Jasmonate Signalling Contributes to Primary Root Inhibition Upon Oxygen Deficiency in Arabidopsis thaliana
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
20173EWRT9
Ministero dell'Istruzione, dell'Università e della Ricerca
PubMed
32824502
PubMed Central
PMC7464498
DOI
10.3390/plants9081046
PII: plants9081046
Knihovny.cz E-resources
- Keywords
- jasmonate, oxygen sensing, root hypoxia, root meristem,
- Publication type
- Journal Article MeSH
Plants, including most crops, are intolerant to waterlogging, a stressful condition that limits the oxygen available for roots, thereby inhibiting their growth and functionality. Whether root growth inhibition represents a preventive measure to save energy or is rather a consequence of reduced metabolic rates has yet to be elucidated. In the present study, we gathered evidence for hypoxic repression of root meristem regulators that leads to root growth inhibition. We also explored the contribution of the hormone jasmonic acid (JA) to this process in Arabidopsis thaliana. Analysis of transcriptomic profiles, visualisation of fluorescent reporters and direct hormone quantification confirmed the activation of JA signalling under hypoxia in the roots. Further, root growth assessment in JA-related mutants in aerobic and anaerobic conditions indicated that JA signalling components contribute to active root inhibition under hypoxia. Finally, we show that the oxygen-sensing transcription factor (TF) RAP2.12 can directly induce Jasmonate Zinc-finger proteins (JAZs), repressors of JA signalling, to establish feedback inhibition. In summary, our study sheds new light on active root growth restriction under hypoxic conditions and on the involvement of the JA hormone in this process and its cross talk with the oxygen sensing machinery of higher plants.
Department of Biology University of Pisa 56126 Pisa Italy
Department of Plant Sciences University of Oxford Oxford OX1 3RB UK
Plantlab Institute of Life Sciences Scuola Superiore Sant'Anna 56127 Pisa Italy
The Institute of Agricultural Biology and Biotechnology National Research Council 20133 Milan Italy
See more in PubMed
Akgerman A., Gainer J.L. Diffusion of Gases in Liquids. Ind. Eng. Chem. Fundam. 1972 doi: 10.1021/i160043a016. DOI
Gibbs J., Greenway H. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 2003;30:1–47. doi: 10.1071/PP98095. PubMed DOI
Blokhina O., Fagerstedt K.V. Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiol. Biochem. 2010;48:359–373. doi: 10.1016/j.plaphy.2010.01.007. PubMed DOI
van Dongen J.T., Licausi F. Oxygen Sensing and Signaling. Annu. Rev. Plant Biol. 2014;66:150112150216002. doi: 10.1146/annurev-arplant-043014-114813. PubMed DOI
Voesenek L.A.C.J., Bailey-Serres J. Flood adaptive traits and processes: an overview. New Phytol. 2015;206:57–73. doi: 10.1111/nph.13209. PubMed DOI
Mendiondo G.M., Gibbs D.J., Szurman-Zubrzycka M., Korn A., Marquez J., Szarejko I., Maluszynski M., King J., Axcell B., Smart K., et al. Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6. Plant Biotechnol. J. 2016 doi: 10.1111/pbi.12334. PubMed DOI PMC
Cukrov D., Zermiani M., Brizzolara S., Cestaro A., Licausi F., Luchinat C., Santucci C., Tenori L., Van Veen H., Zuccolo A., et al. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit. Front. Plant Sci. 2016 doi: 10.3389/fpls.2016.00146. PubMed DOI PMC
