Decoding plant responses to waterlogging: from stress signals to molecular mechanisms and their future implications
Language English Country Netherlands Media electronic
Document type Journal Article, Review
PubMed
40581894
DOI
10.1007/s11103-025-01611-8
PII: 10.1007/s11103-025-01611-8
Knihovny.cz E-resources
- Keywords
- Crop improvement, Hypoxia, Molecular mechanisms, Omics, Stress signaling, Waterlogging stress,
- MeSH
- Ethylenes metabolism MeSH
- Stress, Physiological * MeSH
- Plant Physiological Phenomena * MeSH
- Climate Change MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Growth Regulators metabolism MeSH
- Plants * metabolism genetics MeSH
- Signal Transduction * MeSH
- Water metabolism MeSH
- Floods MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- ethylene MeSH Browser
- Ethylenes MeSH
- Plant Growth Regulators MeSH
- Water MeSH
Climate change and global warming drastically alter ecosystems, intensifying extreme weather events such as heavy rainfall and glacier melting, leading to increased soil flooding and threatening agriculture. Waterlogging, a direct consequence of prolonged soil saturation, severely affects plant growth by causing hypoxia, impaired nutrient uptake, photosynthesis inhibition, energy depletion, and microbiome disturbances, ultimately leading to plant mortality. Despite research progress in mitigating waterlogging stress, the molecular mechanisms underlying plant perception and their subsequent adaptive responses remain largely unclear. Recent advancements in molecular, biochemical, and multi-omics technologies have enabled significant progress in understanding the molecular mechanisms of plant responses to stress conditions. In this review, we highlight the metabolic pathways and key genes that could be targeted to enhance waterlogging tolerance and discuss how advanced techniques can be implemented to understand waterlogging responses and develop resistant cultivars. We review molecular insights into how ethylene and hypoxia signaling pathways trigger waterlogging responses and highlight key factors involved in energy metabolism and phytohormone signaling pathways, along with possible directions for further study.
Department of Plant Breeding and Genetics Bahauddin Zakaria University Multan Multan 60800 Pakistan
Sanya Nanfan Research Institute of Hainan University Sanya 572025 China
See more in PubMed
Abdullah SNA, Mayes S, Moradpour M (2021) Target gene identification and sgRNA design for waterlogging tolerance in foxtail millet via CRISPR-based transcriptional activation. Curr Chinese Sci 1(5):523–533. https://doi.org/10.2174/2210298101666210709104258 DOI
Abiri R, Shaharuddin NA, Maziah M, Yusof ZNB, Atabaki N, Sahebi M, Valdiani A, Kalhori N, Azizi P, Hanafi MM (2017) Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions. Environ Exp Bot 134:33–44. https://doi.org/10.1016/j.envexpbot.2016.10.015 DOI
Adegoye GA, Olorunwa OJ, Alsajri FA, Walne CH, Wijewandana C, Kethireddy SR, Reddy KN, Reddy KR (2023) Waterlogging effects on soybean physiology and hyperspectral reflectance during the reproductive stage. Agriculture 13(4):844. https://doi.org/10.3390/agriculture13040844 DOI
Aggarwal PK, Kalra N, Chander S, Pathak H (2006) InfoCrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. model description. Agric Syst 89(1):1–25. https://doi.org/10.1016/j.agsy.2005.08.001 DOI
Ahmed FN, Naqvi FN, Shafiq F (2006) Lipid peroxidation and serum antioxidant enzymes in patients with type 2 diabetes mellitus. Ann N Y Acad Sci 1084(1):481–489. https://doi.org/10.1196/annals.1372.022 PubMed DOI
Ahsan N, Lee D, Lee S, Kang KY, Bahk JD, Choi MS, Lee I, Renaut J, Lee B (2007) A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant 131(4):555–570. https://doi.org/10.1111/j.1399-3054.2007.00980.x PubMed DOI
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y-S, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120. https://doi.org/10.1016/j.cell.2004.09.018 PubMed DOI
Akhtar K, Ain N, Prasad PVV, Naz M, Aslam MM, Djalovic I, Riaz M, Ahmad S, Varshney RK, He B, Wen R (2024) Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. Plant Genome. https://doi.org/10.1002/tpg2.20461 PubMed DOI
Ali MJ, Xing G, He J, Zhao T, Gai J (2020) Detecting the QTL-allele system controlling seed-flooding tolerance in a nested association mapping population of soybean. Crop J 8(5):781–792. https://doi.org/10.1016/j.cj.2020.06.008 DOI
Ali S, Tyagi A, Bae H (2021) Ionomic approaches for discovery of novel stress-resilient genes in plants. Int J Mol Sci 22(13):7182. https://doi.org/10.3390/ijms22137182 PubMed DOI PMC
Alpuerto JB, Hussain RMF, Fukao T (2016) The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves. Plant, Cell Environ 39(3):672–684. https://doi.org/10.1111/pce.12661 PubMed DOI
Amer MM, Elbagory M, Aiad M, Omara AE-D (2023) The influence of short-term tillage, compost, and beneficial microbes on soil properties and the productivity of wheat and cowpea crops. Agriculture 13(10):1857. https://doi.org/10.3390/agriculture13101857 DOI
An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22(7):2384–2401. https://doi.org/10.1105/tpc.110.076588 PubMed DOI PMC
Andrade CA, de Souza KRD, de Santos M (2018) Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Sci Hortic 232:40–45. https://doi.org/10.1016/j.scienta.2017.12.048 DOI
Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63(1):43–57. https://doi.org/10.1093/jxb/err266 PubMed DOI
Aslam A, Mahmood A, Ur-Rehman H, Li C, Liang X, Shao J, Negm S, Moustafa M, Aamer M, Hassan MU (2023) Plant adaptation to flooding stress under changing climate conditions: ongoing breakthroughs and future challenges. Plants 12(22):3824. https://doi.org/10.3390/plants12223824 PubMed DOI PMC
Aslam S, Aslam S. (2023). Impact of Flooding on Agricultural Crops—An Overview (pp. 255–263). https://doi.org/10.1007/978-3-031-20208-7_15
Atav V, Yüksel O (2024) Heavy metal accumulation in soil and plants using municipal solid waste compost in variable pH conditions. Soil Sediment Contam: Int J. https://doi.org/10.1080/15320383.2024.2379318 DOI
Augustine RC, Vidali L, Kleinman KP, Bezanilla M (2008) Actin depolymerizing factor is essential for viability in plants, and its phosphoregulation is important for tip growth. Plant J 54(5):863–875. https://doi.org/10.1111/j.1365-313X.2008.03451.x PubMed DOI
Azhar A, Asano K, Sugiura D, Kano-Nakata M, Ehara H (2022) Waterlogged Conditions Influence the Nitrogen, Phosphorus, Potassium, and Sugar Distribution in Sago Palm (Metroxylon sagu Rottb.) at Seedling Stages. Plants 11(5):710. https://doi.org/10.3390/plants11050710 PubMed DOI PMC
Bailey-Serres J, Colmer TD (2014) Plant tolerance of flooding stress – recent advances. Plant, Cell Environ 37(10):2211–2215. https://doi.org/10.1111/pce.12420 PubMed DOI
Ballesteros DC, Mason RE, Addison CK, Andrea Acuña M, Nelly Arguello M, Subramanian N, Miller RG, Sater H, Gbur EE, Miller D, Griffey CA, Barnett MD, Tucker D (2015) Tolerance of wheat to vegetative stage soil waterlogging is conditioned by both constitutive and adaptive QTL. Euphytica 201(3):329–343. https://doi.org/10.1007/s10681-014-1184-3 DOI
Bansal R, Srivastava JP (2012) Antioxidative defense system in pigeonpea roots under waterlogging stress. Acta Physiol Plant 34(2):515–522. https://doi.org/10.1007/s11738-011-0848-z DOI
Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253(1):35–54. https://doi.org/10.1023/A:1024574622669 DOI
Basu S, Kumar G, Kumari N, Kumari S, Shekhar S, Kumar S, Rajwanshi R (2020) Reactive oxygen species and reactive nitrogen species induce lysigenous aerenchyma formation through programmed cell death in rice roots under submergence. Environ Exp Bot 177:104118. https://doi.org/10.1016/j.envexpbot.2020.104118 DOI
Basu S, Kumari S, Kumar G (2024) Sub1 QTL confers submergence tolerance in rice through nitro-oxidative regulation and phytohormonal signaling. Plant Physiol Biochem 211:108682. https://doi.org/10.1016/j.plaphy.2024.108682 PubMed DOI
Beegum S, Truong V, Bheemanahalli R, Brand D, Reddy V, Reddy KR (2023) Developing functional relationships between waterlogging and cotton growth and physiology-towards waterlogging modeling. Front Plant Sci. https://doi.org/10.3389/fpls.2023.1174682 PubMed DOI PMC
Bernacki MJ, Czarnocka W, Szechyńska-Hebda M, Mittler R, Karpiński S (2019) Biotechnological potential of LSD1, EDS1, and PAD4 in the improvement of crops and industrial plants. Plants 8(8):290. https://doi.org/10.3390/plants8080290 PubMed DOI PMC
Bharath P, Gahir S, Raghavendra AS (2021) Abscisic acid-induced stomatal closure: an important component of plant defense against abiotic and biotic stress. Front Plant Sci. https://doi.org/10.3389/fpls.2021.615114 PubMed DOI PMC
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44. https://doi.org/10.1038/nature03184 PubMed DOI
Bond DM, Wilson IW, Dennis ES, Pogson BJ, Jean Finnegan E (2009) VERNALIZATION INSENSITIVE 3 ( VIN3) is required for the response of Arabidopsis thaliana seedlings exposed to low oxygen conditions. Plant J 59(4):576–587. https://doi.org/10.1111/j.1365-313X.2009.03891.x PubMed DOI
