Deciphering the complex circulating immune cell microenvironment in chronic lymphocytic leukaemia using patient similarity networks

. 2021 Jan 11 ; 11 (1) : 322. [epub] 20210111

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33431934
Odkazy

PubMed 33431934
PubMed Central PMC7801466
DOI 10.1038/s41598-020-79121-4
PII: 10.1038/s41598-020-79121-4
Knihovny.cz E-zdroje

The tissue microenvironment in chronic lymphocytic leukaemia (CLL) plays a key role in the pathogenesis of CLL, but the complex blood microenvironment in CLL has not yet been fully characterised. Therefore, immunophenotyping of circulating immune cells in 244 CLL patients and 52 healthy controls was performed using flow cytometry and analysed by multivariate Patient Similarity Networks (PSNs). Our study revealed high inter-individual heterogeneity in the distribution and activation of bystander immune cells in CLL, depending on the bulk of the CLL cells. High CLL counts were associated with low activation on circulating monocytes and T cells and vice versa. The highest activation of immune cells, particularly of intermediate and non-classical monocytes, was evident in patients treated with novel agents. PSNs revealed a low activation of immune cells in CLL progression, irrespective of IgHV status, Binet stage and TP53 disruption. Patients with high intermediate monocytes (> 5.4%) with low activation were 2.5 times more likely (95% confidence interval 1.421-4.403, P = 0.002) to had shorter time-to-treatment than those with low monocyte counts. Our study demonstrated the association between the activation of circulating immune cells and the bulk of CLL cells. The highest activation of bystander immune cells was detected in patients with slow disease course and in those treated with novel agents. The subset of intermediate monocytes showed predictive value for time-to-treatment in CLL.

Zobrazit více v PubMed

Zhang S, Kipps TJ. The pathogenesis of chronic lymphocytic leukemia. Annu. Rev. Pathol. 2014;9:103–118. doi: 10.1146/annurev-pathol-020712-163955. PubMed DOI PMC

Ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in Chronic Lymphocytic Leukemia: implications for disease pathogenesis and treatment. Biochim. Biophys. Acta. 2016;1863:401–413. doi: 10.1016/j.bbamcr.2015.07.009. PubMed DOI PMC

van Attekum MH, Eldering E, Kater AP. Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk. Haematologica. 2017;102:1469–1476. doi: 10.3324/haematol.2016.142679. PubMed DOI PMC

Herishanu Y, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117:563–574. doi: 10.1182/blood-2010-05-284984. PubMed DOI PMC

Niemann CU, et al. Disruption of in vivo chronic lymphocytic leukemia tumor-microenvironment interactions by ibrutinib: findings from an investigator-initiated phase II study. Clin. Cancer Res. 2016;22:1572–1582. doi: 10.1158/1078-0432.CCR-15-1965. PubMed DOI PMC

Schiattone L, Ghia P, Scarfò L. The evolving treatment landscape of chronic lymphocytic leukemia. Curr. Opin. Oncol. 2019;31:568–573. doi: 10.1097/CCO.0000000000000585. PubMed DOI

Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019;94:1266–1287. doi: 10.1002/ajh.25595. PubMed DOI

Riches JC, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121:1612–1621. doi: 10.1182/blood-2012-09-457531. PubMed DOI PMC

Palma M, et al. T cells in chronic lymphocytic leukemia display dysregulated expression of immune checkpoints and activation markers. Haematologica. 2017;102:562–572. doi: 10.3324/haematol.2016.151100. PubMed DOI PMC

Manukyan G, et al. Neutrophils in chronic lymphocytic leukemia are permanently activated and have functional defects. Oncotarget. 2017;8:84889–84901. doi: 10.18632/oncotarget.20031. PubMed DOI PMC

MacFarlane AW, 4th, et al. NK cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature cells expressing inhibitory killer cell Ig-like receptors. Oncoimmunology. 2017;6:e1330235. doi: 10.1080/2162402X.2017.1330235. PubMed DOI PMC

Maffei R, et al. The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation. Haematologica. 2013;98:1115–1123. doi: 10.3324/haematol.2012.073080. PubMed DOI PMC

Manukyan G, et al. Dynamic changes in HLA-DR expression during short-term and long-term ibrutinib treatment in patients with chronic lymphocytic leukemia. Leuk. Res. 2018;72:113–119. doi: 10.1016/j.leukres.2018.08.006. PubMed DOI

Hallek M, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the international workshop on chronic lymphocytic leukemia updating the national cancer institute-working group 1996 guidelines. Blood. 2008;111:5446–5456. doi: 10.1182/blood-2007-06-093906. PubMed DOI PMC