Bui L.T., Giuntoli B., Kosmacz M., Parlanti S., Licausi F. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana. Plant Sci. 2015;236:37–43. doi: 10.1016/j.plantsci.2015.03.008. PubMed DOI
Gasch P., Fundinger M., Müller J.T., Lee T., Bailey-Serres J., Mustroph A. Redundant ERF-VII transcription factors bind an evolutionarily-conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell. 2015:TPC2015-00866-RA. doi: 10.1105/tpc.15.00866. PubMed DOI PMC
Kosmacz M., Parlanti S., Schwarzländer M., Kragler F., Licausi F., Van Dongen J.T. The stability and nuclear localization of the transcription factor RAP2.12 are dynamically regulated by oxygen concentration. Plant, Cell Environ. 2015;38:1094–1103. doi: 10.1111/pce.12493. PubMed DOI
Gibbs D.J., Lee S.C., Md Isa N., Gramuglia S., Fukao T., Bassel G.W., Correia C.S., Corbineau F., Theodoulou F.L., Bailey-Serres J., et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature. 2011;479:415–418. doi: 10.1038/nature10534. PubMed DOI PMC
Licausi F., Kosmacz M., Weits D.A., Giuntoli B., Giorgi F.M., Voesenek L.A.C.J., Perata P., van Dongen J.T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature. 2011;479:419–422. doi: 10.1038/nature10536. PubMed DOI
Weits D.A., Giuntoli B., Kosmacz M., Parlanti S., Hubberten H.-M., Riegler H., Hoefgen R., Perata P., van Dongen J.T., Licausi F. Plant cysteine oxidases control the oxygen-dependent branch of the N-end-rule pathway. Nat. Commun. 2014;5:3425. doi: 10.1038/ncomms4425. PubMed DOI PMC
White M.D., Klecker M., Hopkinson R.J., Weits D.A., Mueller C., Naumann C., O’Neill R., Wickens J., Yang J., Brooks-Bartlett J.C., et al. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat. Commun. 2017;8:1–9. doi: 10.1038/ncomms14690. PubMed DOI PMC
White M.D., Kamps J.J.A.G., East S., Taylor Kearney L.J., Flashman E. The plant cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen sensors. J. Biol. Chem. 2018;293:11786–11795. doi: 10.1074/jbc.RA118.003496. PubMed DOI PMC
Garzón M., Eifler K., Faust A., Scheel H., Hofmann K., Koncz C., Yephremov A., Bachmair A. PRT6 /At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus. FEBS Lett. 2007;581:3189–3196. doi: 10.1016/j.febslet.2007.06.005. PubMed DOI
Paul M.V., Iyer S., Amerhauser C., Lehmann M., van Dongen J.T., Geigenberger P. RAP2.12 oxygen sensing regulates plant metabolism and performance under both normoxia and hypoxia. Plant Physiol. 2016;172:00460. doi: 10.1104/pp.16.00460. PubMed DOI PMC
Giuntoli B., Shukla V., Maggiorelli F., Giorgi F.M., Lombardi L., Perata P., Licausi F. Age-dependent regulation of ERF-VII transcription factor activity in Arabidopsis thaliana. Plant. Cell Environ. 2017 doi: 10.1111/pce.13037. PubMed DOI
Wright A.J., de Kroon H., Visser E.J.W., Buchmann T., Ebeling A., Eisenhauer N., Fischer C., Hildebrandt A., Ravenek J., Roscher C., et al. Plants are less negatively affected by flooding when growing in species-rich plant communities. New Phytol. 2017 doi: 10.1111/nph.14185. PubMed DOI
Jitsuyama Y. Morphological root responses of soybean to rhizosphere hypoxia reflect waterlogging tolerance. Can. J. Plant Sci. 2015;95:999–1005. doi: 10.4141/cjps-2014-370. DOI