Butsayawarapat P, Juntawong P, Khamsuk O, Somta P (2019) Comparative transcriptome analysis of waterlogging-sensitive and tolerant Zombi Pea (Vigna vexillata) reveals energy conservation and root plasticity controlling waterlogging tolerance. Plants 8(8):264. https://doi.org/10.3390/plants8080264 PubMed DOI PMC
Cabello JV, Giacomelli JI, Piattoni CV, Iglesias AA, Chan RL (2016) The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants. J Biotechnol 222:73–83. https://doi.org/10.1016/j.jbiotec.2016.02.015 PubMed DOI
Campbell MT, Proctor CA, Dou Y, Schmitz AJ, Phansak P, Kruger GR, Zhang C, Walia H (2015) Genetic and molecular characterization of submergence response identifies subtol6 as a major submergence tolerance locus in maize. PLoS ONE 10(3):e0120385. https://doi.org/10.1371/journal.pone.0120385 PubMed DOI PMC
Cao M, Zheng L, Li J, Mao Y, Zhang R, Niu X, Geng M, Zhang X, Huang W, Luo K, Chen Y (2022) Transcriptomic profiling suggests candidate molecular responses to waterlogging in cassava. PLoS ONE 17(1):e0261086. https://doi.org/10.1371/journal.pone.0261086 PubMed DOI PMC
Cardoso JA, de la Jiménez J (2014) Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola. AoB PLANTS. https://doi.org/10.1093/aobpla/plu017 PubMed DOI PMC
Casarotto G, Kaspary TE, Cutti L, Thomas AL, Barbosa Neto JF (2019) Expression of genes related to soil flooding tolerance in soybeans. Acta Sci Agron 41:e42709. https://doi.org/10.4025/actasciagron.v41i1.42709 DOI
Chaudhry, R., & Varacallo, M. (2024). Biochemistry, Glycolysis. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/23728993
Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L (2010) SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol 52(11):946–951. https://doi.org/10.1111/j.1744-7909.2010.00987.x PubMed DOI
Chen D, Guo Y, Zhao Y, Zhang J, Liu X, Tong Z, Zhao C (2024) Dynamic evolution characteristics and hazard assessment of compound drought/waterlogging and low temperature events for maize. Sci Total Environ 946:174427. https://doi.org/10.1016/j.scitotenv.2024.174427 PubMed DOI
Cheng X-X, Yu M, Zhang N, Zhou Z-Q, Xu Q-T, Mei F-Z, Qu L-H (2016) Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma 253(2):311–327. https://doi.org/10.1007/s00709-015-0811-8 PubMed DOI
Christianson JA, Wilson IW, Llewellyn DJ, Dennis ES (2009) The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of arabidopsis seeds following low-oxygen treatment. Plant Physiol 149(4):1724–1738. https://doi.org/10.1104/pp.108.131912 PubMed DOI PMC
Cid GA, Francioli D, Kolb S, Tandron Moya YA, von Wirén N, Hajirezaei M-R (2024) Transcriptomic and metabolomic approaches elucidate the systemic response of wheat plants under waterlogging. J Exp Bot 75(5):1510–1529. https://doi.org/10.1093/jxb/erad453 PubMed DOI
Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62(1):39–57. https://doi.org/10.1093/jxb/erq271 PubMed DOI
Daniel K, Hartman S (2024) How plant roots respond to waterlogging. J Exp Bot 75(2):511–525. https://doi.org/10.1093/jxb/erad332 PubMed DOI
Das KK, Panda D, Sarkar RK, Reddy JN, Ismail AM (2009) Submergence tolerance in relation to variable floodwater conditions in rice. Environ Exp Bot 66(3):425–434. https://doi.org/10.1016/j.envexpbot.2009.02.015 DOI
Dawood T, Yang X, Visser EJW, te Beek TAH, Kensche PR, Cristescu SM, Lee S, Floková K, Nguyen D, Mariani C, Rieu I (2016) A Co-opted hormonal cascade activates dormant adventitious root primordia upon flooding in solanum dulcamara. Plant Physiol 170(4):2351–2364. https://doi.org/10.1104/pp.15.00773 PubMed DOI PMC
de Camargo FA, de Santos G, Zonta E (1999) Alterações eletroquímicas em solos inundados. Ciência Rural 29(1):171–180. https://doi.org/10.1590/S0103-84781999000100032 DOI
Della Rovere F, Fattorini L, Ronzan M, Falasca G, Altamura MM (2016) The quiescent center and the stem cell niche in the adventitious roots of Arabidopsis thaliana. Plant Signal Behav 11(5):e1176660. https://doi.org/10.1080/15592324.2016.1176660 DOI PMC
den Besten N, Steele Dunne S, Mahmud A, Jackson D, Aouizerats B, de Jeu R, Burger R, Houborg R, McGlinchey M, van der Zaag P (2023) Understanding Sentinel-1 backscatter response to sugarcane yield variability and waterlogging. Remote Sens Environ 290:113555. https://doi.org/10.1016/j.rse.2023.113555 DOI
Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00244 PubMed DOI PMC
Devkota KP, Futakuchi K, Mel VC, Humphreys E (2022) Does wet seeding combined with Sub1 varieties increase yield in submergence prone lowlands of West Africa? Field Crop Res 276:108375. https://doi.org/10.1016/j.fcr.2021.108375 DOI
Dhungana SK, Kim H, Kang B, Seo J, Kim H, Shin S, Park C, Kwak D (2020) Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population. Plant Breeding 139(3):626–638. https://doi.org/10.1111/pbr.12790 DOI
dos Santos AB, Fageria NK, Zimmermann FJP (2002) Atributos químicos do solo afetado pelo manejo da água e do fertilizante potássico na cultura de arroz irrigado. Revista Brasileira De Engenharia Agrícola e Ambiental 6(1):12–16. https://doi.org/10.1590/S1415-43662002000100003 DOI
Du H, Zhu J, Su H, Huang M, Wang H, Ding S, Zhang B, Luo A, Wei S, Tian X, Xu Y (2017) Bulked segregant RNA-seq reveals differential expression and SNPs of candidate genes associated with waterlogging tolerance in maize. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01022 PubMed DOI PMC
Du X, He W, Wang Z, Xi M, Xu Y, Wu W, Gao S, Liu D, Lei W, Kong L (2021) Raised bed planting reduces waterlogging and increases yield in wheat following rice. Field Crop Res 265:108119. https://doi.org/10.1016/j.fcr.2021.108119 DOI
Dubey S, Kuruwanshi V, Ghodke P, Mahajan V (2020) Biochemical and yield evaluation of onion (Allium cepa L.) genotypes under waterlogging condition. Int J Chem Stud 8(4):2036–2040. https://doi.org/10.22271/chemi.2020.v8.i4v.9926 DOI
Elrys AS, Desoky E-SM, Zhu Q, Liu L, Yun-xing W, Wang C, Shuirong T, Yanzheng W, Meng L, Zhang J, Müller C (2024) Climate controls on nitrate dynamics and gross nitrogen cycling response to nitrogen deposition in global forest soils. Sci Total Environ 920:171006. https://doi.org/10.1016/j.scitotenv.2024.171006 PubMed DOI
Eysholdt-Derzsó E, Sauter M (2017) Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling. Plant Physiol 175(1):412–423. https://doi.org/10.1104/pp.17.00555 PubMed DOI PMC
Eysholdt-Derzsó E, Sauter M (2019) Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. Plant Biol 21(S1):103–108. https://doi.org/10.1111/plb.12873 PubMed DOI
Fagerstedt KV, Pucciariello C, Pedersen O, Perata P (2024) Recent progress in understanding the cellular and genetic basis of plant responses to low oxygen holds promise for developing flood-resilient crops. J Exp Bot 75(5):1217–1233. https://doi.org/10.1093/jxb/erad457 PubMed DOI
Fan M, Li Q (2024) The metabolism, detrimental effects, and signal transduction mechanism of reactive oxygen species in plants under abiotic stress. J Biobased Mater Bioenergy 18(3):359–376. https://doi.org/10.1166/jbmb.2024.2389 DOI
Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22(7):1169–1180. https://doi.org/10.1038/cr.2012.63 PubMed DOI PMC
Fang W, Tuanjie Z, Deyue Y (2008) Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean [Glycine max (L.) Merr.]. Acta Agron Sin 34:5
Feyissa BA, Amyot L, Nasrollahi V, Papadopoulos Y, Kohalmi SE, Hannoufa A (2021) Involvement of the miR156/SPL module in flooding response in Medicago sativa. Sci Rep 11(1):3243. https://doi.org/10.1038/s41598-021-82450-7 PubMed DOI PMC
Fischer RA, Moreno Ramos OH, Ortiz Monasterio I, Sayre KD (2019) Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: an update. Field Crop Res 232:95–105. https://doi.org/10.1016/j.fcr.2018.12.011 DOI
Francioli D, Cid G, Kanukollu S, Ulrich A, Hajirezaei M-R, Kolb S (2021) Flooding causes dramatic compositional shifts and depletion of putative beneficial bacteria on the spring wheat microbiota. Front Microbiol. https://doi.org/10.3389/fmicb.2021.773116 PubMed DOI PMC
Franke KR, Schmidt SA, Park S, Jeong D-H, Accerbi M, Green PJ (2018) Analysis of Brachypodium miRNA targets: evidence for diverse control during stress and conservation in bioenergy crops. BMC Genomics 19(1):547. https://doi.org/10.1186/s12864-018-4911-7 PubMed DOI PMC
Fukao T, Xiong L (2013) Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? Curr Opin Plant Biol 16(2):196–204. https://doi.org/10.1016/j.pbi.2013.02.003 PubMed DOI
Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18(8):2021–2034. https://doi.org/10.1105/tpc.106.043000 PubMed DOI PMC
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM (2019) Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front in Plant Sci. https://doi.org/10.3389/fpls.2019.00340 DOI
Gao M, Gai C, Li X, Feng X, Lai R, Song Y, Zeng R, Chen D, Chen Y (2023) Waterlogging tolerance of actinidia valvata dunn is associated with high activities of pyruvate decarboxylase. Alcohol Dehydrogenase and Antioxidant Enzymes Plants 12(15):2872. https://doi.org/10.3390/plants12152872 PubMed DOI
Geisler-Lee J, Caldwell C, Gallie DR (2010) Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia. J Exp Bot 61(3):857–871. https://doi.org/10.1093/jxb/erp362 PubMed DOI
