Contribution of glucose and glutamine to hypoxia-induced lipid synthesis decreases, while contribution of acetate increases, during 3T3-L1 differentiation
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-01-00259
Ministry of Health of the Czech Republic project AZV
GAUK 294822
Grant Agency of Charles University
CZ-DRO-VFN64165
Ministry of Health of the Czech Republic project MH
PubMed
39548264
PubMed Central
PMC11568125
DOI
10.1038/s41598-024-79458-0
PII: 10.1038/s41598-024-79458-0
Knihovny.cz E-zdroje
- MeSH
- acetáty * metabolismus farmakologie MeSH
- buněčná diferenciace * účinky léků MeSH
- buňky 3T3-L1 * MeSH
- citrátový cyklus MeSH
- glukosa * metabolismus MeSH
- glutamin * metabolismus MeSH
- hypoxie buňky MeSH
- lipidy biosyntéza MeSH
- lipogeneze * účinky léků MeSH
- metabolismus lipidů účinky léků MeSH
- myši MeSH
- tukové buňky * metabolismus účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetáty * MeSH
- glukosa * MeSH
- glutamin * MeSH
- lipidy MeSH
The molecular mechanisms linking obstructive sleep apnea syndrome (OSA) to obesity and the development of metabolic diseases are still poorly understood. The role of hypoxia (a characteristic feature of OSA) in excessive fat accumulation has been proposed. The present study investigated the possible effects of hypoxia (4% oxygen) on de novo lipogenesis by tracking the major carbon sources in differentiating 3T3-L1 adipocytes. Gas-permeable cultuware was employed to cultivate 3T3-L1 adipocytes in hypoxia (4%) for 7 or 14 days of differentiation. We investigated the contribution of glutamine, glucose or acetate using 13C or 14C labelled carbons to the newly synthesized lipid pool, changes in intracellular lipid content after inhibiting citrate- or acetate-dependent pathways and gene expression of involved key enzymes. The results demonstrate that, in differentiating adipocytes, hypoxia decreased the synthesis of lipids from glucose (44.1 ± 8.8 to 27.5 ± 3.0 pmol/mg of protein, p < 0.01) and partially decreased the contribution of glutamine metabolized through the reverse tricarboxylic acid cycle (4.6% ± 0.2-4.2% ± 0.1%, p < 0.01). Conversely, the contribution of acetate, a citrate- and mitochondria-independent source of carbons, increased upon hypoxia (356.5 ± 71.4 to 649.8 ± 117.5 pmol/mg of protein, p < 0.01). Further, inhibiting the citrate- or acetate-dependent pathways decreased the intracellular lipid content by 58% and 73%, respectively (p < 0.01) showing the importance of de novo lipogenesis in hypoxia-exposed adipocytes. Altogether, hypoxia modified the utilization of carbon sources, leading to alterations in de novo lipogenesis in differentiating adipocytes and increased intracellular lipid content.
Zobrazit více v PubMed
Senaratna, C. V. et al. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep. Med. Rev.34, 70–81 (2017). PubMed
Briancon-Marjollet, A. et al. The impact of sleep disorders on glucose metabolism: Endocrine and molecular mechanisms. Diabetol. Metab. Syndr.7, 25 (2015). PubMed PMC
Kent, B. D., McNicholas, W. T. & Ryan, S. Insulin resistance, glucose intolerance and diabetes mellitus in obstructive sleep apnoea. J. Thorac. Dis.7, 1343–1357 (2015). PubMed PMC
Aurora, R. N. & Punjabi, N. M. Obstructive sleep apnoea and type 2 diabetes mellitus: A bidirectional association. Lancet Respir Med.1, 329–338 (2013). PubMed
Gottlieb, D. J. & Punjabi, N. M. Diagnosis and management of obstructive sleep apnea: A review. JAMA. 323, 1389–1400 (2020). PubMed
Jehan, S. et al. Obstructive sleep apnea and obesity: Implications for Public Health. Sleep. Med. Disord1, (2017). PubMed PMC
Brown, M. A. et al. The impact of sleep-disordered breathing on body Mass Index (BMI): The Sleep Heart Health Study (SHHS). Southwest. J. Pulm Crit. Care. 3, 159 (2011). PubMed PMC
Borel, A. L. et al. Sleep apnoea attenuates the effects of a lifestyle intervention programme in men with visceral obesity. Thorax. 67, 735–741 (2012). PubMed
Zuraikat, F. M. et al. Dimensions of sleep quality are related to objectively measured eating behaviors among children at high familial risk for obesity. Obes. (Silver Spring). 31, 1216–1226 (2023). PubMed PMC
Shechter, A. Obstructive sleep apnea and energy balance regulation: A systematic review. Sleep. Med. Rev.34, 59–69 (2017). PubMed PMC
Shechter, A. Effects of continuous positive airway pressure on energy balance regulation: A systematic review. Eur. Respir J.48, 1640–1657 (2016). PubMed PMC
