Biocompatible micromotors for biosensing
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36044082
PubMed Central
PMC9428376
DOI
10.1007/s00216-022-04287-x
PII: 10.1007/s00216-022-04287-x
Knihovny.cz E-zdroje
- Klíčová slova
- Biofluid, Biomedical analysis, Biosensing, Micromotors, Propulsion,
- MeSH
- lékové transportní systémy MeSH
- nanostruktury * MeSH
- nanotechnologie metody MeSH
- peroxid vodíku MeSH
- regenerace a remediace životního prostředí * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- peroxid vodíku MeSH
Micro/nanomotors are nanoscale devices that have been explored in various fields, such as drug delivery, environmental remediation, or biosensing and diagnosis. The use of micro/nanomotors has grown considerably over the past few years, partially because of the advantages that they offer in the development of new conceptual avenues in biosensing. This is due to their propulsion and intermixing in solution compared with their respective static forms, which enables motion-based detection methods and/or decreases bioassay time. This review focuses on the impacts of micro/nanomotors on biosensing research in the last 2 years. An overview of designs for bioreceptor attachment to micro/nanomotors is given. Recent developments have focused on chemically propelled micromotors using external fuels, commonly hydrogen peroxide. However, the associated fuel toxicity and inconvenience of use in relevant biological samples such as blood have prompted researchers to explore new micro/nanomotor biosensing approaches based on biocompatible propulsion sources such as magnetic or ultrasound fields. The main advances in biocompatible propulsion sources for micro/nanomotors as novel biosensing platforms are discussed and grouped by their propulsion-driven forces. The relevant analytical applications are discussed and representatively illustrated. Moreover, envisioning future biosensing applications, the principal advantages of micro/nanomotor synthesis using biocompatible and biodegradable materials are given. The review concludes with a realistic drawing on the present and future perspectives.
Zobrazit více v PubMed
Guix M, Mayorga-Martinez CC, Merkoçi A. Nano/Micromotors in (Bio)chemical Science Applications. Chem Rev. 2014;114(12):6285–6322. doi: 10.1021/cr400273r. PubMed DOI
Jurado-Sánchez B, Wang J. Micromotors for environmental applications: a review. Environ Sci: Nano. 2018;5:1530–1544. doi: 10.1039/C8EN00299A. DOI
Yuan K, Jiang Z, Jurado-Sánchez B, Escarpa A. Nano/Micromotors for Diagnosis and Therapy of Cancer and Infectious Diseases. Chem Eur J. 2020;26(11):2309–2326. doi: 10.1002/chem.201903475. PubMed DOI
Fernández-Medina M, Ramos-Docampo MA, Hovorka O, Salgueiriño V, Städler B. Recent Advances in Nano- and Micromotors. Adv Funct Mater. 2020;30(12):1908283. doi: 10.1002/adfm.201908283. DOI
Wang J. Nanomachines: Fundamentals and applications. 2013: Wiley. ePDF ISBN 978-3-527-65148-1.