Del Giudice I, et al. Minimal residual disease in chronic lymphocytic leukemia: a new goal? Front. Oncol. 2019;29:689. doi: 10.3389/fonc.2019.00689. PubMed DOI PMC

Petrackova A, et al. Standardization of sequencing coverage depth in NGS: recommendation for detection of clonal and subclonal mutations in cancer diagnostics. Front. Oncol. 2019;9:851. doi: 10.3389/fonc.2019.00851. PubMed DOI PMC

Obr A, et al. TP53 mutation and complex karyotype portends a dismal prognosis in patients with mantle cell lymphoma. Clin. Lymphoma. Myeloma. Leuk. 2018;18:762–768. doi: 10.1016/j.clml.2018.07.282. PubMed DOI

Kruzova L, et al. Complex karyotype as a predictor of high-risk chronic lymphocytic leukemia: a single center experience over 12 years. Leuk. Res. 2019;85:106218. doi: 10.1016/j.leukres.2019.106218. PubMed DOI

Diks AM, et al. Impact of blood storage and sample handling on quality of high dimensional flow cytometric data in multicenter clinical research. J. Immunol. Methods. 2019;475:112616. doi: 10.1016/j.jim.2019.06.007. PubMed DOI

Rühle PF, Fietkau R, Gaipl US, Frey B. Development of a modular assay for detailed immunophenotyping of peripheral human whole blood samples by multicolor flow cytometry. Int. J. Mol. Sci. 2016;17:1316. doi: 10.3390/ijms17081316. PubMed DOI PMC

Ochodkova E, Zehnalova S, Kudelka M. Graph construction based on local representativeness. In: Cao Y, Chen J, editors. Computing and Combinatorics. New York: Springer; 2017. pp. 654–665.

Kriegova E, et al. Gender-related differences observed among immune cells in synovial fluid in knee osteoarthritis. Osteoarthr. Cartil. 2018;26:1247–1256. doi: 10.1016/j.joca.2018.04.016. PubMed DOI

Gallo J, Kriegova E, Kudelka M, Lostak J, Radvansky M. Gender differences in contribution of smoking, low physical activity, and high BMI to increased risk of early reoperation after TKA. J. Arthroplasty. 2020;35:1545–1557. doi: 10.1016/j.arth.2020.01.056. PubMed DOI

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008;2008:P10008. doi: 10.1088/1742-5468/2008/10/P10008. DOI

Herman SEM, et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study. Leukemia. 2014;28:2188–2196. doi: 10.1038/leu.2014.122. PubMed DOI PMC

Woyach JA, et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood. 2014;123:1810–1817. doi: 10.1182/blood-2013-09-527853. PubMed DOI PMC

International CLL-IPI working group An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17:779–790. doi: 10.1016/S1470-2045(16)30029-8. PubMed DOI

Reddy M, Eirikis E, Davis C, Davis HM, Prabhakar U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J. Immunol. Methods. 2004;293:127–142. doi: 10.1016/j.jim.2004.07.006. PubMed DOI

Saez-Cirion A, et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc. Natl. Acad. Sci. USA. 2007;104:6776–6781. doi: 10.1073/pnas.0611244104. PubMed DOI PMC

Sconocchia G, et al. HLA class II antigen expression in colorectal carcinoma tumors as a favorable prognostic marker. Neoplasia. 2014;16:31–42. doi: 10.1593/neo.131568. PubMed DOI PMC

Diao J, et al. Overexpression of HLA-DR is associated with prognosis of glioma patients. Int. J. Clin. Exp. Pathol. 2015;8:5485–5490. PubMed PMC

Johnson DB, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat. Commun. 2016;7:10582. doi: 10.1038/ncomms10582. PubMed DOI PMC

Corthay A, et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity. 2005;22:371–383. doi: 10.1016/j.immuni.2005.02.003. PubMed DOI

Saraiva DP, Jacinto A, Borralho P, Braga S, Cabral MG. HLA-DR in cytotoxic T lymphocytes predicts breast cancer patients' response to neoadjuvant chemotherapy. Front. Immunol. 2018;9:2605. doi: 10.3389/fimmu.2018.02605. PubMed DOI PMC

van Bruggen JAC, et al. Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy. Blood. 2019;134:44–58. doi: 10.1182/blood.2018885863. PubMed DOI PMC

de Weerdt I, et al. Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv. 2019;3:2642–2652. doi: 10.1182/bloodadvances.2019000360. PubMed DOI PMC

Arruga F, et al. Immune response dysfunction in chronic lymphocytic leukemia: dissecting molecular mechanisms and microenvironmental conditions. Int. J. Mol. Sci. 2020;21:E1825. doi: 10.3390/ijms21051825. PubMed DOI PMC

Lapuc I, et al. Circulating classical CD14++CD16- monocytes predict shorter time to initial treatment in chronic lymphocytic leukemia patients: Differential effects of immune chemotherapy on monocyte-related membrane and soluble forms of CD163. Oncol. Rep. 2015;34:1269–1278. doi: 10.3892/or.2015.4088. PubMed DOI

Friedman DR, et al. Relationship of blood monocytes with chronic lymphocytic leukemia aggressiveness and outcomes: a multi-institutional study. Am. J. Hematol. 2016;91:687–691. doi: 10.1002/ajh.24376. PubMed DOI PMC

Hanna BS, et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia. 2016;30:570–579. doi: 10.1038/leu.2015.305. PubMed DOI

Stansfield BK, Ingram DA. Clinical significance of monocyte heterogeneity. Clin. Transl. Med. 2015;4:5. doi: 10.1186/s40169-014-0040-3. PubMed DOI PMC

Merah-Mourah F, Cohen SO, Charron D, Mooney N, Haziot A. Identification of novel human monocyte subsets and evidence for phenotypic groups defined by interindividual variations of expression of adhesion molecules. Sci. Rep. 2020;10:4397. doi: 10.1038/s41598-020-61022-1. PubMed DOI PMC

Tsukada N, Burger JA, Zvaifler NJ, Kipps TJ. Distinctive features of "nurselike" cells that differentiate in the context of chronic lymphocytic leukemia. Blood. 2002;99:1030–1037. doi: 10.1182/blood.V99.3.1030. PubMed DOI

Boissard F, et al. Nurse-like cells promote CLL survival through LFA-3/CD2 interactions. Oncotarget. 2016;8:52225–52236. doi: 10.18632/oncotarget.13660. PubMed DOI PMC

Coffelt SB, et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J. Immunol. 2011;186:4183–4190. doi: 10.4049/jimmunol.1002802. PubMed DOI

Eichhorst B, Hallek M. Prognostication of chronic lymphocytic leukemia in the era of new agents. Hematol. Am. Soc. Hematol. Educ. Program. 2016;2016:149–155. doi: 10.1182/asheducation-2016.1.149. PubMed DOI PMC

Boddu P, Ferrajoli A. Prognostic factors in the era of targeted therapies in CLL. Curr. Hematol. Malig. Rep. 2018;13:78–90. doi: 10.1007/s11899-018-0439-9. PubMed DOI

Sedlarikova L, Petrackova A, Papajik T, Turcsanyi P, Kriegova E. Resistance-associated mutations in chronic lymphocytic leukaemia patients treated with novel agents. Front. Oncol. 2020;10:894. doi: 10.3389/fonc.2020.00894. PubMed DOI PMC

Dubovsky JA, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122:2539–2549. doi: 10.1182/blood-2013-06-507947. PubMed DOI PMC

Martinelli S, et al. Idelalisib impairs T-cell-mediated immunity in chronic lymphocytic leukemia. Haematologica. 2018;103:e598–e601. doi: 10.3324/haematol.2017.187070. PubMed DOI PMC

Parry HM, et al. Long-term ibrutinib therapy reverses CD8+ T cell exhaustion in B cell chronic lymphocytic leukaemia. Front. Immunol. 2019;10:2832. doi: 10.3389/fimmu.2019.02832. PubMed DOI PMC

Long M, et al. Ibrutinib treatment improves T cell number and function in CLL patients. J. Clin. Invest. 2017;127:3052–3064. doi: 10.1172/JCI89756. PubMed DOI PMC

Kohrt HE, et al. Ibrutinib antagonises rituximab-dependent NK cell-mediated cytotoxicity. Blood. 2014;123:1957–1960. doi: 10.1182/blood-2014-01-547869. PubMed DOI PMC

Fiorcari S, et al. Ibrutinib modifies the function of monocyte/macrophage population in chronic lymphocytic leukemia. Oncotarget. 2016;7:65968–65981. doi: 10.18632/oncotarget.11782. PubMed DOI PMC

Pleyer C, Wiestner A, Sun C. Immunological changes with kinase inhibitor therapy for chronic lymphocytic leukemia. Leuk. Lymphoma. 2018;59:2792–2800. doi: 10.1080/10428194.2018.1457147. PubMed DOI PMC

Kondo K, et al. Ibrutinib modulates the immunosuppressive CLL microenvironment through STAT3-mediated suppression of regulatory B-cell function and inhibition of the PD-1/PD-L1 pathway. Leukemia. 2018;32:960–970. doi: 10.1038/leu.2017.304. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace