies in human serum. Sens Actuators B Chem. 2015;212:287–296. doi: 10.1016/j.snb.2015.01.135. doi: 10.1016/j.snb.2015.01.135. Available from: DOI
Maddali H, Miles CE, Kohn J, O’Carroll DM. Optical biosensors for virus detection: Prospects for SARS‐COV‐2/Covid-19. ChemBioChem. 2020;22:1176–89. doi: 10.1002/cbic.202000744. Available from: PubMed DOI PMC
Mahato K, Kumar S, Srivastava A, Maurya PK, Singh R, Chandra P. Electrochemical immunosensors: Fundamentals and applications in clinical diagnostics. In: Vashist SK, Luong JHT, editors. Handbook of immunoassay technologies. Approaches, performances, and applications. Amsterdam: Elsevier; 2018. pp. 359–414. Available from: DOI
Manessis G, Frant M, Wozniakowski G, Nannucci L, Benedetti M, Denes L, et al. Point-of-care and label-free detection of porcine reproductive and respiratory syndrome and swine influenza viruses using a microfluidic device with photonic integrated circuits. Viruses. 2022;14(5):988. doi: 10.3390/v14050988. doi: 10.3390/v14050988. Available from: PubMed DOI PMC
Mansuy JM, Lhomme S, Cazabat M, Pasquier C, Martin-Blondel G, Izopet J. Detection of Zika, dengue and chikungunya viruses using single-reaction multiplex real-time RT-PCR. Diagn Microbiol Infect Dis. 2018;92:284–7. doi: 10.1016/j.diagmicrobio.2018.06.019. doi: 10.1016/j.diagmicrobio.2018.06.019. Available from: PubMed DOI
Martins BR, Barbosa YO, Andrade CM, Pereira LQ, Simão GF, de Oliveira CJ, et al. Development of an electrochemical immunosensor for specific detection of visceral leishmaniasis using gold-modified screen-printed carbon electrodes. Biosensors. 2020;10(8):81. doi: 10.3390/bios10080081. doi: 10.3390/bios10080081. Available from: PubMed DOI PMC
Medyantseva EP, Khaldeeva EV, Glushko NI, Budnikov HC. Amperometric enzyme immunosensor for the determination of the antigen of the pathogenic fungi Trichophyton rubrum. Anal Chim Acta. 2000;411(1–2):13–8. doi: 10.1016/s0003-2670(99)00889-2. doi: 10.1016/s0003-2670(99)00889-2. Available from: DOI
Miao G, Zhang L, Zhang J, Ge S, Xia N, Qian S, et al. Free convective PCR: From principle study to commercial applications - A critical review. Anal Chim Acta. 2020;1108:177–97. doi: 10.1016/j.aca.2020.01.069. doi: 10.1016/j.aca.2020.01.069. Available from: PubMed DOI
Ming K, Kim J, Biondi MJ, Syed A, Chen K, Lam A, et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano. 2015;9:3060–74. doi: 10.1021/nn5072792. doi: 10.1021/nn5072792. Available from: PubMed DOI
Mohammed AS, Balapure A, Khaja MN, Ganesan R, Dutta JR. Naked-eye colorimetric detection of HCV RNA mediated by a 5′ UTR-targeted antisense oligonucleotide and plasmonic gold nanoparticles. Analyst. 2021;146:1569–78. doi: 10.1039/d0an02481c. doi: 10.1039/d0an02481c. Available from: PubMed DOI
Mohmad A, Chandra D, Saravanan BC, H V M, O R VK, Fular A, et al. Development of a recombinant TASP-based dot-Elisa for detection of theileria annulata infection in cattle. Ticks Tick-Borne Dis. 2018;9:1416–20. doi: 10.1016/j.ttbdis.2018.06.016. doi: 10.1016/j.ttbdis.2018.06.016. Available from: PubMed DOI
Mohsin DH, Mashkour MS, Fatemi F. Design of aptamer-based sensing platform using gold nanoparticles functionalized reduced graphene oxide for ultrasensitive detection of hepatitis B virus. Chem Papers. 2020;75:279–95. doi: 10.1007/s11696-020-01292-1. doi: 10.1007/s11696-020-01292-1. Available from: DOI
Mutangadura GB. World Health Report 2002: Reducing risks, promoting healthy life: World Health Organization, Geneva, 2002, 250 pages, US$ 13.50, ISBN 9-2415-6207-2. Agric Econ. 2004;30:170–2. doi: 10.1016/j.agecon.2003.11.006. doi: 10.1016/j.agecon.2003.11.006. Available from: DOI
