• This record comes from PubMed

Direct-RT-qPCR Detection of SARS-CoV-2 without RNA Extraction as Part of a COVID-19 Testing Strategy: From Sample to Result in One Hour

. 2020 Aug 18 ; 10 (8) : . [epub] 20200818

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA UP_2020_016 Univerzita Palackého v Olomouci
FNOL, 00098892 Ministerstvo Zdravotnictví Ceské Republiky

Links

PubMed 32824767
PubMed Central PMC7459950
DOI 10.3390/diagnostics10080605
PII: diagnostics10080605
Knihovny.cz E-resources

Due to the lack of protective immunity in the general population and the absence of effective antivirals and vaccines, the Coronavirus disease 2019 (COVID-19) pandemic continues in some countries, with local epicentres emerging in others. Due to the great demand for effective COVID-19 testing programmes to control the spread of the disease, we have suggested such a testing programme that includes a rapid RT-qPCR approach without RNA extraction. The Direct-One-Step-RT-qPCR (DIOS-RT-qPCR) assay detects severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one hour while maintaining the high sensitivity and specificity required of diagnostic tools. This optimised protocol allows for the direct use of swab transfer media (14 μL) without the need for RNA extraction, achieving comparable sensitivity to the standard method that requires the time-consuming and costly step of RNA isolation. The limit of detection for DIOS-RT-qPCR was lower than seven copies/reaction, which translates to 550 virus copies/mL of swab. The speed, ease of use and low price of this assay make it suitable for high-throughput screening programmes. The use of fast enzymes allows RT-qPCR to be performed under standard laboratory conditions within one hour, making it a potential point-of-care solution on high-speed cycling instruments. This protocol also implements the heat inactivation of SARS-CoV-2 (75 °C for 10 min), which renders samples non-infectious, enabling testing in BSL-2 facilities. Moreover, we discuss the critical steps involved in developing tests for the rapid detection of COVID-19. Implementing rapid, easy, cost-effective methods can help control the worldwide spread of the COVID-19 infection.

See more in PubMed

Johns Hopkins University. [(accessed on 30 July 2020)]; Available online: https://coronavirus.jhu.edu.

Corman V.M., Landt O., Kaiser M., Molenkamp R., Meijer A., Chu D.K., Bleicker T., Brünink S., Schneider J., Schmidt M.L., et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25:2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045. PubMed DOI PMC

Kubina R., Dziedzic A. Molecular and Serological Tests for COVID-19 a Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics. 2020;10:434. doi: 10.3390/diagnostics10060434. PubMed DOI PMC

Centers for Disease Control and Prevention Research Use only 2019-Novel Coronavirus (2019-nCoV) Real-time RT-PCR Primers and Probes. [(accessed on 28 June 2020)]; Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html.

Hasan M.R., Mirza F., Al-Hail H., Sundararaju S., Xaba T., Iqbal M., Alhussain H., Yassine H.M., Perez-Lopez A., Tang P. Detection of SARS-CoV-2 RNA by direct RT-qPCR on nasopharyngeal specimens without extraction of viral RNA. PLoS ONE. 2020;15:e0236564. doi: 10.1371/journal.pone.0236564. PubMed DOI PMC

Li L., He J.A., Wang W., Xia Y., Song L., Chen Z.H., Zuo H.Z., Tan X.P., Ho A.H., Kong S.K., et al. Development of a Direct Reverse-Transcription Quantitative PCR (dirRT-qPCR) Assay for Clinical Zika Diagnosis. Int. J. Infect. Dis. 2019;85:167–174. doi: 10.1016/j.ijid.2019.06.007. PubMed DOI

Bruce E.A., Huang M.L., Perchetti G.A., Tighe S., Laaguiby P., Hoffman J.J., Gerrard D.L., Nalla A.K., Wei Y., Greninger A.L., et al. Direct RT-qPCR detection of SARS-CoV-2 RNA from patient nasopharyngeal swabs without an RNA extraction step. bioRxiv. 2020 doi: 10.1101/2020.03.20.001008. PubMed DOI PMC

Fomsgaard A.S., Rosenstierne M.W. An alternative workflow for molecular detection of SARS-CoV-2—Escape from the NA extraction kit-shortage. medRxiv. 2020 doi: 10.1101/2020.03.27.20044495. PubMed DOI PMC

Beltran-Pavez C., Marquez C.L., Munoz G., Valiente-Echeverria F., Gaggero A., Soto-Rifo R., Barriga G.P. SARS-CoV-2 detection from nasopharyngeal swab samples without RNA extraction. bioRxiv. 2020 doi: 10.1101/2020.03.28.013508. DOI