Gibbs DJ, Lee SC, Md Isa N, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J, Holdsworth MJ (2011) Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479(7373):415–418. https://doi.org/10.1038/nature10534 PubMed DOI PMC
Gill MB, Zeng F, Shabala L, Böhm J, Zhang G, Zhou M, Shabala S (2018) The ability to regulate voltage-gated K+-permeable channels in the mature root epidermis is essential for waterlogging tolerance in barley. J Exp Bot 69(3):667–680. https://doi.org/10.1093/jxb/erx429 PubMed DOI
Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558(1):5–30. https://doi.org/10.1113/jphysiol.2003.058701 PubMed DOI PMC
Gonzaga ZJC, Carandang J, Sanchez DL, Mackill DJ, Septiningsih EM (2016) Mapping additional QTLs from FR13A to increase submergence tolerance in rice beyond SUB1. Euphytica 209(3):627–636. https://doi.org/10.1007/s10681-016-1636-z DOI
Goud EL, Singh J, Kumar P (2022) Climate change and their impact on global food production. Elsevier, Amsterdam DOI
Graciet E, Mesiti F, Wellmer F (2010) Structure and evolutionary conservation of the plant N-end rule pathway. Plant J 61(5):741–751. https://doi.org/10.1111/j.1365-313X.2009.04099.x PubMed DOI
Greenway H, Armstrong W, Colmer TD (2006) Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot 98(1):9–32. https://doi.org/10.1093/aob/mcl076 PubMed DOI PMC
Gui G, Zhang Q, Hu W, Liu F (2024) Application of multiomics analysis to plant flooding response. Front Plant Sci. https://doi.org/10.3389/fpls.2024.1389379 PubMed DOI PMC
Guittin C, Maçna F, Picou C, Perez M, Barreau A, Poitou X, Sablayrolles J-M, Mouret J-R, Farines V (2023) New online monitoring approaches to describe and understand the kinetics of acetaldehyde concentration during wine alcoholic fermentation: access to production balances. Fermentation 9(3):299. https://doi.org/10.3390/fermentation9030299 DOI
Hartman S, Liu Z, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H, van Dongen N, Bosman F, Bassel GW, Visser EJW, Bailey-Serres J, Theodoulou FL, Hebelstrup KH, Gibbs DJ, Holdsworth MJ, Sasidharan R, Voesenek LACJ (2019) Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun 10(1):4020. https://doi.org/10.1038/s41467-019-12045-4 PubMed DOI PMC
Hartman S, Sasidharan R, Voesenek LACJ (2021) The role of ethylene in metabolic acclimations to low oxygen. New Phytol 229(1):64–70. https://doi.org/10.1111/nph.16378 PubMed DOI
Hasanuzzaman M, Bhuyan MHM, Zulfiqar F, Raza A, Mohsin S, Mahmud J, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9(8):681. https://doi.org/10.3390/antiox9080681 PubMed DOI PMC
Hattori Y, Miura K, Asano K, Yamamoto E, Mori H, Kitano H, Matsuoka M, Ashikari M (2007) A major QTL confers rapid internode elongation in response to water rise in deepwater rice. Breed Sci 57(4):305–314. https://doi.org/10.1270/jsbbs.57.305 DOI
Hattori Y, Nagai K, Furukawa S, Song X-J, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460(7258):1026–1030. https://doi.org/10.1038/nature08258 PubMed DOI
He L, Yan J, Ding X, Jin H, Zhang H, Cui J, Yu J (2023a) Integrated analysis of transcriptome and microRNAs associated with exogenous calcium-mediated enhancement of hypoxic tolerance in cucumber seedlings (Cucumis sativus L.). Front Plant Sci 13:994268 PubMed DOI PMC
He Y, Sun S, Zhao J, Huang Z, Peng L, Huang C, Tang Z, Huang Q, Wang Z (2023b) UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination. Nat Commun 14(1):2296. https://doi.org/10.1038/s41467-023-38085-5 PubMed DOI PMC
Hess N, Klode M, Anders M, Sauter M (2011) The hypoxia responsive transcription factor genes ERF71/HRE2 and ERF73/HRE1 of Arabidopsis are differentially regulated by ethylene. Physiol Plant 143(1):41–49. https://doi.org/10.1111/j.1399-3054.2011.01486.x PubMed DOI
Hill RD, de Castro J, Mira MM, Igamberdiev AU, Hebelstrup KH, Renault S, Xu W, Badea A, Stasolla C (2023) Over-expression of the barley Phytoglobin 1 (HvPgb1) evokes leaf-specific transcriptional responses during root waterlogging. J Plant Physiol 283:153944. https://doi.org/10.1016/j.jplph.2023.153944 PubMed DOI
Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R (2010) Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol 153(2):757–772. https://doi.org/10.1104/pp.110.155077 PubMed DOI PMC
Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES (1998) Evidence for a role for AtMYB2 in the induction of the arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149(2):479–490. https://doi.org/10.1093/genetics/149.2.479 PubMed DOI PMC
Hong B, Zhou B, Zhao D, Liao L, Chang T, Wu X, Wu J, Yao M, Chen H, Mao J, Guan C, Guan M (2024) Yield, cell structure and physiological and biochemical characteristics of rapeseed under waterlogging stress. BMC Plant Biol 24(1):941. https://doi.org/10.1186/s12870-024-05599-z PubMed DOI PMC
Hossain MA, Bhattacharjee S, Armin S-M, Qian P, Xin W, Li H-Y, Burritt DJ, Fujita M, Tran L-SP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00420 PubMed DOI PMC
Hsu F-C, Chou M-Y, Peng H-P, Chou S-J, Shih M-C (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS ONE 6(12):e28888. https://doi.org/10.1371/journal.pone.0028888 PubMed DOI PMC
Hu X, Xu L (2016) Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiol 172(4):2363–2373. https://doi.org/10.1104/pp.16.01067 PubMed DOI PMC
Huang X, Li Y, Lin H, Wen X, Liu J, Yuan Z, Fu C, Zheng B, Gong L, Zhan H, Ni Y, Hu Y, Zhan P, Shi Y, Rong J, Shen R (2023) Flooding dominates soil microbial carbon and phosphorus limitations in Poyang Lake wetland. China CATENA 232:107468. https://doi.org/10.1016/j.catena.2023.107468 DOI
Hussain W, Anumalla M, Ismail AM, Walia H, Singh VK, Kohli A, Bhosale S, Bhardwaj H (2024) Revisiting FR13A for submergence tolerance: beyond the SUB1A gene. J Exp Bot 75(18):5477–5483. https://doi.org/10.1093/jxb/erae299 PubMed DOI PMC
Husson O (2013) Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 362(1–2):389–417. https://doi.org/10.1007/s11104-012-1429-7 DOI
Husson O (2023) How pH and Eh influence soil nutrient dynamics with microbial mediation. CRC Press, London DOI
Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017) Ethylene role in plant growth development and senescence: interaction with other phytohormones. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00475 PubMed DOI PMC
Jackson MB, Young SF, Hall KC (1988) Are roots a source of abscisic acid for the shoots of flooded pea plants? J Exp Bot 39(12):1631–1637. https://doi.org/10.1093/jxb/39.12.1631 DOI
Jan R, Adnan M, Hashem A, AbdAllah EF, Murad W, Kim K-M (2024) Indole acetic acid and gibberellic acid enhance physiological and biochemical performance of Jatropha curcas L under waterlogging and drought stress. Pakistan J Botany. https://doi.org/10.30848/PJB2024-5(13) DOI
Janowiak F, Else MA, Jackson MB. (2010). Leaf-area-specific delivery rates of indole acetic acid and abscisic acid in the transpiration stream of flooded tomato plants in relation to stomatal closure. Zeszyty Problemowe Postępów Nauk Rolniczych, 545.
Javidi MR, Maali-Amiri R, Poormazaheri H, Sadeghi Niaraki M, Kariman K (2022) Cold stress-induced changes in metabolism of carbonyl compounds and membrane fatty acid composition in chickpea. Plant Physiol Biochem 192:10–19. https://doi.org/10.1016/j.plaphy.2022.09.031 PubMed DOI
Jeong D-H, Schmidt SA, Rymarquis LA, Park S, Ganssmann M, German MA, Accerbi M, Zhai J, Fahlgren N, Fox SE, Garvin DF, Mockler TC, Carrington JC, Meyers BC, Green PJ (2013) Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon. Genome Biol 14(12):R145. https://doi.org/10.1186/gb-2013-14-12-r145 PubMed DOI PMC
Jia W, Ma M, Chen J, Wu S (2021) Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. Int J Mol Sci 22(3):1088. https://doi.org/10.3390/ijms22031088 PubMed DOI PMC
Jin Q, Xu Y, Mattson N, Li X, Wang B, Zhang X, Jiang H, Liu X, Wang Y, Yao D (2017) Identification of submergence-responsive MicroRNAs and their targets reveals complex MiRNA-Mediated regulatory networks in lotus (Nelumbo nucifera Gaertn). Front Plant Sci. https://doi.org/10.3389/fpls.2017.00006 PubMed DOI PMC
Jung K-H, Seo Y-S, Walia H, Cao P, Fukao T, Canlas PE, Amonpant F, Bailey-Serres J, Ronald PC (2010) The submergence tolerance regulator sub1a mediates stress-responsive expression of AP2 / ERF transcription factors. Plant Physiol 152(3):1674–1692. https://doi.org/10.1104/pp.109.152157 PubMed DOI PMC
Jung H-J, Roy SK, Cho S-W, Kwon S-J, Kun C, Chun H-C, Woo S-H (2019) Proteome analysis of sesame leaves in response to waterlogging stress at vegetative and flowering stages. Biol Plant 63:733–749. https://doi.org/10.32615/bp.2019.062 DOI
Juntawong P, Butsayawarapat P, Songserm P, Pimjan R, Vuttipongchaikij S (2020) Overexpression of Jatropha curcas ERFVII2 transcription factor confers low oxygen tolerance in transgenic arabidopsis by modulating expression of metabolic enzymes and multiple stress-responsive genes. Plants 9(9):1068. https://doi.org/10.3390/plants9091068 PubMed DOI PMC
Kaspary TE, Roma-Burgos N, Merotto A (2020) Snorkeling strategy: tolerance to flooding in rice and potential application for weed management. Genes 11(9):975. https://doi.org/10.3390/genes11090975 PubMed DOI PMC
