• This record comes from PubMed

Influence of Hydroxyapatite Nanoparticles and Surface Plasma Treatment on Bioactivity of Polycaprolactone Nanofibers

. 2020 Aug 20 ; 12 (9) : . [epub] 20200820

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LQ1601 Central European Institute of Technology
LM2015041 CEITEC Nano Research Infrastructure
LTT18013 Ministerstvo Školství, Mládeže a Tělovýchovy

Nanofibers are well known as a beneficial type of structure for tissue engineering. As a result of the high acquisition cost of the natural polymers and their environmentally problematic treatment (toxic dissolution agents), artificial polymers seem to be the better choice for medical use. In the present study, polycaprolactone nano-sized fibrous structures were prepared by the electrospinning method. The impact of material morphology (random or parallelly oriented fibers versus continuous layer) and the presence of a fraction of hydroxyapatite nanoparticles on cell proliferation was tested. In addition, the effect of improving the material wettability by a low temperature argon discharge plasma treatment was evaluated, too. We have shown that both hydroxyapatite particles as well as plasma surface treatment are beneficial for the cell proliferation. The significant impact of both influences was evident during the first 48 h of the test: the hydroxyapatite particles in polycaprolactone fibers accelerated the proliferation by 10% compared to the control, and the plasma-treated ones enhanced proliferation by 30%.

See more in PubMed

Van Oosterwyck H., Duyck J., Sloten J.V., Van Der Perre G., De Coomans M., Lieven S., Puers R., Naert L. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin. Oral Implant. Res. 1998;9:407–418. doi: 10.1034/j.1600-0501.1996.090606.x. PubMed DOI

Kitamura E., Stegaroiu R., Nomura S., Miyakawa O. Influence of marginal bone resorption on stress around an implant—A three-dimensional finite element analysis. J. Oral Rehabil. 2005;32:279–286. doi: 10.1111/j.1365-2842.2004.01413.x. PubMed DOI

Black C.R.M., Goriainov V., Gibbs D., Kanczler J.M., Tare R., Oreffo R.O.C. Bone Tissue Engineering. Curr. Mol. Biol. Rep. 2015;1:132–140. doi: 10.1007/s40610-015-0022-2. PubMed DOI PMC

Pina S., Oliveira J., Reis R.L. Natural-Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Adv. Mater. 2015;27:1143–1169. doi: 10.1002/adma.201403354. PubMed DOI

Lannutti J.J., Reneker D., Ma T., Tomasko D., Farson D. Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C. 2007;27:504–509. doi: 10.1016/j.msec.2006.05.019. DOI

Bhattarai D.P., Park C.H., Kim C.S., Kim C.S. A Review on Properties of Natural and Synthetic Based Electrospun Fibrous Materials for Bone Tissue Engineering. Membranes. 2018;8:62. doi: 10.3390/membranes8030062. PubMed DOI PMC

Chaudhari A.A., Vig K., Baganizi D.R., Sahu R., Dixit S., Dennis V.A., Singh S.R., Pillai S. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int. J. Mol. Sci. 2016;17:1974. doi: 10.3390/ijms17121974. PubMed DOI PMC

Ramakrishna S., Fujihara K., Teo W.-E., Lim T.-C., Ma Z. An Introduction to Electrospinning and Nanofibers. 1st ed. World Scientific Publishing Co. Pte. Ltd.; Toh Tuck Link, Singapore: 2005. pp. 90–154.

De Vrieze S., Van Camp T., Nelvig A., Hagström B., Westbroek P., De Clerck K. The effect of temperature and humidity on electrospinning. J. Mater. Sci. 2009;44:1357–1362. doi: 10.1007/s10853-008-3010-6. DOI

Lopes M.S., Jardini A., Filho R.M. Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Eng. 2012;42:1402–1413. doi: 10.1016/j.proeng.2012.07.534. DOI

Matthews J.A., Wnek G.E., Simpson D.G., Bowlin G.L. Electrospinning of Collagen Nanofibers. Biomacromolecules. 2002;3:232–238. doi: 10.1021/bm015533u. PubMed DOI

Pezeshki-Modaress M., Mirzadeh H., Zandi M. Gelatin–GAG electrospun nanofibrous scaffold for skin tissue engineering: Fabrication and modeling of process parameters. Mater. Sci. Eng. C. 2015;48:704–712. doi: 10.1016/j.msec.2014.12.023. PubMed DOI

Yoo H.S., Kim T.G., Park T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009;61:1033–1042. doi: 10.1016/j.addr.2009.07.007. PubMed DOI

Wang X., Ding B., Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today. 2013;16:229–241. doi: 10.1016/j.mattod.2013.06.005. PubMed DOI PMC

Cai Y.-Z., Zhang G.-R., Wang L.-L., Jiang Y.Z., Ouyang H.-W., Zou X.-H. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. J. Biomed. Mater. Res. Part A. 2012;100:1187–1194. doi: 10.1002/jbm.a.34063. PubMed DOI

Zhao G., Zhang X., Lu T.J., Xu F. Recent Advances in Electrospun Nanofibrous Scaffolds for Cardiac Tissue Engineering. Adv. Funct. Mater. 2015;25:5726–5738. doi: 10.1002/adfm.201502142. DOI

Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E., Hollister S., Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–4827. doi: 10.1016/j.biomaterials.2004.11.057. PubMed DOI

Yoshimoto H., Shin Y., Terai H., Vacanti J.P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–2082. doi: 10.1016/S0142-9612(02)00635-X. PubMed DOI

Dai N.-T., Williamson M., Khammo N., Adams E., Coombes A.G. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials. 2004;25:4263–4271. doi: 10.1016/j.biomaterials.2003.11.022. PubMed DOI

Shitole A.A., Raut P.W., Sharma N., Giram P., Khandwekar A.P., Garnaik B. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. J. Mater. Sci. Mater. Med. 2019;30:51. doi: 10.1007/s10856-019-6255-5. PubMed DOI

Keivani F., Shokrollahi P., Zandi M., Irani S., Shokrolahi F., Khorasani S. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation. Mater. Sci. Eng. C. 2016;68:78–88. doi: 10.1016/j.msec.2016.05.098. PubMed DOI

Rajzer I. Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. J. Mater. Sci. 2014;49:5799–5807. doi: 10.1007/s10853-014-8311-3. DOI

Andrade T.M., Mello D.C.R., Elias C.M.V., Abdala J.M.A., Silva E., De Vasconcellos L.M.R., Tim C.R., Marciano F.R., Lobo A.O. In vitro and in vivo evaluation of rotary-jet-spun poly(ɛ-caprolactone) with high loading of nano-hydroxyapatite. J. Mater. Sci. Mater. Med. 2019;30:19. doi: 10.1007/s10856-019-6222-1. PubMed DOI

Ghosal K., Manakhov A., Zajíčková L., Thomas S. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering. AAPS PharmSciTech. 2016;18:72–81. doi: 10.1208/s12249-016-0500-8. PubMed DOI

Sánchez L.D., Brack N., Postma A., Pigram P.J., Meagher L., Lina D.S., Narelle B., Almar P., J P.P., Laurence M. Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials. 2016;106:24–45. doi: 10.1016/j.biomaterials.2016.08.011. PubMed DOI

Can-Herrera L., Avila-Ortega A., De La Rosa-García S.C., Oliva A., Cauich-Rodriguez J., Cervantes-Uc J. Surface modification of electrospun polycaprolactone microfibers by air plasma treatment: Effect of plasma power and treatment time. Eur. Polym. J. 2016;84:502–513. doi: 10.1016/j.eurpolymj.2016.09.060. DOI

Asadian M., Grande S., Onyshchenko I., Morent R., Declercq H., De Geyter N. A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Appl. Surf. Sci. 2019;481:1554–1565. doi: 10.1016/j.apsusc.2019.03.224. DOI

Aronov D., Rosen R., Ron E., Rosenman G. Tunable hydroxyapatite wettability: Effect on adhesion of biological molecules. Process. Biochem. 2006;41:2367–2372. doi: 10.1016/j.procbio.2006.06.006. DOI

Ebert D., Bhushan B. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles. J. Colloid Interface Sci. 2012;368:584–591. doi: 10.1016/j.jcis.2011.09.049. PubMed DOI

Ghobeira R., Philips C., Liefooghe L., Verdonck M., Asadian M., Cools P., Declercq H., De Vos W.H., De Geyter N., Morent R. Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Appl. Surf. Sci. 2019;485:204–221. doi: 10.1016/j.apsusc.2019.04.109. DOI

Jacobs T., De Geyter N., Morent R., Desmet T., Dubruel P., Leys C. Plasma treatment of polycaprolactone at medium pressure. Surf. Coat. Technol. 2011;205:S543–S547. doi: 10.1016/j.surfcoat.2011.02.012. DOI

Trunec M., Stastny P., Kelar J., Pazderka M. Effect of plasma treatment of polymeric tape carriers on wetting behaviour of aqueous ceramic tape casting slurry. Ceram. Int. 2019;45:9381–9385. doi: 10.1016/j.ceramint.2018.08.053. DOI

Castkova K., Hadraba H., Matousek A., Roupcová P., Chlup Z., Novotna L., Cihlar J. Synthesis of Ca,Y-zirconia/hydroxyapatite nanoparticles and composites. J. Eur. Ceram. Soc. 2016;36:2903–2912. doi: 10.1016/j.jeurceramsoc.2015.12.045. DOI

Pouchly V., Rahel J., Spusta T., Ilčíková M., Pavliňák D., Morávek T., Maca K. Improved microstructure of alumina ceramics prepared from DBD plasma activated powders. J. Eur. Ceram. Soc. 2019;39:1297–1303. doi: 10.1016/j.jeurceramsoc.2018.11.022. DOI

Wang X., Zhao H., Turng L.-S., Li Q. Crystalline Morphology of Electrospun Poly(ε-caprolactone) (PCL) Nanofibers. Ind. Eng. Chem. Res. 2013;52:4939–4949. doi: 10.1021/ie302185e. DOI

Bergström L. Shear thinning and shear thickening of concentrated ceramic suspensions. Colloids Surfaces A Physicochem. Eng. Asp. 1998;133:151–155. doi: 10.1016/S0927-7757(97)00133-7. DOI

Malijevský A. Does surface roughness amplify wetting? J. Chem. Phys. 2014;141:184703. doi: 10.1063/1.4901128. PubMed DOI

Van Gaens W., Bogaerts A. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J. Phys. D Appl. Phys. 2013;46:275201. doi: 10.1088/0022-3727/46/27/275201. DOI

Cao H., McHugh K.J., Chew S.Y., Anderson J.M. The topographical effect of electrospun nanofibrous scaffolds on thein vivoandin vitroforeign body reaction. J. Biomed. Mater. Res. Part A. 2009;9999:1151–1159. doi: 10.1002/jbm.a.32609. PubMed DOI PMC

Bhatia S.K., Yetter A.B. Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements. Cell Biol. Toxicol. 2007;24:315–319. doi: 10.1007/s10565-007-9040-z. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...