Distribution of SARS-CoV-2 Lineages in the Czech Republic, Analysis of Data from the First Year of the Pandemic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_026/000844, LM2018132
MSMT.cz
00064203/6003
MZCR.cz
Ministry of Health, Czech Republic
RVO FNBr, 65269705
PubMed
34442750
PubMed Central
PMC8397935
DOI
10.3390/microorganisms9081671
PII: microorganisms9081671
Knihovny.cz E-zdroje
- Klíčová slova
- SARS-CoV-2, massively parallel sequencing, metagenomics, phylogeny, variants,
- Publikační typ
- časopisecké články MeSH
In the Czech Republic, the current pandemic led to over 1.67 million SARS-CoV-2- positive cases since the recording of the first case on 1 March 2020. SARS-CoV-2 genome analysis is an important tool for effective real-time quantitative PCR (RT-qPCR) diagnostics, epidemiology monitoring, as well as vaccination strategy. To date, there is no comprehensive report on the distribution of SARS-CoV-2 genome variants in either the Czech Republic, including Central and Eastern Europe in general, during the first year of pandemic. In this study, we have analysed a representative cohort of SARS-CoV-2 genomes from 229 nasopharyngeal swabs of COVID-19 positive patients collected between March 2020 and February 2021 using validated reference-based sequencing workflow. We document the changing frequency of dominant variants of SARS-CoV-2 (from B.1 -> B.1.1.266 -> B.1.258 -> B.1.1.7) throughout the first year of the pandemic and list specific variants that could impact the diagnostic efficiency RT-qPCR assays. Moreover, our reference-based workflow provided evidence of superinfection in several samples, which may have contributed to one of the highest per capita numbers of COVID-19 cases and deaths during the first year of the pandemic in the Czech Republic.
Zobrazit více v PubMed
Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC
Shu Y., McCauley J. GISAID: Global initiative on sharing all influenza data—From vision to reality. Eurosurveillance. 2017;22:30494. doi: 10.2807/1560-7917.ES.2017.22.13.30494. PubMed DOI PMC
Hadfield J., Megill C., Bell S.M., Huddleston J., Potter B., Callender C., Sagulenko P., Bedford T., Neher R.A. NextStrain: Real-time tracking of pathogen evolution. Bioinformatics. 2018;34:4121–4123. doi: 10.1093/bioinformatics/bty407. PubMed DOI PMC
Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc. Natl. Acad. Sci. USA. 2020;117:9241–9243. doi: 10.1073/pnas.2004999117. PubMed DOI PMC
Yang H.C., Chen C.H., Wang J.H., Liao H.C., Yang C.T., Chen C.W., Lin Y.C., Kao C.H., Lu M.Y.J., Liao J.C. Analysis of genomic distributions of SARS-CoV-2 reveals a dominant strain type with strong allelic associations. Proc. Natl. Acad. Sci. USA. 2020;117:30679–30686. doi: 10.1073/pnas.2007840117. PubMed DOI PMC
Rambaut A., Holmes E.C., O’Toole Á., Hill V., McCrone J.T., Ruis C., du Plessis L., Pybus O.G. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 2020;5:1403–1407. doi: 10.1038/s41564-020-0770-5. PubMed DOI PMC
Komenda M., Bulhart V., Karolyi M., Jarkovský J., Mužík J., Májek O., Šnajdrová L., Růžičková P., Rážová J., Prymula R., et al. Complex reporting of the COVID-19 epidemic in the Czech Republic: Use of an interactive web-based app in practice. J. Med. Internet Res. 2020;22:e19367. doi: 10.2196/19367. PubMed DOI PMC
Czechia: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. [(accessed on 24 July 2021)]; Available online: https://covid19.who.int.
These European Countries Are Seeing Worse Coronavirus Spikes. [(accessed on 24 July 2021)]; Available online: https://time.com/5902172/europe-coronavirus-second-wave-belgium-czech-republic/
Hasell J., Mathieu E., Beltekian D., Macdonald B., Giattino C., Ortiz-Ospina E., Roser M., Ritchie H. A cross-country database of COVID-19 testing. Sci. Data. 2020;7:345. doi: 10.1038/s41597-020-00688-8. PubMed DOI PMC
Preliminary Genomic Characterisation of an Emergent SARS-CoV-2 Lineage in the UK Defined by a Novel Set of Spike Mutations. [(accessed on 24 July 2021)]; Available online: https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563.
CDC Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. [(accessed on 25 July 2021)];2020 Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html.