Morales-Narváez E, Guix M, Medina-Sánchez M, Mayorga-Martinez CC, Merkoçi A. Micromotor Enhanced Microarray Technology for Protein Detection. Small. 2014;10(13):2542–2548. doi: 10.1002/smll.201303068. PubMed DOI
Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Labs-on-a-chip meet self-propelled micromotors. Lab Chip. 2016;16:2397–2407. doi: 10.1039/C6LC00467A. PubMed DOI
Karshalev E, Esteban-Fernández de Ávila B, Wang J. Micromotors for “chemistry-on-the-fly”. J Am Chem Soc. 2018;140(11):3810–3820. doi: 10.1021/jacs.8b00088. PubMed DOI
Sengupta S, Ibele ME, Sen A. Fantastic Voyage: Designing Self-Powered Nanorobots. Angew Chem. 51(34):8434–45. 10.1002/anie.201202044. PubMed
Mei Y, Solovev AA, Sanchez S, Schmidt OG. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem Soc Rev. 2011;40:2109–2119. doi: 10.1039/C0CS00078G. PubMed DOI
Ozin GA, Manners I, Fournier-Bidoz S, Arsenault A. Dream Nanomachines. Adv Mater. 2005;17:3011–3018. doi: 10.1002/adma.200501767. DOI
Guix M, Meyer AK, Koch B, Schmidt OG. Carbonate Based Janus Micromotors Moving In Ultra-light Acidic Environment Generated By HeLa Cells In Situ. Sci Rep. 2016;6:21701. doi: 10.1038/srep21701. PubMed DOI PMC
Maria-Hormigos R, Jurado-Sanchez B, Vazquez L, Escarpa A. Carbon Allotrope Nanomaterials Based Catalytic Micromotors. Chem Mater. 2016;28:8962–8970. doi: 10.1021/acs.chemmater.6b03689. DOI
Xu T, Gao W, Xu L-P, Zhang X, Wang S. Fuel-Free Synthetic Micro-/Nanomachines. Adv Mater. 2017;29:1603250. doi: 10.1002/adma.201603250. PubMed DOI
Pacheco M, López MÁ, Jurado-Sánchez B, Escarpa A. Self-propelled micromachines for analytical sensing: a critical review. Anal Bioanal Chem. 2019;411:6561–6573. doi: 10.1007/s00216-019-02070-z. PubMed DOI
Jurado-Sánchez B, Campuzano S, Pingarrón JM, Escarpa A. Janus particles and motors: unrivaled devices for mastering (bio)sensing. Microchim Acta. 2021;188:416. doi: 10.1007/s00604-021-05053-z. PubMed DOI PMC
Liu C, Huang J, Xu T, Zhang X. Powering bioanalytical applications in biomedicine with light-responsive Janus micro-/nanomotors. Microchim Acta. 2022;189:116. doi: 10.1007/s00604-022-05229-1. PubMed DOI
Garcia M, Orozco J, Guix M, Gao W, Sattayasamitsathit S, Escarpa A, Merkoçi A, Wang J. Micromotor-based lab-on-chip immunoassays. Nanoscale. 2013;5:1325. doi: 10.1039/c2nr32400h. PubMed DOI
Yu X, Li Y, Wu J, Ju H. Motor-Based Autonomous Microsensor for Motion and Counting Immunoassay of Cancer Biomarker. Anal Chem. 2014;86:4501–4507. doi: 10.1021/ac500912c. PubMed DOI
Esteban-Fernández de Ávila B, Zhao M, Campuzano S, Ricci F, Pingarrón JM, Mascini M, Wang J. Rapid micromotor-based naked-eye immunoassay. Talanta. 2017;167:651–657. doi: 10.1016/j.talanta.2017.02.068. PubMed DOI
Yuan K, Lopez MA, Jurado-Sanchez B, Escarpa A. Janus Micromotors Coated with 2D Nanomaterials as Dynamic Interfaces for (Bio)-Sensing. ACS Appl Mater Interfaces. 2020;12(41):46588–46597. doi: 10.1021/acsami.0c15389. PubMed DOI
Esteban-Fernandez de Avila B, Lopez-Ramirez MA, Baez DF, Jodra A, Singh VV, Kaufmann K, Wang J. Aptamer-Modified Graphene-Based Catalytic Micromotors: Off−On Fluorescent Detection of Ricin. ACS Sens. 2016;1:217–221. doi: 10.1021/acssensors.5b00300. DOI
Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoci A, Wang J. Bacterial Isolation by Lectin-Modified Microengines. Nano Lett. 2012;12:396–401. doi: 10.1021/nl203717q. PubMed DOI PMC
Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Tailored magnetic carbon allotrope catalytic micromotors for ‘on-chip’ operations. Nanoscale. 2017;9:6286. doi: 10.1039/c6nr09750b. PubMed DOI
Jurado-Sanchez B, Pacheco M, Rojo J, Escarpa A. Magnetocatalytic Graphene Quantum Dots Janus Micromotors for Bacterial Endotoxin Detection. Angew Chem Int Ed. 2017;56:6957–6961. doi: 10.1002/anie.201701396. PubMed DOI
Pacheco M, Jurado-Sanchez B, Escarpa A. Sensitive Monitoring of Enterobacterial Contamination of Food Using Self-Propelled Janus Microsensors. Anal Chem. 2018;90:2912–2917. doi: 10.1021/acs.analchem.7b05209. PubMed DOI
Zhang Z, Li J, Fu L, Liu D, Chen L. Magnetic molecularly imprinted microsensor for selective recognition and transport of fluorescent phycocyanin in seawater. J Mater Chem A. 2015;3:7437. doi: 10.1039/c5ta00143a. DOI
Molinero-Fernandez Á, Arruza L, Lopez MA, Escarpa A. On-the-fly rapid immunoassay for neonatal sepsis diagnosis: C-reactive protein accurate determination using magnetic graphene-based micromotors. Biosens Bioelectron. 2020;158:112156. doi: 10.1016/j.bios.2020.112156. PubMed DOI
Molinero-Fernandez Á, Lopez MA, Escarpa A. Electrochemical Microfluidic Micromotors-Based Immunoassay for C-Reactive Protein Determination in Preterm Neonatal Samples with Sepsis Suspicion. Anal Chem. 2020;92:5048–5054. doi: 10.1021/acs.analchem.9b05384. PubMed DOI
Molinero-Fernandez Á, Moreno-Guzman M, Arruza L, Lopez MA, Escarpa A. Polymer-Based Micromotor Fluorescence Immunoassay for On-the-Move Sensitive Procalcitonin Determination in Very Low Birth Weight Infants’ Plasma. ACS Sens. 2020;5:1336–1344. doi: 10.1021/acssensors.9b02515. PubMed DOI
Russell SM, Alba-Patiño A, Borges M, de la Rica R. Multifunctional motion-to-color janus transducers for the rapid detection of sepsis biomarkers in whole blood. Biosens Bioelectron. 2019;140:111346. doi: 10.1016/j.bios.2019.111346. PubMed DOI
Ma E, Wang K, Wang H. An immunoassay based on nanomotor-assisted electrochemical response for the detection of immunoglobulin. Microchim Acta. 2022;189:47. doi: 10.1007/s00604-021-05158-5. PubMed DOI
Mayorga-Martinez CC, Pumera M. Self-Propelled Tags for Protein Detection. Adv Funct Mater. 2020;30:1906449. doi: 10.1002/adfm.201906449. DOI
Zhang X, Chen C, Wu J, Ju H. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing. ACS Appl Mater Interfaces. 2019;11:13581–13588. doi: 10.1021/acsami.9b00605. PubMed DOI
Draz MS, Kochehbyoki KM, Vasan A, Battalapalli D, Sreeram A, Kanakasabapathy MK, Kallakuri S, Tsibris A, Kuritzkes DR, Shafiee H. DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics. Nat Commun. 2018;9:4282. doi: 10.1038/s41467-018-06727-8. PubMed DOI PMC
Cai L, Wang H, Yu Y, Bian F, Wang Y, Shi K, Ye F, Zhao Y. Stomatocyte structural color-barcode micromotors for multiplex assays. Natl Sci Rev. 2020;7:644–651. doi: 10.1093/nsr/nwz185. PubMed DOI PMC
Yurdabak Karaca G, Kuralay F, Bingol Ozakpinar O, Uygun E, Koc U, Ulusoy S, Bosgelmez Tinaz G, Oksuz L, Uygun Oksuz A. Catalytic Au/PEDOT/Pt micromotors for cancer biomarker detection and potential breast cancer treatment. Appl Nanosci. 2021. 10.1007/s13204-021-01735-5.