Kaur G, Nelson KA, Motavalli PP, Singh G (2020a) Adaptation to early-season soil waterlogging using different nitrogen fertilizer practices and corn hybrids. Agronomy 10(3):378. https://doi.org/10.3390/agronomy10030378 DOI
Kaur G, Singh G, Motavalli PP, Nelson KA, Orlowski JM, Golden BR (2020b) Impacts and management strategies for crop production in waterlogged or flooded soils: a review. Agron J 112(3):1475–1501. https://doi.org/10.1002/agj2.20093 DOI
Keya SS, Mostofa MG, Mezanur Rahman M, Das AK, Abiar Rahman M, Anik TR, Sultana S, Arifur Rahman Khan M, Robyul Islam M, Watanabe Y, Mochida K, Tran L-SP (2022) Effects of glutathione on waterlogging-induced damage in sesame crop. Indust Crops Prod 185:115092. https://doi.org/10.1016/j.indcrop.2022.115092 DOI
Khalil MI, Hassan MM, Samanta SC, Chowdhury AK, Hassan MZ, Ahmed NU, Somaddar U, Ghosal S, Robin AHK, Nath UK, Mostofa MG, Burritt DJ, Ha CV, Gupta A, Tran L-SP, Saha G (2024) Unraveling the genetic enigma of rice submergence tolerance: Shedding light on the role of ethylene response factor-encoding gene SUB1A-1. Plant Physiol Biochem 206:108224. https://doi.org/10.1016/j.plaphy.2023.108224 PubMed DOI
KhokharVoytas A, Shahbaz M, Maqsood MF, Zulfiqar U, Naz N, Iqbal UZ, Sara M, Aqeel M, Khalid N, Noman A, Zulfiqar F, Al Syaad KM, AlShaqhaa MA (2023) Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Funct Integr Genomics 23(3):283. https://doi.org/10.1007/s10142-023-01202-0 PubMed DOI
Kim Y-H, Hwang S-J, Waqas M, Khan AL, Lee J-H, Lee J-D, Nguyen HT, Lee I-J (2015) Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00714 PubMed DOI PMC
Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D, Yang P (2013) Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 12(11):4769–4784. https://doi.org/10.1021/pr4001898 PubMed DOI
Komatsu S, Nakamura T, Sugimoto Y, Sakamoto K (2014) Proteomic and metabolomic analyses of soybean root tips under flooding stress. Protein Pept Lett 21(9):865–884. https://doi.org/10.2174/0929866521666140320110521 PubMed DOI
Kotchoni SO, Kuhns C, Ditzer A, Kirch H, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant, Cell Environ 29(6):1033–1048. https://doi.org/10.1111/j.1365-3040.2005.01458.x PubMed DOI
Kudahettige NP, Pucciariello C, Parlanti S, Alpi A, Perata P (2011) Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants. Plant Biol 13(4):611–619. https://doi.org/10.1111/j.1438-8677.2010.00415.x PubMed DOI
Kumar L, Chhogyel N, Gopalakrishnan T, Hasan MK, Jayasinghe SL, Kariyawasam CS, Kogo BK, Ratnayake S (2022) Climate change and future of agri-food production. Elsevier, Amsterdam DOI
Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J, Ebana K, Mitsuda N, Ohme-Takagi M, Ashikari M (2018) Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361(6398):181–186. https://doi.org/10.1126/science.aat1577 PubMed DOI
Kurokawa Y, Nagai K, Huan PD, Shimazaki K, Qu H, Mori Y, Toda Y, Kuroha T, Hayashi N, Aiga S, Itoh J, Yoshimura A, Sasaki-Sekimoto Y, Ohta H, Shimojima M, Malik AI, Pedersen O, Colmer TD, Ashikari M (2018) Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene ( LGF 1) and contribute to flood tolerance. New Phytol 218(4):1558–1569. https://doi.org/10.1111/nph.15070 PubMed DOI
Labandera A-M, Tedds HM, Bailey M, Sprigg C, Etherington RD, Akintewe O, Kalleechurn G, Holdsworth MJ, Gibbs DJ (2021) The PRT6 N-degron pathway restricts VERNALIZATION 2 to endogenous hypoxic niches to modulate plant development. New Phytol 229:126–139. https://doi.org/10.1111/nph.16477 PubMed DOI
Langan P, Bernád V, Walsh J, Henchy J, Khodaeiaminjan M, Mangina E, Negrão S (2022) Phenotyping for waterlogging tolerance in crops: current trends and future prospects. J Exp Bot 73(15):5149–5169. https://doi.org/10.1093/jxb/erac243 PubMed DOI PMC
Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144(1):218–231. https://doi.org/10.1104/pp.106.093997 PubMed DOI PMC
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539 PubMed DOI
Leeggangers HACF, Rodriguez-Granados NY, Macias-Honti MG, Sasidharan R (2023) A helping hand when drowning: the versatile role of ethylene in root flooding resilience. Environ Exp Bot 213:105422. https://doi.org/10.1016/j.envexpbot.2023.105422 DOI
Li W (2018) Evaluation of physiological indices of waterlogging tolerance of different maize varieties in South China. Appl Ecol Environ Res 16(2):2059–2072. https://doi.org/10.15666/aeer/1602_20592072 DOI
Li C-X, Wei H, Geng Y-H, Schneider R (2010) Effects of submergence on photosynthesis and growth of Pterocarya stenoptera (Chinese wingnut) seedlings in the recently-created Three Gorges Reservoir region of China. Wetlands Ecol Manage 18(4):485–494. https://doi.org/10.1007/s11273-010-9181-3 DOI
Li M-F, Zhu J-Q, Jiang Z-H (2013) Plant growth regulators and nutrition applied to cotton after waterlogging. Third Int Conf Intell Syst des Eng Appl 2013:1045–1048. https://doi.org/10.1109/ISDEA.2012.246 DOI
Li G, Deng Y, Geng Y, Zhou C, Wang Y, Zhang W, Song Z, Gao L, Yang J (2017) Differentially expressed microRNAs and target genes associated with plastic internode elongation in alternanthera philoxeroides in contrasting hydrological habitats. Front Plant Sci. https://doi.org/10.3389/fpls.2017.02078 PubMed DOI PMC
Lian T, Cheng L, Liu Q, Yu T, Cai Z, Nian H, Hartmann M (2023) Potential relevance between soybean nitrogen uptake and rhizosphere prokaryotic communities under waterlogging stress. ISME Commun. https://doi.org/10.1038/s43705-023-00282-0 PubMed DOI PMC
Liang S, Xiong W, Yin C, Xie X, Jin Y, Zhang S, Yang B, Ye G, Chen S, Luan W (2019) Overexpression of OsARD1 improves submergence, drought, and salt tolerances of seedling through the enhancement of ethylene synthesis in rice. Front Plant Sci. https://doi.org/10.3389/fpls.2019.01088 PubMed DOI PMC
Liang K, Tang K, Fang T, Qiu F (2020) Waterlogging tolerance in maize: genetic and molecular basis. Mol Breeding 40(12):111. https://doi.org/10.1007/s11032-020-01190-0 DOI
Liang M, Zhao Q, Song Y, Chen J (2023) Exploring mRNA translation strategies for hypoxia adaptation across distantly related metazoans. Epigenomics 15(20):1069–1084. https://doi.org/10.2217/epi-2023-0245 PubMed DOI
Liang K, Zhao C, Wang J, Zheng X, Yu F, Qiu F (2024) Genetic variations in ZmEREB179 are associated with waterlogging tolerance in maize. J Genet Genomics. https://doi.org/10.1016/j.jgg.2024.04.005 PubMed DOI
Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62(2):302–315. https://doi.org/10.1111/j.1365-313X.2010.04149.x PubMed DOI
Licausi F, Weits DA, Pant BD, Scheible W, Geigenberger P, van Dongen JT (2011) Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New Phytol 190(2):442–456. https://doi.org/10.1111/j.1469-8137.2010.03451.x PubMed DOI
Lin X, Zhu D, Lin X (2011) Effects of water management and organic fertilization with SRI crop practices on hybrid rice performance and rhizosphere dynamics. Paddy Water Environ, 9(1):33–39. https://doi.org/10.1007/s10333-010-0238-y DOI
Lin C-C, Lee W-J, Zeng C-Y, Chou M-Y, Lin T-J, Lin C-S, Ho M-C, Shih M-C (2023) SUB1A-1 anchors a regulatory cascade for epigenetic and transcriptional controls of submergence tolerance in rice. PNAS Nexus. https://doi.org/10.1093/pnasnexus/pgad229 PubMed DOI PMC
Liu P, Sun F, Gao R, Dong H (2012a) RAP2.6L overexpression delays waterlogging induced premature senescence by increasing stomatal closure more than antioxidant enzyme activity. Plant Mol Biol 79(6):609–622. https://doi.org/10.1007/s11103-012-9936-8 PubMed DOI
Liu Z, Kumari S, Zhang L, Zheng Y, Ware D (2012b) Characterization of miRNAs in response to short-term waterlogging in three inbred lines of zea mays. PLoS ONE 7(6):e39786. https://doi.org/10.1371/journal.pone.0039786 PubMed DOI PMC
Liu G, Gao S, Tian H, Wu W, Robert HS, Ding Z (2016) Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis. PLoS Genet 12(10):e1006360. https://doi.org/10.1371/journal.pgen.1006360 PubMed DOI PMC
Liu W, Yu J, Ge Y, Qin P, Xu L (2018) Pivotal role of LBD16 in root and root-like organ initiation. Cell Mol Life Sci 75(18):3329–3338. https://doi.org/10.1007/s00018-018-2861-5 PubMed DOI PMC
Liu Z, Hartman S, van Veen H, Zhang H, Leeggangers HA, Martopawiro S, Bosman F, de Deugd F, Su P, Hummel M, Rankenberg T (2022) Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. Plant Physiol 190(2):1365–1383. https://doi.org/10.1093/plphys/kiac245 PubMed DOI PMC
Liu Z, Sun L, Liu Z, Li X (2024) Effect of exogenous melatonin on growth and antioxidant system of pumpkin seedlings under waterlogging stress. PeerJ 12:e17927. https://doi.org/10.7717/peerj.17927 PubMed DOI PMC
Loreti E, Perata P (2023) ERFVII transcription factors and their role in the adaptation to hypoxia in Arabidopsis and crops. Front Gen. https://doi.org/10.3389/fgene.2023.1213839 DOI
Lothier J, Diab H, Cukier C, Limami AM, Tcherkez G (2020) Metabolic responses to waterlogging differ between roots and shoots and reflect phloem transport alteration in medicago truncatula. Plants 9(10):1373. https://doi.org/10.3390/plants9101373 PubMed DOI PMC
Lu C-A, Lin C-C, Lee K-W, Chen J-L, Huang L-F, Ho S-L, Liu H-J, Hsing Y-I, Yu S-M (2007) The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 19(8):2484–2499. https://doi.org/10.1105/tpc.105.037887 PubMed DOI PMC
Luan H, Guo B, Pan Y, Lv C, Shen H, Xu R (2018a) Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L) genotypes. Plant Growth Regul 85(3):399–409. https://doi.org/10.1007/s10725-018-0401-9 DOI
Luan H, Shen H, Pan Y, Guo B, Lv C, Xu R (2018b) Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: a proteomics approach. Sci Rep 8(1):9655. https://doi.org/10.1038/s41598-018-27726-1 PubMed DOI PMC
Luan H, Guo B, Shen H, Pan Y, Hong Y, Lv C, Xu R (2020) Overexpression of barley transcription factor HvERF2.11 in arabidopsis enhances plant waterlogging tolerance. Int J Mol Sci 21(6):1982. https://doi.org/10.3390/ijms21061982 PubMed DOI PMC
Luan H, Li H, Li Y, Chen C, Li S, Wang Y, Yang J, Xu M, Shen H, Qiao H, Wang J (2023) Transcriptome analysis of barley (Hordeum vulgare L.) under waterlogging stress, and overexpression of the HvADH4 gene confers waterlogging tolerance in transgenic Arabidopsis. BMC Plant Biol 23(1):62. https://doi.org/10.1186/s12870-023-04081-6 PubMed DOI PMC
Luan H, Li Y, Qu X, Gao J, Xu M, Yang J, Xu X, Wang J, Sun M, Shen H, Zang H (2024) Genome-wide association study and transcriptome sequencing to identify candidate genes for waterlogging tolerance during germination in barley (Hordeum vulgare L.). Environ Experi Botany 226:105901. https://doi.org/10.1016/j.envexpbot.2024.105901 DOI
Lv Y, Fu S, Chen S, Zhang W, Qi C (2016) Ethylene response factor BnERF2-like (ERF2.4) from Brassica napus L. enhances submergence tolerance and alleviates oxidative damage caused by submergence in Arabidopsis thaliana. Crop J 4(3):199–211. https://doi.org/10.1016/j.cj.2016.01.004 DOI
Ma L, Shi Q, Ma Q, Wang X, Chen X, Han P, Luo Y, Hu H, Fei X, Wei A (2024a) Genome-wide analysis of AP2/ERF transcription factors that regulate fruit development of Chinese prickly ash. BMC Plant Biol 24(1):565. https://doi.org/10.1186/s12870-024-05244-9 PubMed DOI PMC
Ma Z, Hu L, Jiang W (2024b) Understanding AP2/ERF transcription factor responses and tolerance to various abiotic stresses in plants: a comprehensive review. Int J Mol Sci 25(2):893. https://doi.org/10.3390/ijms25020893 PubMed DOI PMC
Macías F, Camps Arbestain M (2010) Soil carbon sequestration in a changing global environment. Mitig Adapt Strat Glob Change 15(6):511–529. https://doi.org/10.1007/s11027-010-9231-4 DOI
Mairata A, Labarga D, Puelles M, Rivacoba L, Portu J, Pou A (2024) Organic mulching versus soil conventional practices in vineyards: a comprehensive study on plant physiology, agronomic, and grape quality effects. Agronomy 14(10):2404. https://doi.org/10.3390/agronomy14102404 DOI
Mancuso S, Shabala S (2010) Waterlogging signalling and tolerance in plants. Springer, Berlin Heidelberg, Berlin Heidelberg DOI
Manghwar H, Hussain A, Alam I, Khoso MA, Ali Q, Liu F (2024) Waterlogging stress in plants: unraveling the mechanisms and impacts on growth, development, and productivity. Environ Exp Bot 224:105824. https://doi.org/10.1016/j.envexpbot.2024.105824 DOI
Manik SMN, Pengilley G, Dean G, Field B, Shabala S, Zhou M (2019) Soil and crop management practices to minimize the impact of waterlogging on crop productivity. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00140 PubMed DOI PMC
Mano Y, Omori F (2013) Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays). Ann Bot 112(6):1125–1139. https://doi.org/10.1093/aob/mct160 PubMed DOI PMC
Mao JL, Miao ZQ, Wang Z, Yu LH, Cai XT, Xiang CB (2016) Arabidopsis ERF1 mediates cross-talk between ethylene and auxin biosynthesis during primary root elongation by regulating ASA1 expression. PLoS Genet 12(1):e1005760. https://doi.org/10.1371/journal.pgen.1005760 PubMed DOI PMC
Maric A, Hartman S (2022) Ethylene controls translational gatekeeping to overcome flooding stress in plants. EMBO J. https://doi.org/10.15252/embj.2022112282 PubMed DOI PMC
Meguro N, Tsuji H, Tsutsumi N, Nakazono M, Hirai A (2006) Involvement of aldehyde dehydrogenase in alleviation of post-anoxic injury in rice. Springer, Netherlands, Cham DOI
Mhimdi M, Pérez-Pérez JM (2020) Understanding of adventitious root formation: what can we learn from comparative genetics? Front Plant Sci. https://doi.org/10.3389/fpls.2020.582020 PubMed DOI PMC
Miao ZQ, Zhao PX, Mao JL, Yu LH, Yuan Y, Tang H, Xiang CB (2018) HOMEOBOX PROTEIN52 mediates the crosstalk between ethylene and auxin signaling during primary root elongation by modulating auxin transport-related gene expression. Plant Cell 30(11):2761–2778. https://doi.org/10.1105/tpc.18.00584 PubMed DOI PMC
Mignolli F, Todaro JS, Vidoz ML (2020) Internal aeration and respiration of submerged tomato hypocotyls are enhanced by ethylene-mediated aerenchyma formation and hypertrophy. Physiol Plant 169(1):49–63. https://doi.org/10.1111/ppl.13044 PubMed DOI
Miro B, Ismail AM (2013) Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front Plant Sci. https://doi.org/10.3389/fpls.2013.00269 PubMed DOI PMC
Mishra M, Singh KBM, Rao S, Kumar V, Rai S (2021) Potential contribution of soil microflora and fauna in nitrogen cycle: a comprehensive study. Springer International Publishing, Cham
Modgil S, Talekar N (2024) Root adaptation traits under water logging conditions. Int J Environ Climate Change 14(6):1–12. https://doi.org/10.9734/ijecc/2024/v14i64205 DOI
Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2010) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61(1):165–177. https://doi.org/10.1093/jxb/erp296 PubMed DOI
Mühlenbock P, Plaszczyca M, Plaszczyca M, Mellerowicz E, Karpinski S (2007) Lysigenous aerenchyma formation in arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell 19(11):3819–3830. https://doi.org/10.1105/tpc.106.048843 PubMed DOI PMC
Mustroph A (2018) Improving flooding tolerance of crop plants. Agronomy 8(9):160. https://doi.org/10.3390/agronomy8090160 DOI
Mustroph A, Barding GA Jr, Kaiser KA, Larive CK, Bailey-Serres J (2014) Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C and N -metabolism. Plant, Cell Environ 37(10):2366–2380. https://doi.org/10.1111/pce.12282 PubMed DOI
Nagai K, Kuroha T, Ayano M, Kurokawa Y, Angeles-Shim RB, Shim J-H, Yasui H, Yoshimura A, Ashikari M (2012) Two novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage. Breed Sci 62(2):178–185. https://doi.org/10.1270/jsbbs.62.178 PubMed DOI PMC
Nagai K, Kondo Y, Kitaoka T, Noda T, Kuroha T, Angeles-Shim RB, Yasui H, Yoshimura A, Ashikari M (2014) QTL analysis of internode elongation in response to gibberellin in deepwater rice. AoB PLANTS. https://doi.org/10.1093/aobpla/plu028 PubMed DOI PMC
Nagai K, Mori Y, Ishikawa S, Furuta T, Gamuyao R, Niimi Y, Hobo T, Fukuda M, Kojima M, Takebayashi Y, Fukushima A, Himuro Y, Kobayashi M, Ackley W, Hisano H, Sato K, Yoshida A, Wu J, Sakakibara H, Ashikari M (2020) Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 584(7819):109–114. https://doi.org/10.1038/s41586-020-2501-8 PubMed DOI
Nan R, Carman JG, Salisbury FB (2002) Water stress, CO2 and photoperiod influence hormone levels in wheat. J Plant Physiol 159(3):307–312. https://doi.org/10.1078/0176-1617-00703 PubMed DOI
Naqvi RZ, Mahmood MA, Mansoor S, Amin I, Asif M (2024) Omics-driven exploration and mining of key functional genes for the improvement of food and fiber crops. Front Sci. https://doi.org/10.3389/fpls.2023.1273859 DOI
Neeraja CN, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard BCY, Septiningsih EM, Vergara G, Sanchez D, Xu K, Ismail AM, Mackill DJ (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115(6):767–776. https://doi.org/10.1007/s00122-007-0607-0 PubMed DOI
Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X, Mian MAR, Dorrance AE, Shannon JG, Nguyen HT (2012) Mapping of quantitative trait loci associated with resistance to phytophthora sojae and flooding tolerance in soybean. Crop Sci 52(6):2481–2493. https://doi.org/10.2135/cropsci2011.09.0466 DOI
Nguyen T-N, Tuan PA, Mukherjee S, Son S, Ayele BT (2018) Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. J Exp Bot 69(16):4065–4082. https://doi.org/10.1093/jxb/ery190 PubMed DOI PMC
Nguyen VL, Dang TTH, Chu HD, Nakamura T, Abiko T, Mochizuki T (2021) Near-isogenic lines of soybean confirm a QTL for seed waterlogging tolerance at different temperatures. Euphytica 217(1):16. https://doi.org/10.1007/s10681-020-02736-1 DOI
Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M (2012) Mechanisms for coping with submergence and waterlogging in rice. Rice 5(1):2. https://doi.org/10.1186/1939-8433-5-2 PubMed DOI PMC
Oh M, Nanjo Y, Komatsu S (2014) Gel-free proteomic analysis of soybean root proteins affected by calcium under flooding stress. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00559 PubMed DOI PMC
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in arabidopsis. Plant Cell 19(1):118–130. https://doi.org/10.1105/tpc.106.047761 PubMed DOI PMC
Ou Y, Rousseau AN, Wang L, Yan B, Gumiere T, Zhu H (2019) Identification of the alteration of riparian wetland on soil properties, enzyme activities and microbial communities following extreme flooding. Geoderma 337:825–833. https://doi.org/10.1016/j.geoderma.2018.10.032 DOI