Li D., Zhang J., Li J. Primer design for quantitative real-time PCR for the emerging Coronavirus SARS-CoV-2. Theranostics. 2020;10:7150–7162. doi: 10.7150/thno.47649. PubMed DOI PMC
Klempt P., Brož P., Kašný M., Novotný A., Kvapilová K., Kvapil P. Performance of targeted library preparation solutions for SARS-CoV-2 whole genome analysis. Diagnostics. 2020;10:769. doi: 10.3390/diagnostics10100769. PubMed DOI PMC
Kriegova E., Fillerova R., Kvapil P. Direct-RT-qPCR Detection of SARS-CoV-2 without RNA Extraction as Part of a COVID-19 Testing Strategy: From Sample to Result in One Hour. Diagnostics. 2020;10:605. doi: 10.3390/diagnostics10080605. PubMed DOI PMC
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Letunic I., Bork P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296. doi: 10.1093/nar/gkab301. PubMed DOI PMC
Popa A., Genger J.-W., Nicholson M.D., Penz T., Schmid D., Aberle S.W., Agerer B., Lercher A., Endler L., Colaço H., et al. Genomic epidemiology of superspreading events in Austria reveals mutational dynamics and transmission properties of SARS-CoV-2. Sci. Transl. Med. 2020;12:eabe2555. doi: 10.1126/scitranslmed.abe2555. PubMed DOI PMC
Serwin K., Ossowski A., Szargut M., Cytacka S., Urbańska A., Majchrzak A., Niedźwiedź A., Czerska E., Pawińska-Matecka A., Gołąb J., et al. Molecular Evolution and Epidemiological Characteristics of SARS COV-2 in (Northwestern) Poland. Viruses. 2021;13:1295. doi: 10.3390/v13071295. PubMed DOI PMC
World Health Organization Clinical Management of COVID-19: Interim Guidance, 27 May 2020. [(accessed on 24 July 2021)]; Available online: https://apps.who.int/iris/handle/10665/332196.
Park S.E. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-COV-2; Coronavirus Disease-19) Clin. Exp. Pediatrics. 2020;63:119–124. doi: 10.3345/cep.2020.00493. PubMed DOI PMC
Rothan H.A., Byrareddy S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020;109:102433. doi: 10.1016/j.jaut.2020.102433. PubMed DOI PMC
du Plessis L., McCrone J.T., Zarebski A.E., Hill V., Ruis C., Gutierrez B., Raghwani J., Ashworth J., Colquhoun R., Connor T.R., et al. Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science. 2021;371:708–712. doi: 10.1126/science.abf2946. PubMed DOI PMC
Pedro N., Silva C.N., Magalhães A.C., Cavadas B., Rocha A.M., Moreira A.C., Gomes M.S., Silva D., Sobrinho-Simões J., Ramos A., et al. Dynamics of a Dual SARS-CoV-2 Lineage Co-Infection on a Prolonged Viral Shedding COVID-19 Case: Insights into Clinical Severity and Disease Duration. Microorganisms. 2021;9:300. doi: 10.3390/microorganisms9020300. PubMed DOI PMC
Taghizadeh P., Salehi S., Heshmati A., Houshmand S.M., Inanloo Rahatloo K., Mahjoubi F., Sanati M.H., Yari H., Alavi A., Jamehdar S.A., et al. Study on SARS-CoV-2 strains in Iran reveals potential contribution of co-infection with and recombination between different strains to the emergence of new strains. Virology. 2021;562:63–73. doi: 10.1016/j.virol.2021.06.004. PubMed DOI PMC
da Silva Francisco R., Jr., Benites L.F., Lamarca A.P., de Almeida L.G.P., Hansen A.W., Gularte J.S., Demoliner M., Gerber A.L., Guimarães A.P.d.C., Antunes A.K.E. Pervasive transmission of E484K and emergence of VUI-NP13L with evidence of SARS-CoV-2 co-infection events by two different lineages in Rio Grande do Sul, Brazil. Virus Res. 2021;296:198345. doi: 10.1016/j.virusres.2021.198345. PubMed DOI PMC
Artesi M., Bontems S., Göbbels P., Franckh M., Maes P., Boreux R., Meex C., Melin P., Hayette M.P., Bours V., et al. A Recurrent Mutation at Position 26340 of SARS-CoV-2 Is Associated with Failure of the E Gene Quantitative Reverse Transcription-PCR Utilized in a Commercial Dual-Target Diagnostic Assay. J. Clin. Microbiol. 2020;58:e01598-20. doi: 10.1128/JCM.01598-20. PubMed DOI PMC
Kriegova E., Fillerova R., Raska M., Manakova J., Dihel M., Janca O., Sauer P., Klimkova M., Strakova P., Kvapil P. Excellent option for mass testing during the SARS-CoV-2 pandemic: Painless self-collection and direct RT-qPCR. Virol. J. 2021;18:95. doi: 10.1186/s12985-021-01567-3. PubMed DOI PMC
Antiviral Activity of Selected Lamiaceae Essential Oils and Their Monoterpenes Against SARS-Cov-2