Grant P.R., Turner M.A., Shin G.Y., Nastouli E., Levett L.J. Extraction-free COVID-19 (SARS-CoV-2) diagnosis by RT-PCR to increase capacity for national testing programmes during a pandemic. bioRxiv. 2020 doi: 10.1101/2020.04.06.028316. DOI

Pan Y., Zhang D., Yang P., Poon L.L.M., Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020;20:411–412. doi: 10.1016/S1473-3099(20)30113-4. PubMed DOI PMC

Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., Niemeyer D., Jones T.C., Vollmar P., Rothe C., et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469. doi: 10.1038/s41586-020-2196-x. PubMed DOI

Yu F., Yan L., Wang N., Yang S., Wang L., Tang Y., Gao G., Wang S., Ma C., Xie R., et al. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected Patients. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa345. PubMed DOI PMC

FDA, U.S. Policy for Coronavirus Disease-2019 Tests During the Public Health Emergency (Revised) [(accessed on 28 June 2020)]; Available online: https://www.fda.gov/media/135659/download.

World Health Organisation Laboratory Biosafety Guidance Related to Coronavirus Disease 2019 (COVID-19) [(accessed on 4 July 2020)]; Available online: https://apps.who.int/iris/bitstream/handle/10665/331138/WHO-WPE-GIH-2020.1-eng.pdf?sequence=1&isAllowed=y.

Kampf G., Voss A., Scheithauer S. Inactivation of coronaviruses by heat. J. Hosp. Infect. 2020;105:348–349. doi: 10.1016/j.jhin.2020.03.025. PubMed DOI PMC

Lista M.J., Page R., Sartkaya H., Matos P.M., Ortiz-Zapater E., Maguire T.J.A., Poulton K., O’Byrne A., Bouton C., Dickenson R.E., et al. Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation. medRxiv. 2020 doi: 10.1101/2020.04.22.20074351v1. PubMed DOI PMC

Lu R., Wu X., Wan Z., Li Y., Jin X., Zhang C. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of SARS-CoV-2. Int. J. Mol. Sci. 2020;21:2826. doi: 10.3390/ijms21082826. PubMed DOI PMC

Zhang Y., Odiwuor N., Xiong J., Sun L., Nyaruaba R.O., Wei H., Tanner N.A. Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using Colorimetric LAMP. medRxiv. 2020 doi: 10.1101/2020.02.26.20028373. DOI

Joung J., Ladha A., Saito M., Segel M., Bruneau R., Huang M.W., Kim N.G., Yu X., Li J., Walker B.D., et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv. 2020 doi: 10.1101/2020.05.04.20091231. DOI

Arizti-Sanz J., Freije C.A., Stanton A.C., Boehm C.K., Petros B.A., Siddiqui S., Shaw B.M., Adams G., Kosoko-Thoroddsen T.S.F., Kemball M.E., et al. Integrated sample inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Version 1. bioRxiv. 2020 doi: 10.1101/2020.05.28.119131. PubMed DOI PMC

Wikramaratna P., Paton R.S., Ghafari M., Lourenco J. Estimating false-negative detection rate of SARS-CoV-2 by RT-PCR. medRxiv. 2020 doi: 10.1101/2020.04.05.20053355. PubMed DOI PMC

Centers for Disease Control and Prevention Specimen Collection Guidelines. [(accessed on 28 June 2020)]; Available online: https://www.cdc.gov/urdo/downloads/SpecCollectionGuidelines.pdf.

Wyllie A.L., Fournier J., Casanovas-Massana A., Campbell M., Tokuyama M., Vijayakumar P., Geng B., Muenker M.C., Moore A.J., Vogels C.B.F., et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swap. medRxiv. 2020 doi: 10.1101/2020.04.16.20067835. DOI

Yang Y., Yang M., Shen C., Wang F., Yuan J., Li J., Zhang M., Wang Z., Xing L., Wei J., et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. medRxiv. 2020 doi: 10.1101/2020.02.11.20021493. DOI

Chin A.W.H., Chu J.T.S., Perera M.R.A., Hui K.P.Y., Yen H.-L., Chan M.C.W., Peiris M., Poon L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020;1:e10. doi: 10.1016/S2666-5247(20)30003-3. PubMed DOI PMC

World Health Organisation First Data on Stability and Resistance of SARS Coronavirus Complied by Members of WHO Laboratory Network. [(accessed on 17 July 2020)]; Available online: https://www.who.int/csr/sars/survival_2003_05_04/en/

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...