Pais IP, Moreira R, Semedo JN, Ramalho JC, Lidon FC, Coutinho J, Maçãs B, Scotti-Campos P (2022) Wheat crop under waterlogging: potential soil and plant effects. Plants 12(1):149. https://doi.org/10.3390/plants12010149 PubMed DOI PMC
Pampana S, Masoni A, Arduini I (2016) Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Res Commun 44(4):706–716. https://doi.org/10.1556/0806.44.2016.026 DOI
Pan D-L, Wang G, Wang T, Jia Z-H, Guo Z-R, Zhang J-Y (2019) AdRAP2.3, a novel ethylene response factor vii from actinidia deliciosa, enhances waterlogging resistance in transgenic tobacco through improving expression levels of PDC and ADH genes. Int J Mol Sci 20(5):1189. https://doi.org/10.3390/ijms20051189 PubMed DOI PMC
Pan J, Sharif R, Xu X, Chen X (2021) Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci. https://doi.org/10.3389/fpls.2020.627331 PubMed DOI PMC
Pan R, Buitrago S, Feng X, Hu A, Zhou M, Zhang W (2022) Ethylene regulates aerenchyma formation in cotton under hypoxia stress by inducing the accumulation of reactive oxygen species. Environ Exp Bot 197:104826. https://doi.org/10.1016/j.envexpbot.2022.104826 DOI
Panda AK, Rawal HC, Jain P, Mishra V, Nishad J, Chowrasia S, Mondal TK (2022) Identification and analysis of miRNAs-lncRNAs-mRNAs modules involved in stem-elongation of deepwater rice (Oryza sativa L.). Physiol Plant 174(4):e13736. https://doi.org/10.1111/ppl.13736 PubMed DOI
Pang Y, Wang X, Zhao M, Lu Y, Yan Q, Sun S, Wang Y, Liu S (2022) Identification and validation of the genomic regions for waterlogging tolerance at germination stage in wheat. Agronomy 12(8):1848. https://doi.org/10.3390/agronomy12081848 DOI
Pazhamala LT, Kudapa H, Weckwerth W, Millar AH, Varshney RK (2021) Systems biology for crop improvement. Plant Genome. https://doi.org/10.1002/tpg2.20098 PubMed DOI
Pedersen O, Colmer TD, Sand-Jensen K (2013) Underwater photosynthesis of submerged plants – recent advances and methods. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00140 PubMed DOI PMC
Peña-Castro JM, van Zanten M, Lee SC, Patel MR, Voesenek LAJC, Fukao T, Bailey-Serres J (2011) Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. Plant J 67(3):434–446. https://doi.org/10.1111/j.1365-313X.2011.04605.x PubMed DOI
Peng Y-Q, Zhu J, Li W-J, Gao W, Shen R-Y, Meng L-J (2020) Effects of grafting on root growth, anaerobic respiration enzyme activity and aerenchyma of bitter melon under waterlogging stress. Sci Hortic 261:108977. https://doi.org/10.1016/j.scienta.2019.108977 DOI
Penn C, Camberato J (2019) A Critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9(6):120. https://doi.org/10.3390/agriculture9060120 DOI
Pessarakli M (2021) Handbook of plant and crop physiology. CRC Press, London DOI
Phukan UJ, Mishra S, Shukla RK (2016) Waterlogging and submergence stress: affects and acclimation. Crit Rev Biotechnol 36(5):956–966. https://doi.org/10.3109/07388551.2015.1064856 PubMed DOI
Phukon M, Das J, Sruthi R, Verma RK, Modi MK, Bhattacharyya A, Chetia SK (2024) Study on submergence tolerance of rice (Oryza sativa L.) in a core panel of North-East India using GWAS. Indian J Gen Plant Breed (The) 84(2):193–201. https://doi.org/10.31742/ISGPB.84.2.6 DOI
Pramanick B, Dubey R, Kesarwani A, Bera A, Bhutia KL, Kumar M, Maitra S (2023) Advancement in mitigating the effects of waterlogging stress in wheat. Elsevier, Amsterdam DOI
Pucciariello C, Perata P (2021) The oxidative paradox in low oxygen stress in plants. Antioxidants 10(2):332. https://doi.org/10.3390/antiox10020332 PubMed DOI PMC
Qiu F, Zheng Y, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99(6):1067–1081. https://doi.org/10.1093/aob/mcm055 PubMed DOI PMC
Rahman KU, Ali K, Rauf M, Arif M (2023) Aspergillus nomiae and fumigatus ameliorating the hypoxic stress induced by waterlogging through ethylene metabolism in zea mays L. Microorganisms 11(8):2025. https://doi.org/10.3390/microorganisms11082025 PubMed DOI PMC
Raj SRG, Nadarajah K (2022) QTL and candidate genes: techniques and advancement in abiotic stress resistance breeding of major cereals. Int J Mol Sci 24(1):6. https://doi.org/10.3390/ijms24010006 PubMed DOI PMC
Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190(2):351–368. https://doi.org/10.1111/j.1469-8137.2010.03535.x PubMed DOI
Rasheed R, Iqbal M, Ashraf MA, Hussain I, Shafiq F, Yousaf A, Zaheer A (2018) Glycine betaine counteracts the inhibitory effects of waterlogging on growth, photosynthetic pigments, oxidative defence system, nutrient composition, and fruit quality in tomato. J Hortic Sci Biotechnol 93(4):385–391. https://doi.org/10.1080/14620316.2017.1373037 DOI
Rauf M, Arif M, Fisahn J, Xue G-P, Balazadeh S, Mueller-Roeber B (2013) NAC transcription factor SPEEDY HYPONASTIC GROWTH regulates flooding-induced leaf movement in arabidopsis. Plant Cell 25(12):4941–4955. https://doi.org/10.1105/tpc.113.117861 PubMed DOI PMC
Rich SM, Ludwig M, Colmer TD (2008) Photosynthesis in aquatic adventitious roots of the halophytic stem-succulent Tecticornia pergranulata (formerly Halosarcia pergranulata ). Plant, Cell Environ 31(7):1007–1016. https://doi.org/10.1111/j.1365-3040.2008.01813.x PubMed DOI
Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet 16(2):85–97. https://doi.org/10.1038/nrg3868 PubMed DOI
Rizal G, Karki S (2011) Alcohol dehydrogenase (ADH) activity in soybean (Glycine max [L.] Merr.) under flooding stress. Elect J Plant Breed 2(1):50–57
Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16(5):258–264. https://doi.org/10.1016/j.tplants.2011.03.001 PubMed DOI
Rupngam T, Messiga AJ (2024) Unraveling the interactions between flooding dynamics and agricultural productivity in a changing climate. Sustainability 16(14):6141. https://doi.org/10.3390/su16146141 DOI
Ruzicka K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7):2197–2212. https://doi.org/10.1105/tpc.107.052126 PubMed DOI PMC
Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10(2):277. https://doi.org/10.3390/antiox10020277 PubMed DOI PMC
Sachdev S, Ansari SA, Ansari MI (2023) Reactive oxygen species in plants. Springer Nature Singapore, Singapore DOI
Sadiq I, Fanucchi F, Paparelli E, Alpi E, Bachi A, Alpi A, Perata P (2011) Proteomic identification of differentially expressed proteins in the anoxic rice coleoptile. J Plant Physiol 168(18):2234–2243. https://doi.org/10.1016/j.jplph.2011.07.009 PubMed DOI
Saha I, Hasanuzzaman M, Dolui D, Sikdar D, Debnath SC, Adak MK (2021) Silver-nanoparticle and abscisic acid modulate sub1A quantitative trait loci functioning towards submergence tolerance in rice (Oryza sativa L.). Environ Exper Botany 181:104276. https://doi.org/10.1016/j.envexpbot.2020.104276 DOI
Salah A, Zhan M, Cao C, Han Y, Ling L, Liu Z, Li P, Ye M, Jiang Y (2019) γ-Aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings. Sci Rep 9(1):484. https://doi.org/10.1038/s41598-018-36334-y PubMed DOI PMC
Saleem A, Anwar S, Nawaz T, Fahad S, Saud S, Ur Rahman T, Khan MNR, Nawaz T (2024) Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals. J Umm Al-Qura Univ Appl Sci. https://doi.org/10.1007/s43994-024-00177-3 DOI
Salvatierra A, Toro G, Mateluna P, Opazo I, Ortiz M, Pimentel P (2020) Keep calm and survive: adaptation strategies to energy crisis in fruit trees under root hypoxia. Plants 9(9):1108. https://doi.org/10.3390/plants9091108 PubMed DOI PMC
Sasidharan R, Voesenek LACJ (2015) Ethylene-mediated acclimations to flooding stress. Plant Physiol 169(1):3–12. https://doi.org/10.1104/pp.15.00387 PubMed DOI PMC
Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup KH, Hill RD, Holdsworth MJ, Ismail AM, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih M, Voesenek LACJ (2017) Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol 214(4):1403–1407. https://doi.org/10.1111/nph.14519 PubMed DOI
Sasidharan R, Hartman S, Liu Z, Martopawiro S, Sajeev N, van Veen H, Yeung E, Voesenek LACJ (2018) signal dynamics and interactions during flooding stress. Plant Physiol 176(2):1106–1117. https://doi.org/10.1104/pp.17.01232 PubMed DOI
Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M, Okumoto Y, Tsukiyama T, Tanisaka T (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci 176(4):514–521. https://doi.org/10.1016/j.plantsci.2009.01.007 PubMed DOI
Schulze E-D, Beck E, Buchmann N, Clemens S, Müller-Hohenstein K, Scherer-Lorenzen M (2019) Oxygen Deficiency. Springer, Berlin Heidelberg, Berlin Heidelberg DOI
Senthamil E, Angadi SS, Halli HM, Salakinkop SR, Doddamani MB, Gundlur SS (2024) Effect of transient waterlogging stress on growth, physiology and yield of cowpea (Vigna unguiculata L.) in semi-arid region. Int J Plant Soil Sci 36(8):45–56. https://doi.org/10.9734/ijpss/2024/v36i84834 DOI
Seok H-Y, Tran HT, Lee S-Y, Moon Y-H (2022) AtERF71/HRE2, an arabidopsis AP2/ERF transcription factor gene, contains both positive and negative cis-regulatory elements in its promoter region involved in hypoxia and salt stress responses. Int J Mol Sci 23(10):5310. https://doi.org/10.3390/ijms23105310 PubMed DOI PMC
Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S, Ismail AM, Mackill DJ (2009) Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103(2):151–160. https://doi.org/10.1093/aob/mcn206 PubMed DOI
Setter T, Belford B (1990) Waterlogging: how it reduces plant growth and how plants can overcome its effects. J Dep Agric West Aust Ser 4(31):51–55
Shah SH, Islam S, Mohammad F, Siddiqui MH (2023) Gibberellic acid: a versatile regulator of plant growth, development and stress responses. J Plant Growth Regul 42(12):7352–7373. https://doi.org/10.1007/s00344-023-11035-7 DOI
Sharif R, Xie C, Zhang H, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz MA, Chen P, Li Y (2018) Melatonin and its effects on plant systems. Molecules 23(9):2352. https://doi.org/10.3390/molecules23092352 PubMed DOI PMC
Sheng L, Meng X, Wang M, Zang S, Feng L (2018) Improvement in submergence tolerance of cherry through regulation of carbohydrate metabolism and plant growth by PsERF and PsCIPK. Appl Biochem Biotechnol 184(1):63–79. https://doi.org/10.1007/s12010-017-2530-4 PubMed DOI
Shukla V, Lombardi L, Pencik A, Novak O, Weits DA, Loreti E, Perata P, Giuntoli B, Licausi F (2020) Jasmonate signalling contributes to primary root inhibition upon oxygen deficiency in Arabidopsis thaliana. Plants 9:1046. https://doi.org/10.3390/plants9081046 PubMed DOI PMC
Singh S, Mackill DJ, Ismail AM (2014) Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene. AoB PLANTS. https://doi.org/10.1093/aobpla/plu060 PubMed DOI PMC
Sou H-D, Masumori M, Yamanoshita T, Tange T (2021) Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions. Sci Rep 11(1):4520. https://doi.org/10.1038/s41598-021-84183-z PubMed DOI PMC
Steffens D, Hütsch BW, Eschholz T, Lošák T, Schubert S (2005) Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity. Plant, Soil Environ 51(12):545–552. https://doi.org/10.17221/3630-PSE DOI
Steffens B, Geske T, Sauter M (2011) Aerenchyma formation in the rice stem and its promotion by H 2 O 2. New Phytol 190(2):369–378. https://doi.org/10.1111/j.1469-8137.2010.03496.x PubMed DOI
Sun L, Ma L, He S, Hao F (2018) AtrbohD functions downstream of ROP2 and positively regulates waterlogging response in Arabidopsis. Plant Signal Behav 13(9):e1513300. https://doi.org/10.1080/15592324.2018.1513300 PubMed DOI PMC
Tamang B, Fukao T (2015) Plant adaptation to multiple stresses during submergence and following desubmergence. Int J Mol Sci 16(12):30164–30180. https://doi.org/10.3390/ijms161226226 PubMed DOI PMC
Tang Q, Wei S, Zheng X, Tu P, Tao F (2024) APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Crit Rev Biotechnol 44(8):1533–1551. https://doi.org/10.1080/07388551.2023.2299769 PubMed DOI
Taylor-Teeples M, Lanctot A, Nemhauser JL (2016) As above, so below: Auxin’s role in lateral organ development. Dev Biol 419(1):156–164. https://doi.org/10.1016/j.ydbio.2016.03.020 PubMed DOI PMC
Teoh EY, Teo CH, Baharum NA, Pua T-L, Tan BC (2022) Waterlogging stress induces antioxidant defense responses, aerenchyma formation and alters metabolisms of banana plants. Plants 11(15):2052. https://doi.org/10.3390/plants11152052 PubMed DOI PMC
Tian B-Y, Cao Y, Zhang K-Q (2015) Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 5(1):17087. https://doi.org/10.1038/srep17087 PubMed DOI PMC
Tian H, Fan G, Xiong X, Wang H, Zhang S, Geng G (2024) Characterization and transformation of the CabHLH18 gene from hot pepper to enhance waterlogging tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2023.1285198 PubMed DOI PMC
Tong C, Hill CB, Zhou G, Zhang X-Q, Jia Y, Li C (2021) Opportunities for improving waterlogging tolerance in cereal crops—physiological traits and genetic mechanisms. Plants 10(8):1560. https://doi.org/10.3390/plants10081560 PubMed DOI PMC
Topali C, Antonopoulou C, Chatzissavvidis C (2024) Effect of waterlogging on growth and productivity of fruit crops. Horticulturae 10(6):623. https://doi.org/10.3390/horticulturae10060623 DOI
Tougou M, Hashiguchi A, Yukawa K, Nanjo Y, Hiraga S, Nakamura T, Nishizawa K, Komatsu S (2012) Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotechnol 29(3):301–305. https://doi.org/10.5511/plantbiotechnology.12.0301a DOI
Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu D-T, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425(6956):393–397. https://doi.org/10.1038/nature01853 PubMed DOI
Tsuji H, Meguro N, Suzuki Y, Tsutsumi N, Hirai A, Nakazono M (2003) Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice. FEBS Lett 546(2–3):369–373. https://doi.org/10.1016/S0014-5793(03)00631-8 PubMed DOI
Tutmez B (2024) Identifying electrical conductivity in topsoil by interpretable machine learning. Model Earth Syst Environ 10(2):1869–1881. https://doi.org/10.1007/s40808-023-01878-0 DOI
Tyagi A, Sharma S, Srivastava H, Singh A, Kaila T, Ali S, Gaikwad AB, Singh NK, Gaikwad K (2023) Transcriptome profiling of two contrasting pigeon pea (Cajanus cajan) genotypes in response to waterlogging stress. Front Gen. https://doi.org/10.3389/fgene.2022.1048476 DOI
Tyagi A, Ali S, Mir RA, Sharma S, Arpita K, Almalki MA, Mir ZA (2024) Uncovering the effect of waterlogging stress on plant microbiome and disease development: current knowledge and future perspectives. Front Plant Sci. https://doi.org/10.3389/fpls.2024.1407789 PubMed DOI PMC
Umićević S, Kukavica B, Maksimović I, Gašić U, Milutinović M, Antić M, Mišić D (2024) Stress response in tomato as influenced by repeated waterlogging. Front Plant Sci. https://doi.org/10.3389/fpls.2024.1331281 PubMed DOI PMC
Unger IM, Motavalli PP, Muzika R-M (2009) Changes in soil chemical properties with flooding: a field laboratory approach. Agr Ecosyst Environ 131(1–2):105–110. https://doi.org/10.1016/j.agee.2008.09.013 DOI
Van Nguyen L, Takahashi R, Githiri SM, Rodriguez TO, Tsutsumi N, Kajihara S, Sayama T, Ishimoto M, Harada K, Suematsu K, Abiko T, Mochizuki T (2017) Mapping quantitative trait loci for root development under hypoxia conditions in soybean (Glycine max L. Mer.r). Theoret Appl Gen 130(4):743–755. https://doi.org/10.1007/s00122-016-2847-3 DOI
van Veen H, Akman M, Jamar DCL, Vreugdenhil D, Kooiker M, van Tienderen P, Voesenek LACJ, Schranz ME, Sasidharan R (2014) Group VII E thylene esponse F actor diversification and regulation in four species from flood-prone environments. Plant, Cell Environ 37(10):2421–2432. https://doi.org/10.1111/pce.12302 PubMed DOI
van Veen H, Triozzi PM, Loreti E (2024) Metabolic strategies in hypoxic plants. Plant Physiol. https://doi.org/10.1093/plphys/kiae564 PubMed DOI PMC
Ventura I, Brunello L, Iacopino S, Valeri MC, Novi G, Dornbusch T, Perata P, Loreti E (2020) Arabidopsis phenotyping reveals the importance of alcohol dehydrogenase and pyruvate decarboxylase for aerobic plant growth. Sci Rep 10(1):16669. https://doi.org/10.1038/s41598-020-73704-x PubMed DOI PMC
Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63(4):551–562. https://doi.org/10.1111/j.1365-313X.2010.04262.x PubMed DOI
Wakchaure GC, Minhas PS, Kumar S, Khapte PS, Rane J, Reddy KS (2023) Bulb productivity and quality of monsoon onion (Allium cepa L.) as affected by transient waterlogging at different growth stages and its alleviation with plant growth regulators. Agric Water Manag 278:108136. https://doi.org/10.1016/j.agwat.2023.108136 DOI
Wang F (2008) Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean [Glycine max (L.) Merr.]. Acta Agron Sinica 34(5):748–753. https://doi.org/10.3724/SP.J.1006.2008.00748 DOI
Wang C, Zhu J, Dai S (2016) Effects of chemical control and nutrient control on waterlogging of rapeseed in flower and fruit stage. Jiangsu Agric Sci 44:136–138
Wang X, Deng Z, Zhang W, Meng Z, Chang X, Lv M (2017) Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS ONE 12(1):e0169029. https://doi.org/10.1371/journal.pone.0169029 PubMed DOI PMC
Wang L, Gao J, Zhang Z, Liu W, Cheng P, Mu W, Su T, Chen S, Chen F, Jiang J (2020) Overexpression of CmSOS1 confers waterlogging tolerance in Chrysanthemum. J Integr Plant Biol 62(8):1059–1064. https://doi.org/10.1111/jipb.12889 PubMed DOI
Wang Y, Xu Y, Xu J, Sun W, Lv Z, Manzoor MA, Liu X, Shen Z, Wang J, Liu R, Whiting MD, Jiu S, Zhang C (2023) Oxygenation alleviates waterlogging-caused damages to cherry rootstocks. Mol Hortic 3(1):8. https://doi.org/10.1186/s43897-023-00056-1 PubMed DOI PMC
Wang Y, Wang K, Bing X, Tan Y, Zhou Q, Jiang J, Zhu Y (2024) Influencing factors for the growth of cladophora and its cell damage and destruction mechanism: implication for prevention and treatment. Water 16(13):1890. https://doi.org/10.3390/w16131890 DOI
Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69(1):209–236. https://doi.org/10.1146/annurev-arplant-042817-040322 PubMed DOI
Weckwerth W (2011) Green systems biology — from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75(1):284–305. https://doi.org/10.1016/j.jprot.2011.07.010 PubMed DOI
Wei X, Xu H, Rong W, Ye X, Zhang Z (2019) Constitutive expression of a stabilized transcription factor group VII ethylene response factor enhances waterlogging tolerance in wheat without penalizing grain yield. Plant, Cell Environ 42(5):1471–1485. https://doi.org/10.1111/pce.13505 PubMed DOI
