Secondary metabolite profiles and anti-SARS-CoV-2 activity of ethanolic extracts from nine genotypes of Cannabis sativa L
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
European Union - Next Generation EU
Czech Ministry of Education, Youth and Sports
European Regional Development Fund-Project ENOCH
Ministry of Agriculture, Czech Republic
PubMed
39543317
PubMed Central
PMC11726160
DOI
10.1002/ardp.202400607
Knihovny.cz E-zdroje
- Klíčová slova
- Cannabis sativa, SARS‐CoV‐2, antiviral activity, chemical composition, phytocannabinoids,
- MeSH
- antivirové látky * farmakologie chemie MeSH
- Cannabis * chemie MeSH
- ethanol chemie MeSH
- farmakoterapie COVID-19 MeSH
- fytonutrienty farmakologie chemie izolace a purifikace MeSH
- genotyp * MeSH
- kanabinoidy farmakologie chemie MeSH
- lidé MeSH
- rostlinné extrakty * farmakologie chemie MeSH
- SARS-CoV-2 * účinky léků genetika MeSH
- sekundární metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky * MeSH
- ethanol MeSH
- fytonutrienty MeSH
- kanabinoidy MeSH
- rostlinné extrakty * MeSH
This study deals with the comprehensive phytochemical composition and antiviral activity against SARS-CoV-2 of acidic (non-decarboxylated) and neutral (decarboxylated) ethanolic extracts from seven high-cannabidiol (CBD) and two high-Δ9-tetrahydrocannabinol (Δ9-THC) Cannabis sativa L. genotypes. Their secondary metabolite profiles, phytocannabinoid, terpenoid, and phenolic, were determined by LC-UV, GC-MS, and LC-MS/MS analyses, respectively. All three secondary metabolite profiles, cannabinoid, terpenoid, and phenolic, varied significantly among cannabinoid extracts of different genotypes. The dose-response analyses of their antiviral activity against SARS-CoV-2 showed that only the single predominant phytocannabinoids (CBD or THC) of the neutral extracts exhibited antiviral activity (all IC50 < 10.0 μM). The correlation matrix between phytoconstituent levels and antiviral activity revealed that the phenolic acids, salicylic acid and its glucoside, chlorogenic acid, and ferulic acid, and two flavonoids, abietin, and luteolin, in different cannabinoid extracts from high-CBD genotypes are implicated in the genotype-distinct antagonistic effects on the predominant phytocannabinoid. On the other hand, these analyses also suggested that the other phytocannabinoids and the flavonoid orientin can enrich the extract's pharmacological profiles. Thus, further preclinical studies on cannabinoid extract formulations with adjusted non-phytocannabinoid compositions are warranted to develop supplementary antiviral treatments.
Czech Advanced Technology and Research Institute Palacký University Olomouc Czech Republic
Department of Biochemistry Faculty of Science Palacký University Olomouc Czech Republic
Zobrazit více v PubMed
Holmes E. C., Goldstein S. A., Rasmussen A. L., Robertson D. L., Crits‐Christoph A., Wertheim J. O., Anthony S. J., Barclay W. S., Boni M. F., Doherty P. C., Farrar J., Geoghegan J. L., Jiang X., Leibowitz J. L., Neil S. J. D., Skern T., Weiss S. R., Worobey M., Andersen K. G., Garry R. F., Rambaut A., Cell 2021, 184, 4848. 10.1016/j.cell.2021.08.017 PubMed DOI PMC
Hardenbrook N. J., Zhang P., Curr. Opin. Virol. 2022, 52, 123. 10.1016/j.coviro.2021.11.011 PubMed DOI PMC
Li G., Hilgenfeld R., Whitley R., De Clercq E., Nat. Rev. Drug Discovery 2023, 22, 449. 10.1038/s41573-023-00672-y PubMed DOI PMC
