Network Analysis for Uncovering the Relationship between Host Response and Clinical Factors to Virus Pathogen: Lessons from SARS-CoV-2
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36366522
PubMed Central
PMC9697085
DOI
10.3390/v14112422
PII: v14112422
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19 severity, IgM and IgG levels, data visualisation, minimal immune signature, multivariate data analysis, patient similarity network,
- MeSH
- COVID-19 * MeSH
- lidé MeSH
- protilátky virové MeSH
- SARS-CoV-2 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protilátky virové MeSH
Analysing complex datasets while maintaining the interpretability and explainability of outcomes for clinicians and patients is challenging, not only in viral infections. These datasets often include a variety of heterogeneous clinical, demographic, laboratory, and personal data, and it is not a single factor but a combination of multiple factors that contribute to patient characterisation and host response. Therefore, multivariate approaches are needed to analyse these complex patient datasets, which are impossible to analyse with univariate comparisons (e.g., one immune cell subset versus one clinical factor). Using a SARS-CoV-2 infection as an example, we employed a patient similarity network (PSN) approach to assess the relationship between host immune factors and the clinical course of infection and performed visualisation and data interpretation. A PSN analysis of ~85 immunological (cellular and humoral) and ~70 clinical factors in 250 recruited patients with coronavirus disease (COVID-19) who were sampled four to eight weeks after a PCR-confirmed SARS-CoV-2 infection identified a minimal immune signature, as well as clinical and laboratory factors strongly associated with disease severity. Our study demonstrates the benefits of implementing multivariate network approaches to identify relevant factors and visualise their relationships in a SARS-CoV-2 infection, but the model is generally applicable to any complex dataset.
Department of Occupational Medicine University Hospital Olomouc 779 00 Olomouc Czech Republic
Department of Respiratory Medicine University Hospital 625 00 Brno Czech Republic
Zobrazit více v PubMed
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
Wiech M., Chroscicki P., Swatler J., Stepnik D., De Biasi S., Hampel M., Brewinska-Olchowik M., Maliszewska A., Sklinda K., Durlik M., et al. Remodeling of T Cell Dynamics During Long COVID Is Dependent on Severity of SARS-CoV-2 Infection. Front. Immunol. 2022;13:886431. doi: 10.3389/fimmu.2022.886431. PubMed DOI PMC
Kudryavtsev I.V., Arsentieva N.A., Korobova Z.R., Isakov D.V., Rubinstein A.A., Batsunov O.K., Khamitova I.V., Kuznetsova R.N., Savin T.V., Akisheva T.V., et al. Heterogenous CD8+ T Cell Maturation and ‘Polarization’ in Acute and Convalescent COVID-19 Patients. Viruses. 2022;14:1906. doi: 10.3390/v14091906. PubMed DOI PMC
Li Y., Wang X., Shen X.R., Geng R., Xie N., Han J.F., Zhang Q.M., Shi Z.L., Zhou P. A 1-year longitudinal study on COVID-19 convalescents reveals persistence of anti-SARS-CoV-2 humoral and cellular immunity. Emerg. Microbes. Infect. 2022;11:902–913. doi: 10.1080/22221751.2022.2049984. PubMed DOI PMC
Rives B.T., Rosales Y.Z., Valdés M.M., Balbuena H.R., Téllez G.M., Pérez J.R., Padrón L.C.M., Pelier C.R., Lugo F.S., Zayas A.V., et al. Assessment of changes in immune status linked to COVID-19 convalescent and its clinical severity in patients and uninfected exposed relatives. Immunobiology. 2022;227:152216. doi: 10.1016/j.imbio.2022.152216. PubMed DOI PMC
Mishra A., Harichandrakumar K.T., Binu V.S., Satheesh S., Nair N.S. Multivariate approach in analyzing medical data with correlated multiple outcomes: An exploration using ACCORD trial data. Clin. Epidemiol. Glob. Health. 2021;11:100785. doi: 10.1016/j.cegh.2021.100785. DOI