Nagarkatti R, de Araujo FF, Gupta C, Debrabant A. Aptamer based, non-PCR, non-serological detection of chagas disease biomarkers in Trypanosoma cruzi infected mice. PLoS Negl Trop Dis. 2014;8(1):e2650. doi: 10.1371/journal.pntd.0002650. doi: 10.1371/journal.pntd.0002650. Available from: PubMed DOI PMC
Noedl H, Yingyuen K, Laoboonchai A, Fukuda M, Sirichaisinthop J, Miller RS. Sensitivity and specificity of an antigen detection ELISA for malaria diagnosis. Am J Trop Med Hyg. 2006;75:1205–1208. doi: 10.4269/ajtmh.2006.75.1205. doi: 10.4269/ajtmh.2006.75.1205. Available from: PubMed DOI
Pan D, Wang W, Cheng T. Current methods for the detection of antibodies of Varicella-Zoster Virus: a review. Microorganisms. 2023;11(2):519. doi: 10.3390/microorganisms11020519.. doi: 10.3390/microorganisms11020519.. Available from: PubMed DOI PMC
Pardo M, Sberveglieri G. 13th International Symposium on Olfaction and Electronic Nose. Sens Actuators B Chem. 2010;146:419. doi: 10.1016/j.snb.2010.02.033. doi: 10.1016/j.snb.2010.02.033. Available from: DOI
Park KS. Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron. 2018;102:179–88. doi: 10.1016/j.bios.2017.11.028. doi: 10.1016/j.bios.2017.11.028. Available from: PubMed DOI PMC
Patel S, Cassidy SR. Diagnosis and monitoring of HIV (including resistance testing. Medicine. 2018;46:283–286. doi: 10.1016/j.mpmed.2018.02.007.. doi: 10.1016/j.mpmed.2018.02.007.. Available from: DOI
Pejcic B, Marco RD, Parkinson G. The role of biosensors in the detection of emerging infectious diseases. Analyst. 2006;131:1079–1090. doi: 10.1039/b603402k. doi: 10.1039/b603402k. Available from: PubMed DOI
Phillips EK, Simwale OJ, Chung MJ, Parker G, Perry J, Jagger JC. Risk of bloodborne pathogen exposure among Zambian healthcare workers. J Infect Public Health. 2012;5:244–9. doi: 10.1016/j.jiph.2012.02.005. doi: 10.1016/j.jiph.2012.02.005. Available from: PubMed DOI
Pingle MR, Granger K, Feinberg P, Shatsky R, Sterling B, Rundell M, et al. Multiplexed identification of blood-borne bacterial pathogens by use of a novel 16S rrna gene PCR-ligase detection reaction-capillary electrophoresis assay. J Clin Microbiol. 2007;45:1927–35. doi: 10.1128/jcm.00226-07. doi: 10.1128/jcm.00226-07. Available from: PubMed DOI PMC
Piriya VS A, Joseph P, Daniel SCGK, Lakshmanan S, Kinoshita T, Muthusamy S. Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng C. 2017;78:1231–45. doi: 10.1016/j.msec.2017.05.018. doi: 10.1016/j.msec.2017.05.018. Available from: PubMed DOI
Pirozzolo JJ, LeMay DC. Blood-borne infections. Clin Sports Med. 2007;26:425–31. doi: 10.1016/j.csm.2007.04.010. doi: 10.1016/j.csm.2007.04.010. Available from: PubMed DOI
Pripuzova N, Wang R, Tsai S, Li B, Hung GC, Ptak RG, et al. Development of real-time PCR array for simultaneous detection of eight human blood-borne viral pathogens. PLoS ONE. 2012;7(8):e43246. doi: 10.1371/journal.pone.0043246. doi: 10.1371/journal.pone.0043246. Available from: PubMed DOI PMC
Puri M, Kaur Brar H, Madan E, Srinivasan R, Rawat K, Gorthi SS, et al. Rapid diagnosis of Plasmodium falciparum malaria using a point-of-care loop-mediated isothermal amplification device. Front Cell Infect Microbiol. 2022;12:961832. doi: 10.3389/fcimb.2022.961832.. doi: 10.3389/fcimb.2022.961832.. Available from: PubMed DOI PMC
Rahi A, Sattarahmady N, Heli H. An ultrasensitive electrochemical Genosensor for Brucella based on palladium nanoparticles. Anal Biochem. 2016;510:11–7. doi: 10.1016/j.ab.2016.07.012. doi: 10.1016/j.ab.2016.07.012. Available from: PubMed DOI
Rahmati Z, Roushani M, Hosseini H. Three-dimensional NICO2O4 nanowires encapsulated in nitrogen-doped carbon networks as a high-performance aptamer stabilizer for impedimetric ultrasensitive detection of hepatitis C virus core antigen. Surfaces Interfaces. 2021;22:100813. doi: 10.1016/j.surfin.2020.100813. doi: 10.1016/j.surfin.2020.100813. Available from: DOI