Trayhurn, P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev.93, 1–21 (2013). PubMed
Yin, J. et al. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am. J. Physiol. Endocrinol. Metab.296, 333–342 (2009). PubMed PMC
Uchiyama, T., Ota, H., Ohbayashi, C. & Takasawa, S. Effects of intermittent hypoxia on Cytokine expression involved in insulin resistance. Int. J. Mol. Sci.22, (2021). PubMed PMC
Lempesis, I. G., van Meijel, R. L. J., Manolopoulos, K. N. & Goossens, G. H. Oxygenation of adipose tissue: A human perspective. Acta Physiol. (Oxf)228, (2020). PubMed PMC
Ota, H. et al. Relationship between intermittent hypoxia and type 2 diabetes in Sleep Apnea Syndrome. Int. J. Mol. Sci. 2019. 20, 4756 (2019). PubMed PMC
Oates, E. H. & Antoniewicz, M. R. 13 C-Metabolic flux analysis of 3T3-L1 adipocytes illuminates its core metabolism under hypoxia. Metab. Eng.76, 158–166 (2023). PubMed
Weiszenstein, M. et al. Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells. Biochem. Biophys. Res. Commun.478, 727–732 (2016). PubMed
Suzuki, T., Shinjo, S., Arai, T., Kanai, M. & Goda, N. Hypoxia and fatty liver. World J. Gastroenterol.20, 15087–15097 (2014). PubMed PMC
Michailidou, Z. et al. Adipocyte pseudohypoxia suppresses lipolysis and facilitates benign adipose tissue expansion. Diabetes. 64, 733–745 (2015). PubMed PMC
Kim, K. H., Song, M. J., Chung, J., Park, H. & Kim, J. B. Hypoxia inhibits adipocyte differentiation in a HDAC-independent manner. Biochem. Biophys. Res. Commun.333, 1178–1184 (2005). PubMed
Musutova, M., Weiszenstein, M., Koc, M. & Polak, J. Intermittent Hypoxia stimulates Lipolysis, but inhibits differentiation and De Novo Lipogenesis in 3T3-L1 cells. Metab. Syndr. Relat. Disord. 18, 146–153 (2020). PubMed
Shao, M. et al. Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. Cell. Stem Cell.28, 685–701e7 (2021). PubMed PMC
Floyd, Z. E., Kilroy, G., Wu, X. & Gimble, J. M. Effects of prolyl hydroxylase inhibitors on adipogenesis and hypoxia inducible factor 1 alpha levels under normoxic conditions. J. Cell. Biochem.101, 1545–1557 (2007). PubMed
Kudo, T. et al. Context-dependent regulation of lipid accumulation in adipocytes by a HIF1α-PPARγ feedback network. Cell. Syst.14, 1074–1086e7 (2023). PubMed PMC
He, Q. et al. Regulation of HIF-1{alpha} activity in adipose tissue by obesity-associated factors: Adipogenesis, insulin, and hypoxia. Am. J. Physiol. Endocrinol. Metab.300, (2011). PubMed PMC
White, U. & Ravussin, E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia. 62, 17–23 (2019). PubMed PMC
Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature453, 783–787 (2008). PubMed
Yin, J. et al. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am. J. Physiol.-Endocrinol. Metab. 296, E333–E342 (2009). PubMed PMC
Musutova, M. et al. The effect of hypoxia and metformin on fatty acid uptake, storage, and oxidation in L6 differentiated myotubes. Front. Endocrinol. (Lausanne). 9, 616 (2018). PubMed PMC
Felix, J. B., Cox, A. R. & Hartig, S. M. Acetyl-CoA and metabolite fluxes regulate white adipose tissue expansion. Trends Endocrinol. Metab.32, 320 (2021). PubMed PMC
Holleran, A. L., Briscoe, D. A., Fiskum, G. & Kelleher, J. K. Glutamine metabolism in AS-30D hepatoma cells. Evidence for its conversion into lipids via reductive carboxylation. Mol. Cell. Biochem.152, 95–101 (1995). PubMed
DeBerardinis, R. J. et al. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U S A. 104, 19345–19350 (2007). PubMed PMC
Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 481, 380–384 (2011). PubMed PMC
Zhang, G. F. et al. Reductive TCA cycle metabolism fuels glutamine- and glucose-stimulated insulin secretion. Cell. Metab.33, 804–817e5 (2021). PubMed PMC
Xu, H. et al. Acyl-CoA synthetase short-chain family member 2 (ACSS2) is regulated by SREBP-1 and plays a role in fatty acid synthesis in caprine mammary epithelial cells. J. Cell. Physiol.233, 1005–1016 (2018). PubMed
Zhao, S. et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature579, 586–591 (2020). PubMed PMC
Smith, S. B. & Crouse, J. D. Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. J. Nutr.114, 792–800 (1984). PubMed
Gao, X. et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nature Communications7, 1–14 (2016). PubMed PMC
Kamphorst, J. J., Chung, M. K., Fan, J. & Rabinowitz, J. D. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer & Metabolism2, 1–8 (2014). PubMed PMC
Weiszenstein, M. et al. The Effect of Pericellular Oxygen levels on Proteomic Profile and Lipogenesis in 3T3-L1 differentiated Preadipocytes cultured on gas-permeable cultureware. PLoS One. 11, e0152382 (2016). PubMed PMC
Pavlacky, J. & Polak, J. Technical feasibility and physiological relevance of hypoxic cell culture models. Front. Endocrinol. (Lausanne)11, (2020). PubMed PMC
Vacek, L. et al. Hypoxia induces saturated fatty acids Accumulation and reduces unsaturated fatty acids independently of reverse tricarboxylic acid cycle in L6 myotubes. Front. Endocrinol. (Lausanne). 13, 663625 (2022). PubMed PMC
Ong, C. W., O’Driscoll, D. M., Truby, H., Naughton, M. T. & Hamilton, G. S. The reciprocal interaction between obesity and obstructive sleep apnoea. Sleep. Med. Rev.17, 123–131 (2013). PubMed
Reinke, C., Bevans-Fonti, S., Drager, L. F., Shin, M. K. & Polotsky, V. Y. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes. J. Appl. Physiol.111, 881–890 (2011). PubMed PMC
Lu, H., Gao, Z., Zhao, Z., Weng, J. & Ye, J. Transient hypoxia reprograms differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation. International Journal of Obesity 2016 40:140, 121–128 (2015). PubMed PMC
Shevchenko, A. & Simons, K. Lipidomics: Coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol.11(8), 593–598 (2010). PubMed
Smolková, K. & Ježek, P. The role of mitochondrial NADPH-dependent isocitrate dehydrogenase in cancer cells. Int. J. Cell. Biol.10.1155/2012/273947 (2012). PubMed PMC
Handy, D. E. & Loscalzo, J. Responses to reductive stress in the cardiovascular system. Free Radic Biol. Med.109, 114–124 (2017). PubMed PMC
Kampjut, D. & Sazanov, L. A. Structure and mechanism of mitochondrial proton-translocating transhydrogenase. Nature. 573, 291–295 (2019). PubMed
Zhang, Z. et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab.3, 1608 (2021). PubMed PMC
Ducluzeau, P. H. et al. Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation. J. Physiol. Biochem.67, 285–296 (2011). PubMed
Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature481, 380–384 (2011). PubMed PMC
Zhao, S. et al. ATP-Citrate lyase controls a glucose-to-acetate metabolic switch. Cell. Rep.17, 1037–1052 (2016). PubMed PMC
Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains Cancer Cell Growth under metabolic stress. Cancer Cell.27, 57–71 (2015). PubMed PMC
Wheatley, V. R., Hodgins, L. T., Coon, W. M. & Cutaneous Lipogenesis, I. Evaluation of Model systems and the utilization of acetate, citrate and glucose as compared with other tissues. J. Invest. Dermatology. 54, 288–297 (1970). PubMed
Murphy, A. M. et al. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur. Respir. J.49, 1601731 (2017). PubMed
Tang, Y., Wang, J., Cai, W. & Xu, J. RAGE/NF-κB pathway mediates hypoxia-induced insulin resistance in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun.521, 77–83 (2020). PubMed
Magalang, U. J. et al. Intermittent hypoxia suppresses adiponectin secretion by adipocytes. Experimental Clin. Endocrinol. Diabetes. 117, 129–134 (2009). PubMed
Dunlop, M. & Court, J. M. Lipogenesis in developing human adipose tissue. Early Hum. Dev.2, 123–130 (1978). PubMed
Zebisch, K., Voigt, V., Wabitsch, M. & Brandsch, M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal. Biochem.425, 88–90 (2012). PubMed
Si, Y., Yoon, J. & Lee, K. Flux profile and modularity analysis of time-dependent metabolic changes of de novo adipocyte formation. Am. J. Physiol. Endocrinol. Metab.292, 1637–1646 (2007). PubMed
Dvořák, A., Zelenka, J., Smolková, K., Vítek, L. & Ježek, P. Background levels of neomorphic 2-hydroxyglutarate facilitate proliferation of primary fibroblasts. Physiol. Res.66, 293–304 (2017). PubMed
Yoshimoto, M. et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: Acetate metabolism in tumor cells. Nucl. Med. Biol.28, 117–122 (2001). PubMed
Yoshii, Y. et al. Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: Implications for the mechanism of acetate PET. Nucl. Med. Biol.36, 771–777 (2009). PubMed
Vankoningsloo, S. et al. Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: Role of fatty acid β-oxidation and glucose. J. Lipid Res.46, 1133–1149 (2005). PubMed
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol.37, 911–917 (1959). PubMed
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72, 248–254 (1976). PubMed
Lu, Y. et al. Inhibition of ACSS2 attenuates alcoholic liver steatosis via epigenetically regulating de novo lipogenesis. Liver Int.43, 1729–1740 (2023). PubMed