Borsboom D., Deserno M.K., Rhemtulla M., Epskamp S., Fried E.I., McNally R.J., Robinaugh D.J., Perugini M., Dalege J., Constantini G., et al. Network analysis of multivariate data in psychological science. Nat. Rev. Methods Primers. 2021;1:58. doi: 10.1038/s43586-021-00055-w. DOI
Pérez-Segura V., Caro-Carretero R., Rua A. Multivariate Analysis of Risk Factors of the COVID-19 Pandemic in the Community of Madrid, Spain. Int. J. Environ. Res. Public Health. 2021;18:9227. doi: 10.3390/ijerph18179227. PubMed DOI PMC
Li A.Y., Hannah T.C., Durbin J.R., Dreher N., McAuley F.M., Marayati N.F., Spiera Z., Ali M., Gometz A., Kostman J.T., et al. Multivariate Analysis of Black Race and Environmental Temperature on COVID-19 in the US. Am. J. Med. Sci. 2020;360:348–356. doi: 10.1016/j.amjms.2020.06.015. PubMed DOI PMC
Yeater K.M., Duke S.E., Riedell W.E. Multivariate analysis: Greater insights into complex systems. Agron. J. 2015;107:799–810. doi: 10.2134/agronj14.0017. DOI
Everitt B.S. Multivariate analysis: The need for data, and other problems. Br. J. Psychiatry. 1975;126:237–240. doi: 10.1192/bjp.126.3.237. PubMed DOI
Pai S., Bader G.D. Patient Similarity Networks for Precision Medicine. J. Mol. Biol. 2018;430 Pt A:2924–2938. doi: 10.1016/j.jmb.2018.05.037. PubMed DOI PMC
Wang C., Lue W., Kaalia R., Kumar P., Rajapakse J.C. Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma. Sci. Rep. 2022;12:15425. doi: 10.1038/s41598-022-19019-5. PubMed DOI PMC
Trajerova M., Kriegova E., Mikulkova Z., Savara J., Kudelka M., Gallo J. Knee osteoarthritis phenotypes based on synovial fluid immune cells correlate with clinical outcome trajectories. Osteoarthr. Cartil. 2022 doi: 10.1016/j.joca.2022.08.019. Advance online publication. PubMed DOI
Gallo J., Kriegova E., Kudelka M., Lostak J., Radvansky M. Gender Differences in Contribution of Smoking, Low Physical Activity, and High BMI to Increased Risk of Early Reoperation After TKA. J. Arthroplast. 2020;35:1545–1557. doi: 10.1016/j.arth.2020.01.056. PubMed DOI
Petrackova A., Horak P., Radvansky M., Fillerova R., Smotkova Kraiczova V., Kudelka M., Mrazek F., Skacelova M., Smrzova A., Kriegova E. Revealed heterogeneity in rheumatoid arthritis based on multivariate innate signature analysis. Clin. Exp. Rheumatol. 2020;38:289–298. doi: 10.55563/clinexprheumatol/qb2ha3. PubMed DOI
Ochodkova E., Zehnalova S., Kudelka M. Graph Construction Based on Local Representativeness. In: Cao Y., Chen J., editors. Computing and Combinatorics: 23rd International Conference. COCOON; Hong Kong, China: 2017. pp. 654–665.
Klempt P., Brzoň O., Kašný M., Kvapilová K., Hubáček P., Briksi A., Bezdíček M., Koudeláková V., Lengerová M., Hajdúch M., et al. Distribution of SARS-CoV-2 Lineages in the Czech Republic, Analysis of Data from the First Year of the Pandemic. Microorganisms. 2021;9:1671. doi: 10.3390/microorganisms9081671. PubMed DOI PMC
Mikulkova Z., Manukyan G., Turcsanyi P., Kudelka M., Urbanova R., Savara J., Ochodkova E., Brychtova Y., Molinsky J., Simkovic M., et al. Deciphering the complex circulating immune cell microenvironment in chronic lymphocytic leukaemia using patient similarity networks. Sci. Rep. 2021;11:322. doi: 10.1038/s41598-020-79121-4. PubMed DOI PMC
Blondel V.D., Guillaume J.L., Lambiotte R., Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008;10:P10008. doi: 10.1088/1742-5468/2008/10/P10008. DOI
Parimbelli E., Marini S., Sacchi L., Bellazzi R. Patient similarity for precision medicine: A systematic review. J. Biomed. Inform. 2018;83:87–96. doi: 10.1016/j.jbi.2018.06.001. PubMed DOI
Turcsanyi P., Kriegova E., Kudelka M., Radvansky M., Kruzova L., Urbanova R., Schneiderova P., Urbankova H., Papajik T. Improving risk-stratification of patients with chronic lymphocytic leukemia using multivariate patient similarity networks. Leuk. Res. 2019;79:60–68. doi: 10.1016/j.leukres.2019.02.005. PubMed DOI
Parrot T., Gorin J.B., Ponzetta A., Maleki K.T., Kammann T., Emgård J., Perez-Potti A., Sekine T., Rivera-Ballesteros O., Karolinska COVID-19 Study Group et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci. Immunol. 2020;5:eabe1670. doi: 10.1126/sciimmunol.abe1670. PubMed DOI PMC
Shuwa H.A., Shaw T.N., Knight S.B., Wemyss K., McClure F.A., Pearmain L., Prise I., Jagger C., Morgan D.J., Khan S., et al. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med. 2021;2:720–735.e4. doi: 10.1016/j.medj.2021.03.013. PubMed DOI PMC
Sosa-Hernández V.A., Torres-Ruíz J., Cervantes-Díaz R., Romero-Ramírez S., Páez-Franco J.C., Meza-Sánchez D.E., Juárez-Vega G., Pérez-Fragoso A., Ortiz-Navarrete V., Ponce-de-León A., et al. B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Front. Immunol. 2020;11:611004. doi: 10.3389/fimmu.2020.611004. PubMed DOI PMC
Mathew D., Giles J.R., Baxter A.E., Oldridge D.A., Greenplate A.R., Wu J.E., Alanio C., Kuri-Cervantes L., Pampena M.B., D’Andrea K., et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369:eabc8511. doi: 10.1126/science.abc8511. PubMed DOI PMC
Aghbash P.S., Eslami N., Shamekh A., Entezari-Maleki T., Baghi H.B. SARS-CoV-2 infection: The role of PD-1/PD-L1 and CTLA-4 axis. Life Sci. 2021;270:119124. doi: 10.1016/j.lfs.2021.119124. PubMed DOI PMC
de Melo G.D., Lazarini F., Levallois S., Hautefort C., Michel V., Larrous F., Verillaud B., Aparicio C., Wagner S., Gheusi G., et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci. Transl. Med. 2021;13:eabf8396. doi: 10.1126/scitranslmed.abf8396. PubMed DOI PMC
Sorokowski P., Karwowski M., Misiak M., Marczak M.K., Dziekan M., Hummel T., Sorokowska A. Sex Differences in Human Olfaction: A Meta-Analysis. Front. Psychol. 2019;10:242. doi: 10.3389/fpsyg.2019.00242. PubMed DOI PMC
Bilinska K., Jakubowska P., Von Bartheld C.S., Butowt R. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem. Neurosci. 2020;11:1555–1562. doi: 10.1021/acschemneuro.0c00210. PubMed DOI PMC
Long Q.X., Liu B.Z., Deng H.J., Wu G.C., Deng K., Chen Y.K., Liao P., Qiu J.F., Lin Y., Cai X.F., et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020;26:845–848. doi: 10.1038/s41591-020-0897-1. PubMed DOI
Newell K.L., Clemmer D.C., Cox J.B., Kayode Y.I., Zoccoli-Rodriguez V., Taylor H.E., Endy T.P., Wilmore J.R., Winslow G.M. Switched and unswitched memory B cells detected during SARS-CoV-2 convalescence correlate with limited symptom duration. PLoS ONE. 2021;16:e0244855. doi: 10.1371/journal.pone.0244855. PubMed DOI PMC
Dan J.M., Mateus J., Kato Y., Hastie K.M., Yu E.D., Faliti C.E., Grifoni A., Ramirez S.I., Haupt S., Frazier A., et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371:eabf4063. doi: 10.1126/science.abf4063. PubMed DOI PMC
Pai S., Hui S., Isserlin R., Shah M.A., Kaka H., Bader G.D. netDx: Interpretable patient classification using integrated patient similarity networks. Mol. Syst. Biol. 2019;15:e8497. doi: 10.15252/msb.20188497. PubMed DOI PMC
Murphy J., Vallières F., Bentall R.P., Shevlin M., McBride O., Hartman T.K., McKay R., Bennett K., Mason L., Gibson-Miller J., et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat. Commun. 2021;12:29. doi: 10.1038/s41467-020-20226-9. PubMed DOI PMC
Our World in Data Coronavirus (COVID-19) Vaccinations. [(accessed on 7 October 2022)]. Available online: https://ourworldindata.org/covid-vaccinations?country=OWID_WRL.
World Health Organisation Tracking SARS-CoV-2 Variants. [(accessed on 7 October 2022)]. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
Dzieciolowska S., Hamel D., Gadio S., Dionne M., Gagnon D., Robitaille L., Cook E., Caron I., Talib A., Parkes L., et al. COVID-19 vaccine acceptance, hesitancy, and refusal among Canadian healthcare workers: A multicenter survey. Am. J. Infect. Control. 2021;49:1152–1157. doi: 10.1016/j.ajic.2021.04.079. PubMed DOI PMC
Russell J.A., Walley K.R., Kalil A.C., Fowler R. The Potential for Increasing Risk of Consent Refusal in COVID-19 Trials: Considering Underlying Reasons and Responses. Ann. Am. Thorac. Soc. 2022;19:1446–1447. doi: 10.1513/AnnalsATS.202203-250VP. PubMed DOI PMC