Saadat S, Mardaneh J, Ahouran M, MohammadzadehA, Ardebili A, Yousefi M, et al. Diagnosis of cattle brucellosis by PCR and serological methods: Comparison of diagnostic tests. Biomed Pharmacol J. 2017;10:881–8. doi: 10.13005/bpj/1181. doi: 10.13005/bpj/1181. Available from: DOI
Saleh M, El-Matbouli M. Rapid detection of Cyprinid herpesvirus-3 (cyhv-3) using a gold nanoparticle-based hybridization assay. J Virol Methods. 2015;217:50–4. doi: 10.1016/j.jviromet.2015.02.021. doi: 10.1016/j.jviromet.2015.02.021. Available from: PubMed DOI
Santos PS, Nascimento R, Rodrigues LP, Santos FA, Faria PC, Martins JR, et al. Functional epitope core motif of the Anaplasma marginale major surface protein 1A and its incorporation onto Bioelectrodes for antibody detection. PLoS ONE. 2012;7(3):e33045. doi: 10.1371/journal.pone.0033045. doi: 10.1371/journal.pone.0033045. Available from: PubMed DOI PMC
Schijman AG, Bisio M, Orellana L, Sued M, Duffy T, Mejia Jaramillo AM, et al. International Study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl Trop Dis. 2011;5(1):e931. doi: 10.1371/journal.pntd.0000931. doi: 10.1371/journal.pntd.0000931. Available from: PubMed DOI PMC
Sharma MK, Agarwal GS, Rao VK, Upadhyay S, Merwyn S, Gopalan N, et al. Amperometric immunosensor based on gold nanoparticles/alumina sol–gel modified screen-printed electrodes for antibodies to Plasmodium falciparum histidine rich protein-2. Analyst. 2010;135:608–614. doi: 10.1039/b918880k. doi: 10.1039/b918880k. Available from: PubMed DOI
Sharma P, Batheja G, Verma HN, Seth P. Single tube multiplex PCR, liquid hybridization, and Elisa (Multiplex Nat-ELISA) for rapid detection of HIV, HBV, and HCV in the window period. 06 June 2022, PREPRINT (Version 1) available at Research Square. Available from: DOI
Sharma TK, Shukla R. Nucleic acid aptamers as an emerging diagnostic tool for animal pathogens. Adv Anim Vet Sci. 2014;2(1):50–55. doi: 10.14737/journal.aavs/2014.2.1.50.55. doi: 10.14737/journal.aavs/2014.2.1.50.55. Available from: DOI
Shourian M, Ghourchian H, Boutorabi M. Ultra-sensitive immunosensor for detection of hepatitis B surface antigen using multi-functionalized gold nanoparticles. Anal Chim Acta. 2015;895:1–11. doi: 10.1016/j.aca.2015.07.013. doi: 10.1016/j.aca.2015.07.013. Available from: PubMed DOI
Silva M, Wilkowsky S, DE Echaide ST, Farber M, Oliva A. Development of an immunosensor for the diagnosis of bovine anaplasmosis. Ann N Y Acad Sci. 2006;1081:379–381. doi: 10.1196/annals.1373.056. doi: 10.1196/annals.1373.056. Available from: PubMed DOI
Silva MG, Helali S, Esseghaier C, Suarez CE, Oliva A, Abdelghani A. An impedance spectroscopy method for the detection and evaluation of Babesia Bovis antibodies in cattle. Sens Actuators B Chem. 2008;135:206–13. doi: 10.1016/j.snb.2008.08.019. doi: 10.1016/j.snb.2008.08.019. Available from: DOI
Silva SJRD, Pardee K, Pena L. Loop-Mediated Isothermal Amplification (LAMP) for the diagnosis of Zika virus: a review. Viruses. 2019;12(1):19. doi: 10.3390/v12010019.. doi: 10.3390/v12010019.. Available from: PubMed DOI PMC
Sin ML, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn. 2014;14:225–44. doi: 10.1586/14737159.2014.888313. doi: 10.1586/14737159.2014.888313. Available from: PubMed DOI PMC
Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, et al. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors. 2021;11(9):336. doi: 10.3390/bios11090336. doi: 10.3390/bios11090336. Available from: PubMed DOI PMC
Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra BD. Biosensors for pathogen detection: A smart approach towards clinical diagnosis. Sens Actuators B Chem. 2014;197:385–404. doi: 10.1016/j.snb.2014.03.005. doi: 10.1016/j.snb.2014.03.005. Available from: DOI
