Circular RNAs in Hematopoiesis with a Focus on Acute Myeloid Leukemia and Myelodysplastic Syndrome
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
20-19162S
Grantová Agentura České Republiky
00023736
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
32825172
PubMed Central
PMC7503587
DOI
10.3390/ijms21175972
PII: ijms21175972
Knihovny.cz E-resources
- Keywords
- acute myeloid leukemia, circular RNAs, hematopoiesis, myelodysplastic syndrome,
- MeSH
- Leukemia, Myeloid, Acute blood genetics MeSH
- Hematopoiesis * MeSH
- RNA, Circular blood genetics MeSH
- Humans MeSH
- Myelodysplastic Syndromes blood genetics MeSH
- Biomarkers, Tumor blood genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- RNA, Circular MeSH
- Biomarkers, Tumor MeSH
Circular RNAs (circRNAs) constitute a recently recognized group of noncoding transcripts that function as posttranscriptional regulators of gene expression at a new level. Recent developments in experimental methods together with rapidly evolving bioinformatics approaches have accelerated the exploration of circRNAs. The differentiation of hematopoietic stem cells into a broad spectrum of specialized blood lineages is a tightly regulated process that depends on a multitude of factors, including circRNAs. However, despite the growing number of circRNAs described to date, the roles of the majority of them in hematopoiesis remain unknown. Given their stability and disease-specific expression, circRNAs have been acknowledged as novel promising biomarkers and therapeutic targets. In this paper, the biogenesis, characteristics, and roles of circRNAs are reviewed with an emphasis on their currently recognized or presumed involvement in hematopoiesis, especially in acute myeloid leukemia and myelodysplastic syndrome.
See more in PubMed
ENCODE Project Consortium An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature. 2012;489:57–74. doi: 10.1038/nature11247. PubMed DOI PMC
Sanger H.L., Klotz G., Riesner D., Gross H.J., Kleinschmidt A.K. Viroids are Single-Stranded Covalently Closed Circular RNA Molecules Existing as Highly Base-Paired Rod-Like Structures. Proc. Natl. Acad. Sci. USA. 1976;73:3852–3856. doi: 10.1073/pnas.73.11.3852. PubMed DOI PMC
Cocquerelle C., Mascrez B., Hétuin D., Bailleul B. Mis-Splicing Yields Circular RNA Molecules. FASEB J. 1993;7:155–160. doi: 10.1096/fasebj.7.1.7678559. PubMed DOI
Bailleul B. During in Vivo Maturation of Eukaryotic Nuclear mRNA, Splicing Yields Excised Exon Circles. Nucleic Acids Res. 1996;24:1015–1019. doi: 10.1093/nar/24.6.1015. PubMed DOI PMC
Pasman Z., Been M.D., Garcia-Blanco M.A. Exon Circularization in Mammalian Nuclear Extracts. RNA. 1996;2:603–610. PubMed PMC
Nigro J.M., Cho K.R., Fearon E.R., Kern S.E., Ruppert J.M., Oliner J.D., Kinzler K.W., Vogelstein B. Scrambled. Exons. Cell. 1991;64:607–613. doi: 10.1016/0092-8674(91)90244-S. PubMed DOI
Capel B., Swain A., Nicolis S., Hacker A., Walter M., Koopman P., Goodfellow P., Lovell-Badge R. Circular Transcripts of the Testis-Determining Gene Sry in Adult Mouse Testis. Cell. 1993;73:1019–1030. doi: 10.1016/0092-8674(93)90279-Y. PubMed DOI
Hansen T.B., Jensen T.I., Clausen B.H., Bramsen J.B., Finsen B., Damgaard C.K., Kjems J. Natural RNA Circles Function as Efficient microRNA Sponges. Nature. 2013;495:384–388. doi: 10.1038/nature11993. PubMed DOI
Glažar P., Papavasileiou P., Rajewsky N. circBase: A Database for Circular RNAs. RNA. 2014;20:1666–1670. doi: 10.1261/rna.043687.113. PubMed DOI PMC
Salzman J., Chen R.E., Olsen M.N., Wang P.L., Brown P.O. Cell-Type Specific Features of Circular RNA Expression. PLoS Genet. 2013;9:e1003777. doi: 10.1371/annotation/f782282b-eefa-4c8d-985c-b1484e845855. PubMed DOI PMC
Rybak-Wolf A., Stottmeister C., Glažar P., Jens M., Pino N., Giusti S., Hanan M., Behm M., Bartok O., Ashwal-Fluss R., et al. Circular RNAs in the Mammalian Brain are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell. 2015;58:870–885. doi: 10.1016/j.molcel.2015.03.027. PubMed DOI
Jeck W.R., Sorrentino J.A., Wang K., Slevin M.K., Burd C.E., Liu J., Marzluff W.F., Sharpless N.E. Circular RNAs are Abundant, Conserved, and Associated with ALU Repeats. RNA. 2013;19:426. doi: 10.1261/rna.035667.112. PubMed DOI PMC
Salzman J., Gawad C., Wang P.L., Lacayo N., Brown P.O. Circular RNAs are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLoS ONE. 2012;7:e30733. doi: 10.1371/journal.pone.0030733. PubMed DOI PMC
Enuka Y., Lauriola M., Feldman M.E., Sas-Chen A., Ulitsky I., Yarden Y. Circular RNAs are Long-Lived and Display Only Minimal Early Alterations in Response to a Growth Factor. Nucleic Acids Res. 2016;44:1370–1383. doi: 10.1093/nar/gkv1367. PubMed DOI PMC
Chen L. The Biogenesis and Emerging Roles of Circular RNAs. Nat. Rev. Mol. Cell Biol. 2016;17:205–211. doi: 10.1038/nrm.2015.32. PubMed DOI
Ashwal-Fluss R., Meyer M., Pamudurti N.R., Ivanov A., Bartok O., Hanan M., Evantal N., Memczak S., Rajewsky N., Kadener S. circRNA Biogenesis Competes with Pre-mRNA Splicing. Mol. Cell. 2014;56:55–66. doi: 10.1016/j.molcel.2014.08.019. PubMed DOI
Starke S., Jost I., Rossbach O., Schneider T., Schreiner S., Hung L., Bindereif A. Exon Circularization Requires Canonical Splice Signals. Cell Rep. 2015;10:103–111. doi: 10.1016/j.celrep.2014.12.002. PubMed DOI
Zhang X., Wang H., Zhang Y., Lu X., Chen L., Yang L. Complementary Sequence-Mediated Exon Circularization. Cell. 2014;159:134–147. doi: 10.1016/j.cell.2014.09.001. PubMed DOI
Li Z., Huang C., Bao C., Chen L., Lin M., Wang X., Zhong G., Yu B., Hu W., Dai L., et al. Exon-Intron Circular RNAs Regulate Transcription in the Nucleus. Nat. Struct. Mol. Biol. 2015;22:256–264. doi: 10.1038/nsmb.2959. PubMed DOI
Zhang Y., Zhang X., Chen T., Xiang J., Yin Q., Xing Y., Zhu S., Yang L., Chen L. Circular Intronic Long Noncoding RNAs. Mol. Cell. 2013;51:792–806. doi: 10.1016/j.molcel.2013.08.017. PubMed DOI
Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., Maier L., Mackowiak S.D., Gregersen L.H., Munschauer M., et al. Circular RNAs are a Large Class of Animal RNAs with Regulatory Potency. Nature. 2013;495:333–338. doi: 10.1038/nature11928. PubMed DOI
Guarnerio J., Bezzi M., Jeong J.C., Paffenholz S.V., Berry K., Naldini M.M., Lo-Coco F., Tay Y., Beck A.H., Pandolfi P.P. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell. 2016;165:289–302. doi: 10.1016/j.cell.2016.03.020. PubMed DOI
Floris G., Zhang L., Follesa P., Sun T. Regulatory Role of Circular RNAs and Neurological Disorders. Mol. Neurobiol. 2017;54:5156–5165. doi: 10.1007/s12035-016-0055-4. PubMed DOI PMC
Wang Y., Lu T., Wang Q., Liu J., Jiao W. Circular RNAs: Crucial Regulators in the Human Body (Review) Oncol. Rep. 2018;40:3119–3135. doi: 10.3892/or.2018.6733. PubMed DOI PMC
Liang D., Wilusz J.E. Short Intronic Repeat Sequences Facilitate Circular RNA Production. Genes Dev. 2014;28:2233–2247. doi: 10.1101/gad.251926.114. PubMed DOI PMC
Wilusz J.E. Repetitive Elements Regulate Circular RNA Biogenesis. Mobile Genetic Elements. 2015;5:39–45. doi: 10.1080/2159256X.2015.1045682. PubMed DOI PMC
Ivanov A., Memczak S., Wyler E., Torti F., Porath H.T., Orejuela M.R., Piechotta M., Levanon E.Y., Landthaler M., Dieterich C., et al. Analysis of Intron Sequences Reveals Hallmarks of Circular RNA Biogenesis in Animals. Cell Rep. 2015;10:170–177. doi: 10.1016/j.celrep.2014.12.019. PubMed DOI
Aktaş T., Avşar Ilık İ., Maticzka D., Bhardwaj V., Pessoa Rodrigues C., Mittler G., Manke T., Backofen R., Akhtar A. DHX9 Suppresses RNA Processing Defects Originating from the Alu Invasion of the Human Genome. Nature. 2017;544:115–119. doi: 10.1038/nature21715. PubMed DOI
Yu C., Li T., Wu Y., Yeh C., Chiang W., Chuang C., Kuo H. The Circular RNA circBIRC6 Participates in the Molecular Circuitry Controlling Human Pluripotency. Nat. Commun. 2017;8:1149. doi: 10.1038/s41467-017-01216-w. PubMed DOI PMC
Kramer M.C., Liang D., Tatomer D.C., Gold B., March Z.M., Cherry S., Wilusz J.E. Combinatorial Control of Drosophila Circular RNA Expression by Intronic Repeats, hnRNPs, and SR Proteins. Genes Dev. 2015;29:2168–2182. doi: 10.1101/gad.270421.115. PubMed DOI PMC
Du W.W., Yang W., Liu E., Yang Z., Dhaliwal P., Yang B.B. Foxo3 Circular RNA Retards Cell Cycle Progression Via Forming Ternary Complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–2858. doi: 10.1093/nar/gkw027. PubMed DOI PMC
Hansen T.B., Wiklund E.D., Bramsen J.B., Villadsen S.B., Statham A.L., Clark S.J., Kjems J. miRNA-Dependent Gene Silencing Involving Ago2-Mediated Cleavage of a Circular Antisense RNA. EMBO J. 2011;30:4414–4422. doi: 10.1038/emboj.2011.359. PubMed DOI PMC
Du W.W., Zhang C., Yang W., Yong T., Awan F.M., Yang B.B. Identifying and Characterizing circRNA-Protein Interaction. Theranostics. 2017;7:4183–4191. doi: 10.7150/thno.21299. PubMed DOI PMC
Legnini I., Di Timoteo G., Rossi F., Morlando M., Briganti F., Sthandier O., Fatica A., Santini T., Andronache A., Wade M., et al. Circ-ZNF609 is a Circular RNA that can be Translated and Functions in Myogenesis. Mol. Cell. 2017;66:22–37.e9. doi: 10.1016/j.molcel.2017.02.017. PubMed DOI PMC
Pamudurti N.R., Bartok O., Jens M., Ashwal-Fluss R., Stottmeister C., Ruhe L., Hanan M., Wyler E., Perez-Hernandez D., Ramberger E., et al. Translation of CircRNAs. Mol. Cell. 2017;66:9–21.e7. doi: 10.1016/j.molcel.2017.02.021. PubMed DOI PMC
Hansen T.B., Kjems J., Damgaard C.K. Circular RNA and miR-7 in Cancer. Cancer Res. 2013;73:5609–5612. doi: 10.1158/0008-5472.CAN-13-1568. PubMed DOI
Militello G., Weirick T., John D., Döring C., Dimmeler S., Uchida S. Screening and Validation of lncRNAs and circRNAs as miRNA Sponges. Brief. Bioinform. 2017;18:780–788. doi: 10.1093/bib/bbw053. PubMed DOI
Dudekula D.B., Panda A.C., Grammatikakis I., De S., Abdelmohsen K., Gorospe M. CircInteractome: A Web Tool for Exploring Circular RNAs and their Interacting Proteins and microRNAs. RNA Biol. 2016;13:34–42. doi: 10.1080/15476286.2015.1128065. PubMed DOI PMC
Dong R., Ma X., Li G., Yang L. CIRCpedia V2: An Updated Database for Comprehensive Circular RNA Annotation and Expression Comparison. Genom. Proteomics Bioinform. 2018;16:226–233. doi: 10.1016/j.gpb.2018.08.001. PubMed DOI PMC
Wu S., Liu H., Huang P., Chang I.Y., Lee C., Yang C., Tsai W., Tan B.C. circlncRNAnet: An Integrated Web-Based Resource for Mapping Functional Networks of Long Or Circular Forms of Noncoding RNAs. Gigascience. 2018;7:1–10. doi: 10.1093/gigascience/gix118. PubMed DOI PMC
Fan C., Lei X., Fang Z., Jiang Q., Wu F. CircR2Disease: A Manually Curated Database for Experimentally Supported Circular RNAs Associated with various Diseases. Database (Oxford) 2018;2018 doi: 10.1093/database/bay044. PubMed DOI PMC
Xia S., Feng J., Lei L., Hu J., Xia L., Wang J., Xiang Y., Liu L., Zhong S., Han L., et al. Comprehensive Characterization of Tissue-Specific Circular RNAs in the Human and Mouse Genomes. Brief. Bioinform. 2017;18:984–992. doi: 10.1093/bib/bbw081. PubMed DOI
Xia S., Feng J., Chen K., Ma Y., Gong J., Cai F., Jin Y., Gao Y., Xia L., Chang H., et al. CSCD: A Database for Cancer-Specific Circular RNAs. Nucleic Acids Res. 2018;46:D925–D929. doi: 10.1093/nar/gkx863. PubMed DOI PMC
Szabo L., Salzman J. Detecting Circular RNAs: Bioinformatic and Experimental Challenges. Nature reviews. Genetics. 2016;17:679–692. PubMed PMC
Vincent H.A., Deutscher M.P. Substrate Recognition and Catalysis by the Exoribonuclease RNase. R.J. Biol. Chem. 2006;281:29769–29775. doi: 10.1074/jbc.M606744200. PubMed DOI
Jeck W.R., Sharpless N.E. Detecting and Characterizing Circular RNAs. Nat. Biotechnol. 2014;32:453–461. doi: 10.1038/nbt.2890. PubMed DOI PMC
Pandey P.R., Rout P.K., Das A., Gorospe M., Panda A.C. RPAD (RNase R Treatment, Polyadenylation, and Poly(A)+ RNA Depletion) Method to Isolate Highly Pure Circular RNA. Methods. 2019;155:41–48. doi: 10.1016/j.ymeth.2018.10.022. PubMed DOI PMC
Barrett S.P., Salzman J. Circular RNAs: Analysis, Expression and Potential Functions. Development. 2016;143:1838–1847. doi: 10.1242/dev.128074. PubMed DOI PMC
Zaghlool A., Ameur A., Wu C., Westholm J.O., Niazi A., Manivannan M., Bramlett K., Nilsson M., Feuk L. Expression Profiling and in Situ Screening of Circular RNAs in Human Tissues. Sci. Rep. 2018;8:1–12. doi: 10.1038/s41598-018-35001-6. PubMed DOI PMC
Szabo L., Morey R., Palpant N.J., Wang P.L., Afari N., Jiang C., Parast M.M., Murry C.E., Laurent L.C., Salzman J. Statistically Based Splicing Detection Reveals Neural Enrichment and Tissue-Specific Induction of Circular RNA during Human Fetal Development. Genome Biol. 2015;16:126. doi: 10.1186/s13059-015-0690-5. PubMed DOI PMC
Chuang T., Wu C., Chen C., Hung L., Chiang T., Yang M. NCLscan: Accurate Identification of Non-Co-Linear Transcripts (Fusion, Trans-Splicing and Circular RNA) with a Good Balance between Sensitivity and Precision. Nucleic Acids Res. 2016;44:e29. doi: 10.1093/nar/gkv1013. PubMed DOI PMC
Meng X., Li X., Zhang P., Wang J., Zhou Y., Chen M. Circular RNA: An Emerging Key Player in RNA World. Brief. Bioinform. 2017;18:547–557. doi: 10.1093/bib/bbw045. PubMed DOI
Zhang Z., Qi S., Tang N., Zhang X., Chen S., Zhu P., Ma L., Cheng J., Xu Y., Lu M., et al. Discovery of Replicating Circular RNAs by RNA-Seq and Computational Algorithms. PLoS Pathog. 2014;10:e1004553. doi: 10.1371/journal.ppat.1004553. PubMed DOI PMC
Wang K., Singh D., Zeng Z., Coleman S.J., Huang Y., Savich G.L., He X., Mieczkowski P., Grimm S.A., Perou C.M., et al. MapSplice: Accurate Mapping of RNA-Seq Reads for Splice Junction Discovery. Nucleic Acids Res. 2010;38:e178. doi: 10.1093/nar/gkq622. PubMed DOI PMC
Cheng J., Metge F., Dieterich C. Specific Identification and Quantification of Circular RNAs from Sequencing Data. Bioinformatics. 2016;32:1094–1096. doi: 10.1093/bioinformatics/btv656. PubMed DOI
Jakobi T., Uvarovskii A., Dieterich C. Circtools—A One-Stop Software Solution for Circular RNA Research. Bioinformatics. 2019;35:2326–2328. doi: 10.1093/bioinformatics/bty948. PubMed DOI PMC
Gao Y., Wang J., Zhao F. CIRI: An Efficient and Unbiased Algorithm for De Novo Circular RNA Identification. Genome Biol. 2015;16:4. doi: 10.1186/s13059-014-0571-3. PubMed DOI PMC
Li X., Chu C., Pei J., Măndoiu I., Wu Y. CircMarker: A Fast and Accurate Algorithm for Circular RNA Detection. BMC Genomics. 2018;19:572. doi: 10.1186/s12864-018-4926-0. PubMed DOI PMC
Zeng X., Lin W., Guo M., Zou Q. A Comprehensive Overview and Evaluation of Circular RNA Detection Tools. PLoS Comput. Biol. 2017;13:e1005420. doi: 10.1371/journal.pcbi.1005420. PubMed DOI PMC
Hansen T.B., Venø M.T., Damgaard C.K., Kjems J. Comparison of Circular RNA Prediction Tools. Nucleic Acids Res. 2016;44:e58. doi: 10.1093/nar/gkv1458. PubMed DOI PMC
Li S., Teng S., Xu J., Su G., Zhang Y., Zhao J., Zhang S., Wang H., Qin W., Lu Z.J., et al. Microarray is an Efficient Tool for circRNA Profiling. Brief. Bioinform. 2019;20:1420–1433. doi: 10.1093/bib/bby006. PubMed DOI
Zheng Q., Bao C., Guo W., Li S., Chen J., Chen B., Luo Y., Lyu D., Li Y., Shi G., et al. Circular RNA Profiling Reveals an Abundant circHIPK3 that Regulates Cell Growth by Sponging Multiple miRNAs. Nat. Commun. 2016;7:11215. doi: 10.1038/ncomms11215. PubMed DOI PMC
Li X., Yang L., Chen L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell. 2018;71:428–442. doi: 10.1016/j.molcel.2018.06.034. PubMed DOI
Panda A.C., Gorospe M. Detection and Analysis of Circular RNAs by RT-PCR. Bio. Protoc. 2018;8:e2775. doi: 10.21769/BioProtoc.2775. PubMed DOI PMC
Panda A.C., Grammatikakis I., Kim K.M., De S., Martindale J.L., Munk R., Yang X., Abdelmohsen K., Gorospe M. Identification of Senescence-Associated Circular RNAs (SAC-RNAs) Reveals Senescence Suppressor CircPVT1. Nucleic Acids Res. 2017;45:4021–4035. doi: 10.1093/nar/gkw1201. PubMed DOI PMC
Hindson B.J., Ness K.D., Masquelier D.A., Belgrader P., Heredia N.J., Makarewicz A.J., Bright I.J., Lucero M.Y., Hiddessen A.L., Legler T.C., et al. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Anal. Chem. 2011;83:8604–8610. doi: 10.1021/ac202028g. PubMed DOI PMC
Li T., Shao Y., Fu L., Xie Y., Zhu L., Sun W., Yu R., Xiao B., Guo J. Plasma Circular RNA Profiling of Patients with Gastric Cancer and their Droplet Digital RT-PCR Detection. J. Mol. Med. 2018;96:85–96. doi: 10.1007/s00109-017-1600-y. PubMed DOI
Czubak K., Taylor K., Piasecka A., Sobczak K., Kozlowska K., Philips A., Sedehizadeh S., Brook J.D., Wojciechowska M., Kozlowski P. Global Increase in Circular RNA Levels in Myotonic Dystrophy. Front Genet. 2019;10:649. doi: 10.3389/fgene.2019.00649. PubMed DOI PMC
Pandey P.R., Munk R., Kundu G., De S., Abdelmohsen K., Gorospe M. Methods for Analysis of Circular RNAs. Wiley Interdiscip Rev. RNA. 2020;11:e1566. doi: 10.1002/wrna.1566. PubMed DOI PMC
Chen Y.G., Kim M.V., Chen X., Batista P.J., Aoyama S., Wilusz J.E., Iwasaki A., Chang H.Y. Sensing Self and Foreign Circular RNAs by Intron Identity. Mol. Cell. 2017;67:228–238.e5. doi: 10.1016/j.molcel.2017.05.022. PubMed DOI PMC
Wesselhoeft R.A., Kowalski P.S., Anderson D.G. Engineering Circular RNA for Potent and Stable Translation in Eukaryotic Cells. Nat. Commun. 2018;9:2629. doi: 10.1038/s41467-018-05096-6. PubMed DOI PMC
Meng J., Chen S., Han J., Tan Q., Wang X., Wang H., Zhong W., Qin Y., Qiao K., Zhang C., et al. Derepression of Co-Silenced Tumor Suppressor Genes by Nanoparticle-Loaded Circular ssDNA Reduces Tumor Malignancy. Sci. Transl. Med. 2018;10:eaao6321. doi: 10.1126/scitranslmed.aao6321. PubMed DOI
Piwecka M., Glažar P., Hernandez-Miranda L.R., Memczak S., Wolf S.A., Rybak-Wolf A., Filipchyk A., Klironomos F., Cerda Jara C.A., Fenske P., et al. Loss of a Mammalian Circular RNA Locus Causes miRNA Deregulation and Affects Brain Function. Science. 2017;357:1254. doi: 10.1126/science.aam8526. PubMed DOI
Caldas C., So C.W., MacGregor A., Ford A.M., McDonald B., Chan L.C., Wiedemann L.M. Exon Scrambling of MLL Transcripts Occur Commonly and Mimic Partial Genomic Duplication of the Gene. Gene. 1998;208:167–176. doi: 10.1016/S0378-1119(97)00640-9. PubMed DOI
Memczak S., Papavasileiou P., Peters O., Rajewsky N. Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Human Blood. PLoS ONE. 2015;10:e0141214. doi: 10.1371/journal.pone.0141214. PubMed DOI PMC
Nicolet B.P., Engels S., Aglialoro F., van den Akker E., von Lindern M., Wolkers M.C. Circular RNA Expression in Human Hematopoietic Cells is Widespread and Cell-Type Specific. Nucleic Acids Res. 2018;46:8168–8180. doi: 10.1093/nar/gky721. PubMed DOI PMC
Preußer C., Hung L., Schneider T., Schreiner S., Hardt M., Moebus A., Santoso S., Bindereif A. Selective Release of circRNAs in Platelet-Derived Extracellular Vesicles. J. Extracell. Vesicles. 2018;7:1424473. doi: 10.1080/20013078.2018.1424473. PubMed DOI PMC
Hirsch S., Blätte T.J., Grasedieck S., Cocciardi S., Rouhi A., Jongen-Lavrencic M., Paschka P., Krönke J., Gaidzik V.I., Döhner H., et al. Circular RNAs of the Nucleophosmin (NPM1) Gene in Acute Myeloid Leukemia. Haematologica. 2017;102:2039–2047. doi: 10.3324/haematol.2017.172866. PubMed DOI PMC
Wu D., Wen X., Han X., Wang S., Wang Y., Shen M., Fan S., Zhang Z., Shan Q., Li M., et al. Role of Circular RNA DLEU2 in Human Acute Myeloid Leukemia. Mol. Cell. Biol. 2018;38:e00259-18. doi: 10.1128/MCB.00259-18. PubMed DOI PMC
Chen H., Liu T., Liu J., Feng Y., Wang B., Wang J., Bai J., Zhao W., Shen Y., Wang X., et al. Circ-ANAPC7 is Upregulated in Acute Myeloid Leukemia and Appears to Target the MiR-181 Family. Cell Physiol. Biochem. 2018;47:1998–2007. doi: 10.1159/000491468. PubMed DOI
Fan H., Li Y., Liu C., Liu Y., Bai J., Li W. Circular RNA-100290 Promotes Cell Proliferation and Inhibits Apoptosis in Acute Myeloid Leukemia Cells Via Sponging miR-203. Biochem. Biophys. Res. Commun. 2018;507:178–184. doi: 10.1016/j.bbrc.2018.11.002. PubMed DOI
Zhang Y., Zhou S., Yan H., Xu D., Chen H., Wang X., Wang X., Liu Y., Zhang L., Wang S., et al. miR-203 Inhibits Proliferation and Self-Renewal of Leukemia Stem Cells by Targeting Survivin and Bmi-1. Sci. Rep. 2016;6:19995. doi: 10.1038/srep19995. PubMed DOI PMC
Wu S., Du Y., Beckford J., Alachkar H. Upregulation of the EMT Marker Vimentin is Associated with Poor Clinical Outcome in Acute Myeloid Leukemia. J. Transl. Med. 2018;16:170. doi: 10.1186/s12967-018-1539-y. PubMed DOI PMC
Ping L., Jian-Jun C., Chu-Shu L., Guang-Hua L., Ming Z. Silencing of circ_0009910 Inhibits Acute Myeloid Leukemia Cell Growth through Increasing miR-20a-5p. Blood Cells Mol. Dis. 2019;75:41–47. doi: 10.1016/j.bcmd.2018.12.006. PubMed DOI
Li W., Zhong C., Jiao J., Li P., Cui B., Ji C., Ma D. Characterization of hsa_circ_0004277 as a New Biomarker for Acute Myeloid Leukemia Via Circular RNA Profile and Bioinformatics Analysis. Int. J. Mol. Sci. 2017;18:597. doi: 10.3390/ijms18030597. PubMed DOI PMC
Shang J., Chen W., Wang Z., Wei T., Chen Z., Wu W. CircPAN3 Mediates Drug Resistance in Acute Myeloid Leukemia through the miR-153-5p/miR-183-5p-XIAP Axis. Exp. Hematol. 2019;70:42–54. PubMed
Haferlach T., Nagata Y., Grossmann V., Okuno Y., Bacher U., Nagae G., Schnittger S., Sanada M., Kon A., Alpermann T., et al. Landscape of Genetic Lesions in 944 Patients with Myelodysplastic Syndromes. Leukemia. 2014;28:241–247. doi: 10.1038/leu.2013.336. PubMed DOI PMC
Papaemmanuil E., Gerstung M., Malcovati L., Tauro S., Gundem G., Van Loo P., Yoon C.J., Ellis P., Wedge D.C., Pellagatti A., et al. Clinical and Biological Implications of Driver Mutations in Myelodysplastic Syndromes. Blood. 2013;122:3616–3627. doi: 10.1182/blood-2013-08-518886. PubMed DOI PMC
Armstrong R.N., Steeples V., Singh S., Sanchi A., Boultwood J., Pellagatti A. Splicing Factor Mutations in the Myelodysplastic Syndromes: Target Genes and Therapeutic Approaches. Adv. Biol. Regul. 2018;67:13–29. doi: 10.1016/j.jbior.2017.09.008. PubMed DOI
Joshi P., Halene S., Abdel-Wahab O. How do Messenger RNA Splicing Alterations Drive Myelodysplasia? Blood. 2017;129:2465–2470. doi: 10.1182/blood-2017-02-692715. PubMed DOI PMC
Ramabadran R., Wang J., Guzman A., Cullen S.M., Brunetti L., Gundry M., Chan S., Kyba M., Westbrook T., Goodell M. Loss of De Novo DNA Methyltransferase DNMT3A Impacts Alternative Splicing in Hematopoietic Stem Cells. Blood. 2017;130:1. PubMed
Lord A.M., Clement K., Schneider R.K., Marie M., Chen M.C., Levine R.L., Mullally A., Galili N., Ali A.M., Raza A., et al. Loss of TET2 Function in Myelodysplastic Syndrome Results in Intragenic Hypermethylation and Alterations in mRNA Splicing. Blood. 2014;124:775. doi: 10.1182/blood.V124.21.775.775. DOI
Liang D., Tatomer D.C., Luo Z., Wu H., Yang L., Chen L., Cherry S., Wilusz J.E. The Output of Protein-Coding Genes Shifts to Circular RNAs when the Pre-mRNA Processing Machinery is Limiting. Mol. Cell. 2017;68:940–954. doi: 10.1016/j.molcel.2017.10.034. PubMed DOI PMC