Low Z., Lani R., Tiong V., Poh C., AbuBakar S., Hassandarvish P., Int. J. Mol. Sci. 2023, 24, 9589. 10.3390/ijms24119589 PubMed DOI PMC
Pérez R., Glaser T., Villegas C., Burgos V., Ulrich H., Paz C., Life 2022, 12, 2117. 10.3390/life12122117 PubMed DOI PMC
Russo E. B., Jiang H. E., Li X., Sutton A., Carboni A., del Bianco F., Mandolino G., Potter D. J., Zhao Y. X., Bera S., Zhang Y. B., Lü E. G., Ferguson D. K., Hueber F., Zhao L. C., Liu C. J., Wang Y. F., Li C. S., J. Exp. Bot. 2008, 59, 4171. 10.1093/jxb/ern260 PubMed DOI PMC
Hazekamp A., Fischedick J. T., Drug Test. Anal. 2012, 4, 660. 10.1002/dta.407 PubMed DOI
Hanus L. O., Hod Y., Med. Res. Rev. 2020, 3, 25. 20135. 10.1159/000509733 DOI
Hanuš L. O., Med. Res. Rev. 2009, 29, 213. 10.1002/med.20135 PubMed DOI
van Breemen R. B., Simchuk D., Clin. Sci. 2023, 137, 633. 10.1042/CS20220193 PubMed DOI PMC
Russo E. B., Br. J. Pharmacol. 2011, 163, 1344. 10.1111/j.1476-5381.2011.01238.x PubMed DOI PMC
Koltai H., Namdar D., Trends Plant Sci. 2020, 25, 976. 10.1016/j.tplants.2020.04.007 PubMed DOI
Bloomfield M. A. P., Hindocha C., Green S. F., Wall M. B., Lees R., Petrilli K., Costello H., Ogunbiyi M. O., Bossong M. G., Freeman T. P., Pharmacol. Ther. 2019, 195, 132. 10.1016/j.pharmthera.2018.10.006 PubMed DOI PMC
Chayasirisobhon S., Perm. J. 2021, 25, 1. 10.7812/TPP/19.200 PubMed DOI PMC
Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., Becker S., Rox K., Hilgenfeld R., Science 2020, 368, 409. 10.1126/science.abb3405 PubMed DOI PMC
Fu L., Ye F., Feng Y., Yu F., Wang Q., Wu Y., Zhao C., Sun H., Huang B., Niu P., Song H., Shi Y., Li X., Tan W., Qi J., Gao G. F., Nat. Commun. 2020, 11, 4417. 10.1038/s41467-020-18233-x PubMed DOI PMC
Sea Y. L., Gee Y. J., Lal S. K., Choo W. S., J. Appl. Microbiol. 2023, 134, lxac036. 10.1093/jambio/lxac036 PubMed DOI
van Breemen R. B., Muchiri R. N., Bates T. A., Weinstein J. B., Leier H. C., Farley S., Tafesse F. G., J. Nat. Prod. 2022, 85, 176. 10.1021/acs.jnatprod.1c00946 PubMed DOI PMC
Nguyen L. C., Yang D., Nicolaescu V., Best T. J., Gula H., Saxena D., Gabbard J. D., Chen S. N., Ohtsuki T., Friesen J. B., Drayman N., Mohamed A., Dann C., Silva D., Robinson‐Mailman L., Valdespino A., Stock L., Suárez E., Jones K. A., Azizi S. A., Demarco J. K., Severson W. E., Anderson C. D., Millis J. M., Dickinson B. C., Tay S., Oakes S. A., Pauli G. F., Palmer K. E., Meltzer D. O., Randall G., Rosner M. R., Sci. Adv. 2022, 8, eabi6110. 10.1126/sciadv.abi6110 PubMed DOI
Raj V., Park J. G., Cho K. H., Choi P., Kim T., Ham J., Lee J., Int. J. Biol. Macromol. 2021, 168, 474. 10.1016/j.ijbiomac.2020.12.020. PubMed DOI PMC
Tamburello M., Salamone S., Anceschi L., Governa P., Brighenti V., Morellini A., Rossini G., Manetti F., Gallinella G., Pollastro F., Pellati F., J. Nat. Prod. 2023, 86, 1698. 10.1021/acs.jnatprod.3c00111 PubMed DOI
Chapman R. L., Andurkar S. V., Med. Chem. Res. 2022, 31, 40. 10.1007/s00044-021-02826 PubMed DOI PMC
Kaczorová D., Peč J., Béres T., Štefelová N., Ćavar Zeljković S., Trojan V., Janatová A. K., Klouček P., Tarkowski P., Front. Pharmacol. 2023, 14, 1230728. 10.3389/fphar.2023.1230728 PubMed DOI PMC
Antony A., Farid M., Applied Sciences 2022, 12, 2107. 10.3390/app12042107 DOI
Adams R. P. in Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry (Ed: Adams R. P.), Allured Publishing Corporation, Carol Stream, IL: 2007, Ch. 1.