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent advances and a roadmap to aptamer-based sensors for bloodstream infections. ACS Appl Bio Mater. 2021;4:3962–84. doi: 10.1021/acsabm.0c01358. doi: 10.1021/acsabm.0c01358. Available from: PubMed DOI
Smalls S, Fischbach FT. A manual of laboratory diagnostic tests. Am J Nurs. 1982;82(2):334. doi: 10.2307/3463097. doi: 10.2307/3463097. Available from: DOI
Song J, Mauk MG, Hackett BA, Cherry S, Bau HH, Liu C. Instrument-free point-of-care molecular detection of zika virus. Anal Chem. 2016;88:7289–94. doi: 10.1021/acs.analchem.6b01632. doi: 10.1021/acs.analchem.6b01632. Available from: PubMed DOI PMC
Spatola Rossi C, Coulon F, Ma S, Zhang YS, Yang Z. Microfluidics for rapid detection of live pathogens. Adv Funct Mater. 2023;33:2212081. doi: 10.1002/adfm.202212081. doi: 10.1002/adfm.202212081. Available from: DOI
Spiess B, Seifarth W, Hummel M, Frank O, Fabarius A, Zheng C, et al. DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients. J Clin Microbiol. 2007;45:3743–53. doi: 10.1128/jcm.00942-07. doi: 10.1128/jcm.00942-07. Available from: PubMed DOI PMC
Tan J, Xu J. Applications of electronic nose (E-nose) and electronic tongue (e-tongue) in food quality-related properties determination: a review. Artif Intell Agric. 2020;4:104–15. doi: 10.1016/j.aiia.2020.06.003. doi: 10.1016/j.aiia.2020.06.003. Available from: DOI
Tang XL, Hua Y, Guan Q, Yuan CH. Improved detection of deeply invasive candidiasis with DNA aptamers specific binding to (1→3)-β-D-glucans from Candida albicans. Eur J Clin Microbiol Infect Dis. 2016;35:587–95. doi: 10.1007/s10096-015-2574-8. doi: 10.1007/s10096-015-2574-8. Available from: PubMed DOI
Taylor D, Durigon M, Davis H, Archibald C, Konrad B, Coombs D, et al. Probability of a false-negative HIV antibody test result during the window period: A tool for pre- and post-test counselling. Int J STD AIDS. 2014;26:215–24. doi: 10.1177/0956462414542987. doi: 10.1177/0956462414542987. Available from: PubMed DOI
Tsegay G, Tesfagaber W, Zhu Y, He Y, Wang W, Zhang Z, et al. Novel P22-monoclonal antibody based blocking Elisa for the detection of African swine fever virus antibodies in serum. Biosaf Health. 2022;4:234–43. doi: 10.1016/j.bsheal.2022.04.002. doi: 10.1016/j.bsheal.2022.04.002. Available from: DOI
Turner A, Magan N. Electronic noses and disease diagnostics. Nat Rev Microbiol. 2004;2:161–6. doi: 10.1038/nrmicro823. doi: 10.1038/nrmicro823. Available from: PubMed DOI
Udonsom R, Mahittikorn A, Jirapattharasate C. Molecular detection and genetic diversity of tick-borne pathogens in goats from the southern part of Thailand. Pathogens. 2022;11(4):477. doi: 10.3390/pathogens11040477. doi: 10.3390/pathogens11040477. Available from: PubMed DOI PMC
Vázquez-Guardado A, Mehta F, Jimenez B, Biswas A, Baksh A, Lee S, et al. DNA-modified plasmonic sensor for the direct detection of virus biomarkers from the blood. Nano Lett. 2021;21:7505–11. doi: 10.1021/acs.nanolett.1c01609. doi: 10.1021/acs.nanolett.1c01609. Available from: PubMed DOI
Vidic J, Manzano M, Chang CM, Jaffrezic-Renault N. Advanced biosensors for detection of pathogens related to livestock and poultry. Vet Res. 2017;48(1):11. doi: 10.1186/s13567-017-0418-5. doi: 10.1186/s13567-017-0418-5. Available from: PubMed DOI PMC
WHO, World Health Organization. Geneva: WHO; 2017. WHO polio laboratory manual/supplement 1: An alternative test algorithm for poliovirus isolation and characterization. Available from: https://polioeradication.org/wp-content/uploads/2017/05/NewAlgorithmForPoliovirusIsolationSupplement1.pdf.