Cardoso J.A., Jiménez J.D.L.C., Rao I.M. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola. AoB Plants. 2014 doi: 10.1093/aobpla/plu017. PubMed DOI PMC
Grzesiak M.T., Ostrowska A., Hura K., Rut G., Janowiak F., Rzepka A., Hura T., Grzesiak S. Interspecific differences in root architecture among maize and triticale genotypes grown under drought, waterlogging and soil compaction. Acta Physiol. Plant. 2014 doi: 10.1007/s11738-014-1691-9. DOI
Cornelious B., Chen P., Chen Y., De Leon N., Shannon J.G., Wang D. Identification of QTLs underlying water-logging tolerance in soybean. Mol. Breed. 2005 doi: 10.1007/s11032-005-5911-2. DOI
Hodge A., Berta G., Doussan C., Merchan F., Crespi M. Plant root growth, architecture and function. Plant Soil. 2009;321:153–187. doi: 10.1007/s11104-009-9929-9. DOI
López-Bucio J., Cruz-Ramírez A., Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003;6:280–287. doi: 10.1016/S1369-5266(03)00035-9. PubMed DOI
Lynch J. Root Architecture and Plant Productivity. Plant Physiol. 1995;109:7–13. doi: 10.1104/pp.109.1.7. PubMed DOI PMC
Vidoz M.L., Loreti E., Mensuali A., Alpi A., Perata P. Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J. 2010;63:551–562. doi: 10.1111/j.1365-313X.2010.04262.x. PubMed DOI
Visser E., Cohen J.D., Barendse G., Blom C., Voesenek L. An Ethylene-Mediated Increase in Sensitivity to Auxin Induces Adventitious Root Formation in Flooded Rumex palustris Sm. Plant Physiol. 1996 doi: 10.1104/pp.112.4.1687. PubMed DOI PMC
Joshi R., Kumar P. Lysigenous aerenchyma formation involves non-apoptotic programmed cell death in rice (Oryza sativa L.) roots. Physiol. Mol. Biol. Plants. 2012;18:1. doi: 10.1007/s12298-011-0093-3. PubMed DOI PMC
THOMAS A.L., GUERREIRO S.M.C., SODEK L. Aerenchyma Formation and Recovery from Hypoxia of the Flooded Root System of Nodulated Soybean. Ann. Bot. 2005;96:1191. doi: 10.1093/aob/mci272. PubMed DOI PMC
van Dongen J.T., Fröhlich A., Ramírez-Aguilar S.J., Schauer N., Fernie A.R., Erban A., Kopka J., Clark J., Langer A., Geigenberger P. Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants. Ann. Bot. 2009;103:269–280. doi: 10.1093/aob/mcn126. PubMed DOI PMC
Mustroph A., Zanetti M.E., Jang C.J.H., Holtan H.E., Repetti P.P., Galbraith D.W., Girke T., Bailey-Serres J. Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc. Natl. Acad. Sci. 2009;106:18843–18848. doi: 10.1073/pnas.0906131106. PubMed DOI PMC
Jackson M.B., Fenning T.M., Jenkins W. Aerenchyma (gas-space) formation in adventitious roots of rice (Oryza sativa L.) is not controlled by ethylene or small partial pressures of oxygen. J. Exp. Bot. 1985;36:1566–1572. doi: 10.1093/jxb/36.10.1566. DOI
Voesenek L.A.C.J., Rijnders J.H.G.M., Peeters A.J.M., Van De Steeg H.M., De Kroon H. Plant hormones regulate fast shoot elongation under water: From genes to communities. Ecology. 2004;85:16–27. doi: 10.1890/02-740. DOI
Steffens B., Wang J., Sauter M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta. 2006;223:604–612. doi: 10.1007/s00425-005-0111-1. PubMed DOI
Nishiuchi S., Yamauchi T., Takahashi H., Kotula L., Nakazono M. Mechanisms for coping with submergence and waterlogging in rice. Rice. 2012;5:2. doi: 10.1186/1939-8433-5-2. PubMed DOI PMC
Creelman R.A., Mullet J.E. Biosynthesis and Action of Jasmonates in Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997;48:355–381. doi: 10.1146/annurev.arplant.48.1.355. PubMed DOI