Wu C, Mozzoni LA, Moseley D, Hummer W, Ye H, Chen P, Shannon G, Nguyen H (2020) Genome-wide association mapping of flooding tolerance in soybean. Mol Breeding 40(1):4. https://doi.org/10.1007/s11032-019-1086-0 DOI
Wu J, Wang J, Hui W, Zhao F, Wang P, Su C, Gong W (2022a) Physiology of plant responses to water stress and related genes: a review. Forests 13(2):324. https://doi.org/10.3390/f13020324 DOI
Wu Y, Li X, Zhang J, Zhao H, Tan S, Xu W, Pan J, Yang F, Pi E (2022b) ERF subfamily transcription factors and their function in plant responses to abiotic stresses. Front Plant Sci. https://doi.org/10.3389/fpls.2022.1042084 PubMed DOI PMC
Xiang J, Wu H, Zhang Y, Zhang Y, Wang Y, Li Z, Lin H, Chen H, Zhang J, Zhu D (2017) Transcriptomic analysis of gibberellin- and paclobutrazol-treated rice seedlings under submergence. Int J Mol Sci 18(10):2225. https://doi.org/10.3390/ijms18102225 PubMed DOI PMC
Xie Q, Hou H, Yan P, Zhang H, Lv Y, Li X, Chen L, Pang D, Hu Y, Ni X (2022) Programmed cell death associated with the formation of schizo-lysigenous aerenchyma in Nelumbo nucifera root. Front Plant Sci. https://doi.org/10.3389/fpls.2022.968841 PubMed DOI PMC
Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breeding 2(3):219–224. https://doi.org/10.1007/BF00564199 DOI
Xu K, Xu X, Ronald PC, Mackill DJ (2000) A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet MGG 263(4):681–689. https://doi.org/10.1007/s004380051217 PubMed DOI
Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442(7103):705–708. https://doi.org/10.1038/nature04920 PubMed DOI
Xu QT, Yang L, Zhou ZQ, Mei FZ, Qu LH, Zhou GS (2013) Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta 238(5):969–982. https://doi.org/10.1007/s00425-013-1947-4 PubMed DOI
Xu X, Ji J, Xu Q, Qi X, Chen X (2017) Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions. Mol Genet Gen 292(2):353–364. https://doi.org/10.1007/s00438-016-1280-2 DOI
Xu J, Qiao X, Tian Z, Zhang X, Zou X, Cheng Y, Lu G, Zeng L, Fu G, Ding X, Lv Y (2018a) Proteomic analysis of rapeseed root response to waterlogging stress. Plants 7(3):71. https://doi.org/10.3390/plants7030071 PubMed DOI PMC
Xu X, Ji J, Xu Q, Qi X, Weng Y, Chen X (2018b) The major-effect quantitative trait locus Cs ARN 6.1 encodes an AAA ATP ase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. Plant J 93(5):917–930. https://doi.org/10.1111/tpj.13819 PubMed DOI
Xu Z, Ye L, Shen Q, Zhang G (2024) Advances in the study of waterlogging tolerance in plants. J Integr Agric 23(9):2877–2897. https://doi.org/10.1016/j.jia.2023.12.028 DOI
Xuewen X, Huihui W, Xiaohua Q, Qiang X, Xuehao C (2014) Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci Hortic 179:388–395. https://doi.org/10.1016/j.scienta.2014.10.001 DOI
Yamauchi T, Rajhi I, Nakazono M (2011) Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav 6(5):759–761. https://doi.org/10.4161/psb.6.5.15417 PubMed DOI PMC
Yamauchi T, Tanaka A, Mori H, Takamure I, Kato K, Nakazono M (2016) Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. Plant, Cell Environ 39(10):2145–2157. https://doi.org/10.1111/pce.12766 PubMed DOI
Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, Yoshioka H, Nakazono M (2017) An NADPH Oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. Plant Cell 29(4):775–790. https://doi.org/10.1105/tpc.16.00976 PubMed DOI PMC
Yamauchi T, Colmer TD, Pedersen O, Nakazono M (2018) Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol 176(2):1118–1130. https://doi.org/10.1104/pp.17.01157 PubMed DOI
Yan K, Zhao S, Cui M, Han G, Wen P (2018) Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. Plant Physiol Biochem 125:239–246. https://doi.org/10.1016/j.plaphy.2018.02.017 PubMed DOI
Yang C-Y, Hsu F-C, Li J-P, Wang N-N, Shih M-C (2011) The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in arabidopsis. Plant Physiol 156(1):202–212. https://doi.org/10.1104/pp.111.172486 PubMed DOI PMC
Yang L, Li N, Liu Y, Miao P, Liu J, Wang Z (2023) Updates and prospects: morphological, physiological, and molecular regulation in crop response to waterlogging stress. Agronomy 13(10):2599. https://doi.org/10.3390/agronomy13102599 DOI
Yemelyanov VV, Puzanskiy RK, Shishova MF (2023) Plant life with and without oxygen: a metabolomics approach. Int J Mol Sci 24(22):16222. https://doi.org/10.3390/ijms242216222 PubMed DOI PMC
Yeung E, van Veen H, Vashisht D, Sobral Paiva AL, Hummel M, Rankenberg T, Steffens B, Steffen-Heins A, Sauter M, de Vries M, Schuurink RC, Bazin J, Bailey-Serres J, Voesenek LACJ, Sasidharan R (2018) A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc Nat Acad Sci. https://doi.org/10.1073/pnas.1803841115 PubMed DOI PMC
Yin D, Sun D, Han Z, Ni D, Norris A, Jiang C-Z (2019) PhERF2, an ethylene-responsive element binding factor, plays an essential role in waterlogging tolerance of petunia. Horticulture Res 6(1):83. https://doi.org/10.1038/s41438-019-0165-z DOI
Yohan Y (2017) Influence of Waterlogging on Certain Biochemical and Yield Parameters of Pigeonpea (Cajanus cajan (L.) Millsp). Int J Pure Appl Biosci 5(4):1862–1868. https://doi.org/10.18782/2320-7051.2964 DOI
Yu M, Chen G-Y (2013) Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. Springerplus 2(1):245. https://doi.org/10.1186/2193-1801-2-245 PubMed DOI PMC
Yu M, Mao S, Chen G, Liu Y, Li W, Wei Y, Liu C, Zheng Y (2014) QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. J Integr Agric 13(1):31–39. https://doi.org/10.1016/S2095-3119(13)60354-8 DOI
Yu F, Liang K, Fang T, Zhao H, Han X, Cai M, Qiu F (2019a) A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol J 17(12):2286–2298. https://doi.org/10.1111/pbi.13140 PubMed DOI PMC
Yu Z, Chang F, Lv W, Sharmin RA, Wang Z, Kong J, Bhat JA, Zhao T (2019b) Identification of QTN and Candidate Gene for Seed-flooding Tolerance in Soybean [Glycine max (L.) Merr.] using Genome-Wide Association Study (GWAS). Genes 10(12):957. https://doi.org/10.3390/genes10120957 PubMed DOI PMC
Zahra N, Hafeez MB, Shaukat K, Wahid A, Hussain S, Naseer R, Raza A, Iqbal S, Farooq M (2021) Hypoxia and anoxia stress: plant responses and tolerance mechanisms. J Agron Crop Sci 207(2):249–284. https://doi.org/10.1111/jac.12471 DOI
Zhai L, Liu Z, Zou X, Jiang Y, Qiu F, Zheng Y, Zhang Z (2013) Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Physiol Plant 147(2):181–193. https://doi.org/10.1111/j.1399-3054.2012.01653.x PubMed DOI
Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y (2008) Submergence-responsive micrornas are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102(4):509–519. https://doi.org/10.1093/aob/mcn129 PubMed DOI PMC
Zhang X, Tang B, Yu F, Li L, Wang M, Xue Y, Zhang Z, Yan J, Yue B, Zheng Y, Qiu F (2013) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Report 31(3):594–606. https://doi.org/10.1007/s11105-012-0526-3 DOI
Zhang J-Y, Huang S-N, Wang G, Xuan J-P, Guo Z-R (2016a) Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana. Plant Physiol Biochem 106:244–252. https://doi.org/10.1016/j.plaphy.2016.05.009 PubMed DOI
Zhang Y, Chen Y, Lu H, Kong X, Dai J, Li Z, Dong H (2016b) Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging. Field Crop Res 194:83–93. https://doi.org/10.1016/j.fcr.2016.05.006 DOI
Zhang J-Y, Huang S-N, Chen Y-H, Wang G, Guo Z-R (2017a) Identification and characterization of two waterlogging responsive alcohol dehydrogenase genes (AdADH1 and AdADH2) in Actinidia deliciosa. Mol Breeding 37(4):52. https://doi.org/10.1007/s11032-017-0653-5 DOI
Zhang P, Lyu D, Jia L, He J, Qin S (2017b) Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genomics 18(1):649. https://doi.org/10.1186/s12864-017-4055-1 PubMed DOI PMC
Zhang X, Fan Y, Shabala S, Koutoulis A, Shabala L, Johnson P, Hu H, Zhou M (2017c) A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theoret Appl Gen 130(8):1559–1568. https://doi.org/10.1007/s00122-017-2910-8 DOI
Zhang RD, Zhou YF, Yue ZX, Chen XF, Cao X, Xu XX, Xing YF, Jiang B, Ai XY, Huang RD (2019) Changes in photosynthesis, chloroplast ultrastructure, and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica 57(4):1076–1083. https://doi.org/10.32615/ps.2019.124 DOI
Zhang Y, Xu J, Li R, Ge Y, Li Y, Li R (2023) Plants’ response to abiotic stress: mechanisms and strategies. Int J Mol Sci 24(13):10915. https://doi.org/10.3390/ijms241310915 PubMed DOI PMC
Zhang Y, Liang T, Dong H (2024) Melatonin enhances waterlogging tolerance of field-grown cotton through quiescence adaptation and compensatory growth strategies. Field Crop Res 306:109217. https://doi.org/10.1016/j.fcr.2023.109217 DOI
Zhao Y, Zhang W, Abou-Elwafa SF, Shabala S, Xu L (2021) Understanding a mechanistic basis of ABA involvement in plant adaptation to soil flooding: the current standing. Plants 10(10):1982. https://doi.org/10.3390/plants10101982 PubMed DOI PMC
Zhou W, Chen F, Meng Y, Chandrasekaran U, Luo X, Yang W, Shu K (2020) Plant waterlogging/flooding stress responses: from seed germination to maturation. Plant Physiol Biochem 148:228–236. https://doi.org/10.1016/j.plaphy.2020.01.020 PubMed DOI
Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457(1–2):1–12. https://doi.org/10.1016/j.gene.2010.02.011 PubMed DOI