Wilson AD, Baietto M. Advances in electronic-nose technologies developed for biomedical applications. Sensors. 2011;11:1105–76. doi: 10.3390/s110101105. doi: 10.3390/s110101105. Available from: PubMed DOI PMC
Wu J, Mukama O, Wu W, Li Z, Habimana JD, Zhang Y, et al. A CRISPR/CAS12A based universal lateral flow biosensor for the sensitive and specific detection of African swine-fever viruses in whole blood. Biosensors. 2020;10(12):203. doi: 10.3390/bios10120203. doi: 10.3390/bios10120203. Available from: PubMed DOI PMC
Xeroulis G, Inaba K, Stewart TC, Lannigan R, Gray D, Malthaner R, et al. Human immunodeficiency virus, hepatitis B, and hepatitis C seroprevalence in a Canadian trauma population. J Trauma. 2005;59:105–8. doi: 10.1097/01.ta.0000171464.51584.f5. doi: 10.1097/01.ta.0000171464.51584.f5. Available from: PubMed DOI
Xiang A, Wei F, Lei X, Liu Y, Liu Y, Guo Y. A simple and rapid capillary chemiluminescence immunoassay for quantitatively detecting human serum HBsAg. Eur J Clin Microbiol Infect Dis. 2013;32:1557–64. doi: 10.1007/s10096-013-1910-0. doi: 10.1007/s10096-013-1910-0. Available from: PubMed DOI
Xie C, Chen S, Zhang L, He X, Ma Y, Wu H, et al. Multiplex detection of blood-borne pathogens on a self-driven microfluidic chip using loop-mediated isothermal amplification. Anal Bioanal Chem. 2021;413:2923–2931. doi: 10.1007/s00216-021-03224-8.. doi: 10.1007/s00216-021-03224-8.. Available from: PubMed DOI
Xie K, Chen H, Peng B, Jin Z, Xiao W, Zhang Z, et al. On-site determination of classical swine fever virus (CSFV) by a fluorescent microsphere-based lateral flow immunoassay strip (FM-lfias) based on monoclonal antibodies. Anal Lett. 2020;54:2347–62. doi: 10.1080/00032719.2020.1860998. doi: 10.1080/00032719.2020.1860998. Available from: DOI
Xing G, Zhang W, Li N, Pu Q, Lin J-M. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. Chin Chem Lett. 2022;33:1743–51. doi: 10.1016/j.cclet.2021.08.073. doi: 10.1016/j.cclet.2021.08.073. Available from: DOI
Xu H, Lin G, Chen R, Cai Z, Sun Y, Zhang X, et al. CRISPR/Cas12b assisted loop-mediated isothermal amplification for easy, rapid and sensitive quantification of chronic HBV DNA in one-pot. Anal Chim Acta. 2024;1310:342702. doi: 10.1016/j.aca.2024.342702.. doi: 10.1016/j.aca.2024.342702.. Available from: PubMed DOI
Yang H, Guo Y, Li S, Lan G, Jiang Q, Yang X, et al. Magnetic beads-based chemiluminescent assay for ultrasensitive detection of pseudorabies virus. J Nanosci Nanotechnol. 2014;14:3337–42. doi: 10.1166/jnn.2014.8254. doi: 10.1166/jnn.2014.8254. Available from: PubMed DOI
Yang S, Rothman RE. PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 2004;4:337–48. doi: 10.1016/s1473-3099(04)01044-8. doi: 10.1016/s1473-3099(04)01044-8. Available from: PubMed DOI PMC
Yang Z, Xu G, Reboud J, Ali SA, Kaur G, McGiven J. Rapid veterinary diagnosis of bovine reproductive infectious diseases from semen using paper-origami DNA microfluidics. ACS Sens. 2018;3:403–9. doi: 10.1021/acssensors.7b00825. doi: 10.1021/acssensors.7b00825. Available from: PubMed DOI
Ye X, Li L, Li J, Wu X, Fang X, Kong J. Microfluidic-CFPA chip for the point-of-care detection of African swine fever virus with a median time to threshold in about 10 min. ACS Sens. 2019;4:3066–71. doi: 10.1021/acssensors.9b01731. doi: 10.1021/acssensors.9b01731. Available from: PubMed DOI
Ye Z, Liu Y, Li Q. Recent progress in Smart Electronic Nose Technologies enabled with machine learning methods. Sensors. 2021;21(22):7620. doi: 10.3390/s21227620. doi: 10.3390/s21227620. Available from: PubMed DOI PMC
Yue F, Li F, Kong Q, Guo Y, Sun X. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. Sci Total Environ. 2021;762:143129. doi: 10.1016/j.scitotenv.2020.143129. doi: 10.1016/j.scitotenv.2020.143129. Available from: PubMed DOI
Zadran A, Ho AV, Zadran L, entura Curiel IJ, Pham TT, et al. Optimizing public health preparedness for highly infectious diseases in Central Vietnam. Diagnostics. 2022;12(9):2047. doi: 10.3390/diagnostics12092047. doi: 10.3390/diagnostics12092047. Available from: PubMed DOI PMC
Zhang H, Xu T, Li CW, Yang M. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels. Biosens Bioelectron. 2010;25:2402–7. doi: 10.1016/j.bios.2010.02.032. doi: 10.1016/j.bios.2010.02.032. Available from: PubMed DOI
Zhang WW, Ghosh AK, Mohamath R, Whittle J, Picone A, Lypaczewski P, et al. Development of a sandwich ELISA to detect Leishmania 40S ribosomal protein S12 antigen from blood samples of visceral leishmaniasis patients. BMC Infect Dis. 2018;18(1):500. doi: 10.1186/s12879-018-3420-2. doi: 10.1186/s12879-018-3420-2. Available from: PubMed DOI PMC
Zhao F, Niu L, Yan L, Nong J, Wang C, Wang J, et al. Establishment and application of multiple cross displacement amplification coupled with lateral flow biosensor (MCDA-LFB) for visual and rapid detection of Candida albicans in clinical samples. Front Cell Infect Microbiol. 2019;9:102. doi: 10.3389/fcimb.2019.00102.. doi: 10.3389/fcimb.2019.00102.. Available from: PubMed DOI PMC
Zheng L, Jia L, Li B, Situ B, Liu Q, Wang Q, et al. A sandwich HIV P24 amperometric immunosensor based on a direct gold electroplating-modified electrode. Molecules. 2012;17:5988–6000. doi: 10.3390/molecules17055988. doi: 10.3390/molecules17055988. Available from: PubMed DOI PMC
Zhi X, Deng M, Yang H, Gao G, Wang K, Fu H, et al. A novel HBV genotypes detecting system combined with microfluidic chip, loop-mediated isothermal amplification and GMR Sensors. Biosens Bioelectron. 2014;54:372–7. doi: 10.1016/j.bios.2013.11.025. doi: 10.1016/j.bios.2013.11.025. Available from: PubMed DOI
Zhou J, Gan N, Li T, Hu F, Li X, Wang L, et al. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosens Bioelectron. 2014;54:199–206. doi: 10.1016/j.bios.2013.10.044. doi: 10.1016/j.bios.2013.10.044. Available from: PubMed DOI
Zhou W, Jimmy Huang PJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst. 2014;139:2627–2640. doi: 10.1039/c4an00132j. doi: 10.1039/c4an00132j. Available from: PubMed DOI
Zhu Q, Shibata T, Kabashima T, Kai M. Inhibition of HIV-1 protease expression in T cells owing to DNA aptamer-mediated specific delivery of Sirna. Eur J Med Chem. 2012;56:396–9. doi: 10.1016/j.ejmech.2012.07.045. doi: 10.1016/j.ejmech.2012.07.045. Available from: PubMed DOI