Celik Cogal G, Yurdabak Karaca G, Uygun E, Kuralay F, Oksuz L, Remskar M, Uygun Oksuz A. RF plasma-enhanced conducting Polymer/W5O14 based self-propelled micromotors for miRNA detection. Anal Chim Acta. 2020;1138:69–78. doi: 10.1016/j.aca.2020.07.010. PubMed DOI
Celik Cogal G, Das PK, Yurdabak Karaca G, Bhethanabotla VR, Uygun Oksuz A. Fluorescence Detection of miRNA-21 Using Au/Pt Bimetallic Tubular Micromotors Driven by Chemical and Surface Acoustic Wave Forces. ACS Applied Bio Materials. 2021;4(11):7932–7941. doi: 10.1021/acsabm.1c00854. PubMed DOI
Yuan K, Lopez MA, Jurado-Sanchez B, Escarpa A. Janus Micromotors Coated with 2D Nanomaterials as Dynamic Interfaces for (Bio)-Sensing. ACS Appl Mater Interfaces. 2020;12:46588–46597. doi: 10.1021/acsami.0c15389. PubMed DOI
de la Asuncion-Nadal V, Pacheco M, Jurado-Sanchez B, Escarpa A. Chalcogenides-based Tubular Micromotors in Fluorescent Assays. Anal Chem. 2020;92:9188–9193. doi: 10.1021/acs.analchem.0c01541. PubMed DOI
Yuan K, de la Asunción-Nadal V, Cuntín-Abal C, Jurado-Sánchez B, Escarpa A. On-board smartphone micromotor-based fluorescence assays. Lab Chip, 2022. Advance Article. 10.1039/D1LC01106E. PubMed
Dey KK, Zhao X, Tansi BM, Mendez-Ortiz WJ, Cordova-Figueroa UM, Golestanian R, Sen A. Micromotors Powered by Enzyme Catalysis. Nano Lett. 2015;15:8311–8315. doi: 10.1021/acs.nanolett.5b03935. PubMed DOI
Luo M, Li S, Wan J, Yang C, Chen B, Guan J. Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles. Langmuir. 2020;36:7005–7013. doi: 10.1021/acs.langmuir.9b03315. PubMed DOI
Patino T, Porchetta A, Jannasch A, Llado A, Stumpp T, Schaffer E, Ricci F, Sanchez S. Self-Sensing Enzyme-Powered Micromotors Equipped with pH Responsive DNA Nanoswitches. Nano Lett. 2019;19:3440–3447. doi: 10.1021/acs.nanolett.8b04794. PubMed DOI
Yuan Y, Gao C, Wang Z, Fan J, Zhou H, Wang D, Zhou C, Zhu B, He Q. Upconversion-nanoparticle-functionalized Janus micromotors for efficient detection of uric acid. J Mater Chem B. 2022;10:358–363. doi: 10.1039/D1TB02550C. PubMed DOI
Arnaboldi S, Salinas G, Karajić A, Garrigue P, Benincori T, Bonetti G, Cirilli R, Bichon S, Gounel S, Mano N, Kuhn A. Direct dynamic read-out of molecular chirality with autonomous enzyme-driven swimmers. Nat Chem. 2021;13:1241–1247. doi: 10.1038/s41557-021-00798-9. PubMed DOI
Arqué X, Andrés X, Mestre R, Ciraulo B, Ortega Arroyo J, Quidant R, Patiño T, Sánchez S. Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors. Research. 2020;2424972. 10.34133/2020/2424972. PubMed PMC
Mestre R, Patiño T, Sánchez S. Biohybrid robotics: From the nanoscale to the macroscale. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;13(5):e1703. doi: 10.1002/wnan.1703. PubMed DOI
Sun Z, Popp PF, Loderer C, Revilla-Guarinos A. Genetically Engineered Bacterial Biohybrid Microswimmers for Sensing Applications. Sensors. 2020;20:180. doi: 10.3390/s20010180. PubMed DOI PMC
Servant A, Qiu F, Mazza M, Kostarelos K, Nelson BJ. Controlled In Vivo Swimming of a Swarm of Bacteria-Like Microrobotic Flagella. Adv Mater. 2015;27:2981–2988. doi: 10.1002/adma.201404444. PubMed DOI
Berret J-F. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy. Nat Commun. 2016;7:10134. doi: 10.1038/ncomms10134. PubMed DOI PMC
Zhang Y, Zhang L, Yang L, Vong CI, Chan KF, Wu WKK, Kwong TNY, Lo NWS, Ip M, Wong SH, Sung JJY, Chiu PWY, Zhang L. Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins. Sci Adv. 2019;5:eaau9650. doi: 10.1126/sciadv.aau9650. PubMed DOI PMC
Yu S, Sun Z, Zhang Z, Sun H, Liu L, Wang W, Li M, Zhao Q, Li T. Magnetic Microdimer as Mobile Meter for Measuring Plasma Glucose and Lipids. Front bioeng Biotechnol. 2021;9:779632. doi: 10.3389/fbioe.2021.779632. PubMed DOI PMC
Karaca GY, Kaya HK, Kuralay F, Uygun Oksuz A. Int J Biol Macromol. 2021;193:370–377. doi: 10.1016/j.ijbiomac.2021.10.057. PubMed DOI
Wang Y, Liu Y, Li Y, Xu D, Pan X, Chen Y, Zhou D, Wang B, Feng H, Ma X. Magnetic Nanomotor-Based Maneuverable SERS Probe. Research. 2020;7962024. 10.34133/2020/7962024. PubMed PMC
Wang Y, Liu X, Chen C, Chen Y, Li Y, Ye H, Wang B, Chen H, Guo J, Ma X. Magnetic Nanorobots as Maneuverable Immunoassay Probes for Automated and Efficient Enzyme Linked Immunosorbent Assay. ACS Nano. 2022. Article ASAP. 10.1021/acsnano.1c05267. PubMed
Mayorga-Martinez CC, Vyskocil J, Novotnýa F, Bednar P, Ruzek D, Alduhaishe O, Pumera M. Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Appl Mater Today. 2022;26:101337. doi: 10.1016/j.apmt.2021.101337. PubMed DOI PMC
Yuan K, Bujalance-Fernández J, Jurado-Sánchez B, Escarpa A. Light-driven nanomotors and micromotors: envisioning new analytical possibilities for bio-sensing. Microchim Acta. 2020;187:581. doi: 10.1007/s00604-020-04541-y. PubMed DOI
Yang R-L, Zhu Y-J, Qin D-D, Xiong Z-C. Light-Operated Dual-Mode Propulsion at the Liquid/Air Interface Using Flexible, Superhydrophobic, and Thermally Stable Photothermal Paper. ACS Appl Mater Interfaces. 2020;12:1339–1347. doi: 10.1021/acsami.9b18494. PubMed DOI
Pacheco M, Jurado-Sánchez B, Escarpa A. Visible-Light-Driven Janus Microvehicles in Biological Media. Angew Chem Int Ed. 2019;131(50):18185–18192. doi: 10.1002/ange.201910053. PubMed DOI
Villa K, Novotny F, Zelenka J, Browne MP, Ruml T, Pumera M. Visible-Light-Driven Single-Component BiVO4 Micromotors with the Autonomous Ability for Capturing Microorganisms. ACS Nano. 2019;13(7):8135–8145. doi: 10.1021/acsnano.9b03184. PubMed DOI
Wang Y, Zhou C, Wang W, Xu D, Zeng F, Zhan C, Gu J, Li M, Zhao W, Zhang J, Guo J, Feng H, Ma X. Photocatalytically Powered Matchlike Nanomotor for Light-Guided Active SERS Sensing. Angew Chem Int Ed. 2018;57:13110–13113. doi: 10.1002/anie.201807033. PubMed DOI
Xu P, Yu Y, Li T, Chen H, Wang Q, Wang M, Wan M, Mao C. Near-infrared-driven fluorescent nanomotors for detection of circulating tumor cells in whole blood. Anal Chim Acta. 2020;1129:60e68. doi: 10.1016/j.aca.2020.06.061. PubMed DOI
Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y, Wang J. Functionalized Ultrasound-Propelled Magnetically Guided Nanomotors: Toward Practical Biomedical Applications. ACS Nano. 2013;7(10):9232–9240. doi: 10.1021/nn403851v. PubMed DOI
Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE. Acoustic Propulsion of Nanorod Motors Inside Living Cells. Angew Chem Int Ed. 2014;53:3201–3204. doi: 10.1002/anie.201309629. PubMed DOI PMC
Esteban-Fernandez de Avila B, Martin A, Soto F, Lopez-Ramirez MA, Campuzano S, Vasquez-Machado GM, Gao W, Zhang L, Wang J. Single Cell Real-Time miRNAs Sensing Based on Nanomotors. ACS Nano. 2015;9(7):6756–6764. doi: 10.1021/acsnano.5b02807. PubMed DOI
Xu T, Luo Y, Liu C, Zhang X, Wang S. Integrated Ultrasonic Aggregation-Induced Enrichment with Raman Enhancement for Ultrasensitive and Rapid Biosensing. Anal Chem. 2020;92(11):7816–7821. doi: 10.1021/acs.analchem.0c01011. PubMed DOI
Beltrán-Gastélum M, Esteban-Fernández de Ávila B, Gong H, Lekshmy Venugopalan P, Hianik T, Wang J, Subjakova V. Rapid Detection of AIB1 in Breast Cancer Cells Based on Aptamer-Functionalized Nanomotors. ChemPhysChem. 2019;20:3177–3180. doi: 10.1002/cphc.201900844. PubMed DOI
Fu D, Wang Z, Tu Y, Peng F. Interactions between Biomedical Micro-/Nano-Motors and the Immune Molecules, Immune Cells, and the Immune System: Challenges and Opportunities. Adv Healthc Mater. 2021;10:2001788. doi: 10.1002/adhm.202001788. PubMed DOI
Wei M, Zhou C, Tang J, Wang W. Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology and Released Ions. ACS Appl Mater Interfaces. 2018;10(3):2249–2252. doi: 10.1021/acsami.7b18399. PubMed DOI
Llacer-Wintle J, Rivas-Dapena A, Chen X-Z, Pellicer E, Nelson BJ, Puigmartí-Luis J, Pané S. Biodegradable Small-Scale Swimmers for Biomedical Applications. Adv Mater. 2021;33:2102049. 10.1002/adma.202102049 PubMed
Wang S, Xu J, Zhou Q, Geng P, Wang B, Zhou Y, Liu K, Peng F, Tu Y. Biodegradability of Micro/Nanomotors: Challenges and Opportunities. Adv Healthcare Mater. 2021;10:2100335. doi: 10.1002/adhm.202100335. PubMed DOI
Soto F, Karshalev E, Zhang F, Fernandez E, de Avila B, Nourhani A, Wang J. Smart Materials for Microrobots. Chem Rev. 2022;122:5365–5403. doi: 10.1021/acs.chemrev.0c00999. PubMed DOI
Ussia M, Pumera M. Towards micromachine intelligence: potential of polymers. Chem Soc Rev. 2022;51:1558. doi: 10.1039/d1cs00587a. PubMed DOI
Karshalev E, Zhang Y, Esteban-Fernandez de Avila B, Beltran-Gastelum M, Chen J, Mundaca-Uribe R, Zhang F, Nguyen B, Tong Y, Fang RH, Zhang L, Wang J. Micromotors for Active Delivery of Minerals toward the Treatment of Iron Deficiency Anemia. Nano Lett. 2019;19:7816–7826. doi: 10.1021/acs.nanolett.9b02832. PubMed DOI PMC
Lin Z, Gao C, Wang D, He Q. Bubble-Propelled Janus Gallium/Zinc Micromotors for the ActiveTreatment of Bacterial Infections. Angew Chem Int. 2021;60:8750–8754. doi: 10.1002/anie.202016260. PubMed DOI
Esteban-Fernández de Ávila B, Lopez-Ramirez MA, Mundaca-Uribe R, Wei X, Ramírez-Herrera DE, Karshalev E, Nguyen B, Fang RH, Zhang L, Wang J. Multicompartment Tubular Micromotors Toward Enhanced Localized Active Delivery. Adv Mater. 2020;32:2000091. doi: 10.1002/adma.202000091. PubMed DOI
María-Hormigos R, Molinero-Fernández Á, López MÁ, Jurado-Sánchez B, Escarpa A. Prussian Blue/Chitosan Micromotors with Intrinsic Enzyme-like Activity for (bio)-Sensing Assays. Anal Chem. 2022;94:5575–5582. doi: 10.1021/acs.analchem.1c05173. PubMed DOI PMC
Karaca GY, Kaya HK, Kuralay F, Uygun Oksuz A. Chitosan functionalized gold-nickel bimetallic magnetic nanomachines for motion-based deoxyribonucleic acid recognition. Int J Biol Macromol. 2021;193:370–377. doi: 10.1016/j.ijbiomac.2021.10.057. PubMed DOI
Mena-Giraldo P, Orozco J. Photosensitive Polymeric Janus Micromotor for Enzymatic Activity Protection and Enhanced Substrate Degradation. ACS Appl Mater Interfaces. 2022;14:5897–5907. doi: 10.1021/acsami.1c14663. PubMed DOI
Tang G, Chen L, Lian L, Li F, Ravanbakhsh H, Wang M, Zhang YS, Huang C. Designable dual-power micromotors fabricated from a biocompatible gas-shearing strategy. Chem Eng J. 2021;407:127187. doi: 10.1016/j.cej.2020.127187. DOI
Yu Y, Guo J, Wang Y, Shao C, Wang Y, Zhao Y. Bioinspired Helical Micromotors as Dynamic Cell Microcarriers. ACS Appl Mater Interfaces. 2020;12:16097–16103. doi: 10.1021/acsami.0c01264. PubMed DOI
María-Hormigos R, Escarpa A, Goudeau B, Ravaine V, Perro A, Kuhn A. Oscillatory Light-Emitting Biopolymer Based Janus Microswimmers. Adv Mater Interfaces. 2020;7:1902094. doi: 10.1002/admi.201902094. DOI
Zhang C, Wang Y, Chen Y, Ma X, Chen W. Droplet-Based Microfluidic Preparation of Shape-Variable Alginate Hydrogel Magnetic Micromotors. Nanomaterials. 2022;12:115. doi: 10.3390/nano12010115. PubMed DOI PMC
Zhou M, Hou T, Li J, Yu S, Xu Z, Yin M, Wang J, Wang X. Self-Propelled and Targeted Drug Delivery of Poly(aspartic acid)/Iron−Zinc Microrocket in the Stomach. ACS Nano. 2019;13:1324–1332. doi: 10.1021/acsnano.8b06773. PubMed DOI
Hou T, Yu S, Zhou M, Wu M, Liu J, Zheng X, Li J, Wang J, Wang X. Effective removal of inorganic and organic heavy metal pollutants with poly(amino acid)-based micromotors. Nanoscale. 2020;12:5227. doi: 10.1039/c9nr09813e. PubMed DOI
Choi H, Jeong SH, Kim TY, Yi J, Hahn SK. Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioact Mater. 2022;9:54–62. doi: 10.1016/j.bioactmat.2021.08.004. PubMed DOI PMC
Song L, Cai J, Zhang S, Liu B, Zhao Y-D, Chen W. Light-controlled spiky micromotors for efficient capture and transport of targets. Sensors Actuators B Chem. 2022;358:131523. doi: 10.1016/j.snb.2022.131523. DOI
Wu M, Liu S, Liu Z, Huang F, Xu X, Shuai Q. Photothermal interference urease-powered polydopamine nanomotor for enhanced propulsion and synergistic therapy. Colloids Surf B. 2022;212:112353. doi: 10.1016/j.colsurfb.2022.112353. PubMed DOI
Zhao Y, Wang D, Luan Y, Du X. NIR-light propelled bowl-like mesoporous polydopamine@UiO-66 metal-organic framework nanomotors for enhanced removal of organic contaminant. Mater Today Sustain. 2022;18:100129. doi: 10.1016/j.mtsust.2022.100129. DOI
Liu Y, Zhang Y, Wang J, Yang H, Zhou J, Zhao W. Doxorubicin-Loaded Walnut-Shaped Polydopamine Nanomotor for Photothermal-Chemotherapy of Cancer. Bioconjug Chem. 2022;33:726–735. doi: 10.1021/acs.bioconjchem.2c00100. PubMed DOI
Choi H, Cho SH, Hahn SK. Urease-Powered Polydopamine Nanomotors for Intravesical Therapy of Bladder Diseases. ACS Nano. 2020;14:6683–6692. doi: 10.1021/acsnano.9b09726. PubMed DOI