Shalev N., Kendall M., Anil S. M., Tiwari S., Peeri H., Kumar N., Belausov E., Vinayaka A. C., Koltai H., Molecules 2022, 27, 7523. 10.3390/molecules27217523 PubMed DOI PMC
Maida V., Shi R. B., Fazzari F. G. T., Zomparelli L., Exp. Dermatol. 2021, 30, 1258. 10.1111/exd.14395 PubMed DOI
Stefkov G., Cvetkovikj Karanfilova I., Stoilkovska Gjorgievska V., Trajkovska A., Geskovski N., Karapandzova M., Kulevanova S., Molecules 2022, 27, 975. 10.3390/molecules27030975 PubMed DOI PMC
Turner C. E., Elsohly M. A., Boeren E. G., J. Nat. Prod. 1980, 43, 169. 10.1021/np50008a001 PubMed DOI
Al Bakain R. Z., Al‐Degs Y. S., Cizdziel J. V., Elsohly M. A., Acta Chromatogr. 2020, 33, 78. 10.1556/1326.2020.00767 DOI
Moreno‐Chamba B., Salazar‐Bermeo J., Hosseinian F., Martin‐Bermudo F., Aguado M., De la Torre R., Martínez‐Madrid M. C., Valero M., Martí N., Saura D., Ind. Crops Prod. 2024, 210, 118143. 10.1016/j.indcrop.2024.118143 DOI
Spano M., Di Matteo G., Ingallina C., Botta B., Quaglio D., Ghirga F., Balducci S., Cammarone S., Campiglia E., Giusti A. M., Vinci G., Rapa M., Ciano S., Mannina L., Sobolev A. P., Molecules 2021, 26, 2912. 10.3390/molecules26102912 PubMed DOI PMC
Zandkarimi F., Decatur J., Casali J., Gordon T., Skibola C., Nuckolls C., Molecules 2023, 28, 833. 10.3390/molecules28020833 PubMed DOI PMC
Hanuš L. O., Hod Y., Med. Cannabis Cannabinoids 2020, 3, 25. 10.1159/000509733 PubMed DOI PMC
Pollastro F., MinassI A., Fresu L. G., Curr. Med. Chem. 2018, 25, 1160. 10.2174/0929867324666170810164636 PubMed DOI
Jha N. K., Sharma C., Hashiesh H. M., Arunachalam S., Meeran M. N., Javed H., Patil C. R., Goyal S. N., Ojha S., Front. Pharmacol. 2021, 12, 590201. 10.3389/fphar.2021.590201 PubMed DOI PMC
Christensen C., Rose M., Cornett C., Allesø M., Biomedicines 2023, 11, 2323. 10.3390/biomedicines11082323 PubMed DOI PMC
Gonçalves E. C. D., Baldasso G. M., Bicca M. A., Paes R. S., Capasso R., Dutra R. C., Molecules 2020, 25, 1567. 10.3390/molecules25071567 PubMed DOI PMC
Cavalli J., Dutra R., Neural Regen. Res. 2021, 16, 1433. 10.4103/1673-5374.301011 PubMed DOI PMC
Saarikoski J., Lindström R., Tyynelä M., Viluksela M., Ecotoxicol. Environ. Saf. 1986, 11, 158. 10.1016/0147-6513(86)90060-6 PubMed DOI
Wishart D. S., Hiebert‐Giesbrecht M., Inchehborouni G., Cao X., Guo A. C., LeVatte M. A., Torres‐Calzada C., Gautam V., Johnson M., Liigand J., Wang F., Zahraei S., Bhumireddy S., Wang Y., Zheng J., Mandal R., Dyck J. R. B., J. Agric. Food Chem. 2024, 72, 14099. 10.1021/acs.jafc.3c06616 PubMed DOI PMC
Landa L., Juřica J., in Medical Cannabis in Current Medical Practice (Ed: Landa L.), Grada, Prague: 2020, Ch. 1.
Klempt P., Brzoň O., Kašný M., Kvapilová K., Hubáček P., Briksi A., Bezdíček M., Koudeláková V., Lengerová M., Hajdúch M., Dřevínek P., Pospíšilová Š., Kriegová E., Macek M., Kvapil P., Microorganisms 2021, 9, 1671. 10.3390/microorganisms9081671 PubMed DOI PMC
Ćavar Zeljković S., Schadich E., Džubák P., Hajdúch M., Tarkowski P.., Front. Pharmacol. 2022, 13, 893634. 10.3389/fphar.2022.893634 PubMed DOI PMC