Staswick P.E. The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 2009 doi: 10.1104/pp.109.138529. PubMed DOI PMC
McConn M., Browse J. The Critical Requirement for Linolenic Acid Is Pollen Development, Not Photosynthesis, in an Arabidopsis Mutant. Plant Cell. 1996;8:403–416. doi: 10.2307/3870321. PubMed DOI PMC
Schommer C., Palatnik J.F., Aggarwal P., Chételat A., Cubas P., Farmer E.E., Nath U., Weigel D. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol. 2008;6:1991–2001. doi: 10.1371/journal.pbio.0060230. PubMed DOI PMC
Xie D. COI1: An Arabidopsis Gene Required for Jasmonate-Regulated Defense and Fertility. Science. 1998;280:1091–1094. doi: 10.1126/science.280.5366.1091. PubMed DOI
Montiel G., Zarei A., Körbes A.P., Memelink J. The jasmonate-responsive element from the ORCA3 promoter from catharanthus roseus is active in arabidopsis and is controlled by the transcription factor AtMYC2. Plant Cell Physiol. 2011;52:578–587. doi: 10.1093/pcp/pcr016. PubMed DOI
Chen Q., Sun J., Zhai Q., Zhou W., Qi L., Xu L., Wang B., Chen R., Jiang H., Qi J., et al. The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses PLETHORA Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in Arabidopsis. Plant Cell Online. 2011;23:3335–3352. doi: 10.1105/tpc.111.089870. PubMed DOI PMC
Sun J., Xu Y., Ye S., Jiang H., Chen Q., Liu F., Zhou W., Chen R., Li X., Tietz O., et al. Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell. 2009;21:1495–1511. doi: 10.1105/tpc.108.064303. PubMed DOI PMC
Petricka J.J., Winter C.M., Benfey P.N. Control of Arabidopsis root development. Annu. Rev. Plant Biol. 2012 doi: 10.1146/annurev-arplant-042811-105501. PubMed DOI PMC
Dathe W., Rönsch H., Preiss A., Schade W., Sembdner G., Schreiber K. Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta. 1981;153:530–535. doi: 10.1007/BF00385537. PubMed DOI
Fonseca S., Chini A., Hamberg M., Adie B., Porzel A., Kramell R., Miersch O., Wasternack C., Solano R. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 2009;5:344–350. doi: 10.1038/nchembio.161. PubMed DOI
Wasternack C., Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 2013;111:1021–1058. doi: 10.1093/aob/mct067. PubMed DOI PMC
Poirier Y., Antonenkov V.D., Glumoff T., Hiltunen J.K. Peroxisomal β-oxidation—A metabolic pathway with multiple functions. Biochim. Biophys. Acta - Mol. Cell Res. 2006;1763:1413–1426. doi: 10.1016/j.bbamcr.2006.08.034. PubMed DOI
Abbas M., Berckhan S., Rooney D.J., Gibbs D.J., Vicente Conde J., Sousa Correia C., Bassel G.W., Marín-De La Rosa N., León J., Alabadí D., et al. Oxygen sensing coordinates photomorphogenesis to facilitate seedling survival. Curr. Biol. 2015;25:1483–1488. doi: 10.1016/j.cub.2015.03.060. PubMed DOI PMC
Pauwels L., Morreel K., De Witte E., Lammertyn F., Van Montagu M., Boerjan W., Inzé D., Goossens A. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc. Natl. Acad. Sci. USA. 2008;105:1380–1385. doi: 10.1073/pnas.0711203105. PubMed DOI PMC
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes. Adv. Bioinformatics. 2008;2008:1–5. doi: 10.1155/2008/420747. PubMed DOI PMC
Pauwels L., Goossens A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell. 2011;23:3089–3100. doi: 10.1105/tpc.111.089300. PubMed DOI PMC
Eysholdt-Derzso E., Sauter M. Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling. Plant Physiol. 2017;175:412–423. doi: 10.1104/pp.17.00555. PubMed DOI PMC
Yazdanbakhsh N., Fisahn J. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution. Ann. Bot. 2010 doi: 10.1093/aob/mcq048. PubMed DOI PMC
Bannenberg G., Martínez M., Hamberg M., Castresana C. Diversity of the enzymatic activity in the lipoxygenase gene family of arabidopsis thaliana. Lipids. 2009;44:85–95. doi: 10.1007/s11745-008-3245-7. PubMed DOI
Nguyen C.T., Martinoia E., Farmer E.E. Emerging Jasmonate Transporters. Mol. Plant. 2017 doi: 10.1016/j.molp.2017.03.007. PubMed DOI
Li Q., Zheng J., Li S., Huang G., Skilling S.J., Wang L., Li L., Li M., Yuan L., Liu P. Transporter-Mediated Nuclear Entry of Jasmonoyl-Isoleucine Is Essential for Jasmonate Signaling. Mol. Plant. 2017 doi: 10.1016/j.molp.2017.01.010. PubMed DOI
de Marchi R., Sorel M., Mooney B., Fudal I., Goslin K., Kwaśniewska K., Ryan P.T., Pfalz M., Kroymann J., Pollmann S., et al. The N-end rule pathway regulates pathogen responses in plants. Sci. Rep. 2016;6:26020. doi: 10.1038/srep26020. PubMed DOI PMC
Ahmad P., Rasool S., Gul A., Sheikh S.A., Akram N.A., Ashraf M., Kazi A.M., Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. Front. Plant Sci. 2016 doi: 10.3389/fpls.2016.00813. PubMed DOI PMC
Huang H., Liu B., Liu L., Song S. Jasmonate action in plant growth and development. J. Exp. Bot. 2017 doi: 10.1093/jxb/erw495. PubMed DOI
Giuntoli B., Lee S.C., Licausi F., Kosmacz M., Oosumi T., van Dongen J.T., Bailey-Serres J., Perata P. A Trihelix DNA Binding Protein Counterbalances Hypoxia-Responsive Transcriptional Activation in Arabidopsis. PLoS Biol. 2014 doi: 10.1371/journal.pbio.1001950. PubMed DOI PMC
Schweizer F., Fernandez-Calvo P., Zander M., Diez-Diaz M., Fonseca S., Glauser G., Lewsey M.G., Ecker J.R., Solano R., Reymond P. Arabidopsis Basic Helix-Loop-Helix Transcription Factors MYC2, MYC3, and MYC4 Regulate Glucosinolate Biosynthesis, Insect Performance, and Feeding Behavior. Plant Cell. 2013;25:3117–3132. doi: 10.1105/tpc.113.115139. PubMed DOI PMC
Mähönen A.P., Ten Tusscher K., Siligato R., Smetana O., Díaz-Triviño S., Salojärvi J., Wachsman G., Prasad K., Heidstra R., Scheres B. PLETHORA gradient formation mechanism separates auxin responses. Nature. 2014;515:125–129. doi: 10.1038/nature13663. PubMed DOI PMC
Larrieu A., Champion A., Legrand J., Lavenus J., Mast D., Brunoud G., Oh J., Guyomarc’h S., Pizot M., Farmer E.E., et al. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat. Commun. 2015;6:6043. doi: 10.1038/ncomms7043. PubMed DOI PMC
Armengaud P. EZ-Rhizo software. Plant Signal. Behav. 2009;4:139–141. doi: 10.4161/psb.4.2.7763. PubMed DOI PMC
Pauwels L., Inzé D., Goossens A. Jasmonate-inducible gene: what does it mean? Trends Plant Sci. 2009;14:87–91. doi: 10.1016/j.tplants.2008.11.005. PubMed DOI
Shukla V., Lombardi L., Iacopino S., Pencik A., Novak O., Perata P., Giuntoli B., Licausi F. Endogenous hypoxia in lateral root primordia controls root architecture by antagonizing auxin signaling in Arabidopsis. Mol. Plant. 2019 doi: 10.1016/j.molp.2019.01.007. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novák O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI