Influence of Hydroxyapatite Nanoparticles and Surface Plasma Treatment on Bioactivity of Polycaprolactone Nanofibers
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LQ1601
Central European Institute of Technology
LM2015041
CEITEC Nano Research Infrastructure
LTT18013
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32825413
PubMed Central
PMC7564373
DOI
10.3390/polym12091877
PII: polym12091877
Knihovny.cz E-resources
- Keywords
- atmospheric pressure argon plasma, electrospinning, hydroxyapatite, nanofibers, polycaprolactone, tissue engineering,
- Publication type
- Journal Article MeSH
Nanofibers are well known as a beneficial type of structure for tissue engineering. As a result of the high acquisition cost of the natural polymers and their environmentally problematic treatment (toxic dissolution agents), artificial polymers seem to be the better choice for medical use. In the present study, polycaprolactone nano-sized fibrous structures were prepared by the electrospinning method. The impact of material morphology (random or parallelly oriented fibers versus continuous layer) and the presence of a fraction of hydroxyapatite nanoparticles on cell proliferation was tested. In addition, the effect of improving the material wettability by a low temperature argon discharge plasma treatment was evaluated, too. We have shown that both hydroxyapatite particles as well as plasma surface treatment are beneficial for the cell proliferation. The significant impact of both influences was evident during the first 48 h of the test: the hydroxyapatite particles in polycaprolactone fibers accelerated the proliferation by 10% compared to the control, and the plasma-treated ones enhanced proliferation by 30%.
See more in PubMed
Van Oosterwyck H., Duyck J., Sloten J.V., Van Der Perre G., De Coomans M., Lieven S., Puers R., Naert L. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin. Oral Implant. Res. 1998;9:407–418. doi: 10.1034/j.1600-0501.1996.090606.x. PubMed DOI
Kitamura E., Stegaroiu R., Nomura S., Miyakawa O. Influence of marginal bone resorption on stress around an implant—A three-dimensional finite element analysis. J. Oral Rehabil. 2005;32:279–286. doi: 10.1111/j.1365-2842.2004.01413.x. PubMed DOI
Black C.R.M., Goriainov V., Gibbs D., Kanczler J.M., Tare R., Oreffo R.O.C. Bone Tissue Engineering. Curr. Mol. Biol. Rep. 2015;1:132–140. doi: 10.1007/s40610-015-0022-2. PubMed DOI PMC
Pina S., Oliveira J., Reis R.L. Natural-Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Adv. Mater. 2015;27:1143–1169. doi: 10.1002/adma.201403354. PubMed DOI
Lannutti J.J., Reneker D., Ma T., Tomasko D., Farson D. Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C. 2007;27:504–509. doi: 10.1016/j.msec.2006.05.019. DOI
Bhattarai D.P., Park C.H., Kim C.S., Kim C.S. A Review on Properties of Natural and Synthetic Based Electrospun Fibrous Materials for Bone Tissue Engineering. Membranes. 2018;8:62. doi: 10.3390/membranes8030062. PubMed DOI PMC
Chaudhari A.A., Vig K., Baganizi D.R., Sahu R., Dixit S., Dennis V.A., Singh S.R., Pillai S. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int. J. Mol. Sci. 2016;17:1974. doi: 10.3390/ijms17121974. PubMed DOI PMC
Ramakrishna S., Fujihara K., Teo W.-E., Lim T.-C., Ma Z. An Introduction to Electrospinning and Nanofibers. 1st ed. World Scientific Publishing Co. Pte. Ltd.; Toh Tuck Link, Singapore: 2005. pp. 90–154.
De Vrieze S., Van Camp T., Nelvig A., Hagström B., Westbroek P., De Clerck K. The effect of temperature and humidity on electrospinning. J. Mater. Sci. 2009;44:1357–1362. doi: 10.1007/s10853-008-3010-6. DOI
Lopes M.S., Jardini A., Filho R.M. Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Eng. 2012;42:1402–1413. doi: 10.1016/j.proeng.2012.07.534. DOI
Matthews J.A., Wnek G.E., Simpson D.G., Bowlin G.L. Electrospinning of Collagen Nanofibers. Biomacromolecules. 2002;3:232–238. doi: 10.1021/bm015533u. PubMed DOI
Pezeshki-Modaress M., Mirzadeh H., Zandi M. Gelatin–GAG electrospun nanofibrous scaffold for skin tissue engineering: Fabrication and modeling of process parameters. Mater. Sci. Eng. C. 2015;48:704–712. doi: 10.1016/j.msec.2014.12.023. PubMed DOI
Yoo H.S., Kim T.G., Park T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009;61:1033–1042. doi: 10.1016/j.addr.2009.07.007. PubMed DOI
Wang X., Ding B., Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today. 2013;16:229–241. doi: 10.1016/j.mattod.2013.06.005. PubMed DOI PMC
Cai Y.-Z., Zhang G.-R., Wang L.-L., Jiang Y.Z., Ouyang H.-W., Zou X.-H. Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. J. Biomed. Mater. Res. Part A. 2012;100:1187–1194. doi: 10.1002/jbm.a.34063. PubMed DOI
Zhao G., Zhang X., Lu T.J., Xu F. Recent Advances in Electrospun Nanofibrous Scaffolds for Cardiac Tissue Engineering. Adv. Funct. Mater. 2015;25:5726–5738. doi: 10.1002/adfm.201502142. DOI
Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E., Hollister S., Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–4827. doi: 10.1016/j.biomaterials.2004.11.057. PubMed DOI
Yoshimoto H., Shin Y., Terai H., Vacanti J.P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–2082. doi: 10.1016/S0142-9612(02)00635-X. PubMed DOI
Dai N.-T., Williamson M., Khammo N., Adams E., Coombes A.G. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials. 2004;25:4263–4271. doi: 10.1016/j.biomaterials.2003.11.022. PubMed DOI
Shitole A.A., Raut P.W., Sharma N., Giram P., Khandwekar A.P., Garnaik B. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. J. Mater. Sci. Mater. Med. 2019;30:51. doi: 10.1007/s10856-019-6255-5. PubMed DOI
Keivani F., Shokrollahi P., Zandi M., Irani S., Shokrolahi F., Khorasani S. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation. Mater. Sci. Eng. C. 2016;68:78–88. doi: 10.1016/j.msec.2016.05.098. PubMed DOI
Rajzer I. Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. J. Mater. Sci. 2014;49:5799–5807. doi: 10.1007/s10853-014-8311-3. DOI
Andrade T.M., Mello D.C.R., Elias C.M.V., Abdala J.M.A., Silva E., De Vasconcellos L.M.R., Tim C.R., Marciano F.R., Lobo A.O. In vitro and in vivo evaluation of rotary-jet-spun poly(ɛ-caprolactone) with high loading of nano-hydroxyapatite. J. Mater. Sci. Mater. Med. 2019;30:19. doi: 10.1007/s10856-019-6222-1. PubMed DOI
Ghosal K., Manakhov A., Zajíčková L., Thomas S. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering. AAPS PharmSciTech. 2016;18:72–81. doi: 10.1208/s12249-016-0500-8. PubMed DOI
Sánchez L.D., Brack N., Postma A., Pigram P.J., Meagher L., Lina D.S., Narelle B., Almar P., J P.P., Laurence M. Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials. 2016;106:24–45. doi: 10.1016/j.biomaterials.2016.08.011. PubMed DOI
Can-Herrera L., Avila-Ortega A., De La Rosa-García S.C., Oliva A., Cauich-Rodriguez J., Cervantes-Uc J. Surface modification of electrospun polycaprolactone microfibers by air plasma treatment: Effect of plasma power and treatment time. Eur. Polym. J. 2016;84:502–513. doi: 10.1016/j.eurpolymj.2016.09.060. DOI
Asadian M., Grande S., Onyshchenko I., Morent R., Declercq H., De Geyter N. A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Appl. Surf. Sci. 2019;481:1554–1565. doi: 10.1016/j.apsusc.2019.03.224. DOI
Aronov D., Rosen R., Ron E., Rosenman G. Tunable hydroxyapatite wettability: Effect on adhesion of biological molecules. Process. Biochem. 2006;41:2367–2372. doi: 10.1016/j.procbio.2006.06.006. DOI
Ebert D., Bhushan B. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles. J. Colloid Interface Sci. 2012;368:584–591. doi: 10.1016/j.jcis.2011.09.049. PubMed DOI
Ghobeira R., Philips C., Liefooghe L., Verdonck M., Asadian M., Cools P., Declercq H., De Vos W.H., De Geyter N., Morent R. Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Appl. Surf. Sci. 2019;485:204–221. doi: 10.1016/j.apsusc.2019.04.109. DOI
Jacobs T., De Geyter N., Morent R., Desmet T., Dubruel P., Leys C. Plasma treatment of polycaprolactone at medium pressure. Surf. Coat. Technol. 2011;205:S543–S547. doi: 10.1016/j.surfcoat.2011.02.012. DOI
Trunec M., Stastny P., Kelar J., Pazderka M. Effect of plasma treatment of polymeric tape carriers on wetting behaviour of aqueous ceramic tape casting slurry. Ceram. Int. 2019;45:9381–9385. doi: 10.1016/j.ceramint.2018.08.053. DOI
Castkova K., Hadraba H., Matousek A., Roupcová P., Chlup Z., Novotna L., Cihlar J. Synthesis of Ca,Y-zirconia/hydroxyapatite nanoparticles and composites. J. Eur. Ceram. Soc. 2016;36:2903–2912. doi: 10.1016/j.jeurceramsoc.2015.12.045. DOI
Pouchly V., Rahel J., Spusta T., Ilčíková M., Pavliňák D., Morávek T., Maca K. Improved microstructure of alumina ceramics prepared from DBD plasma activated powders. J. Eur. Ceram. Soc. 2019;39:1297–1303. doi: 10.1016/j.jeurceramsoc.2018.11.022. DOI
Wang X., Zhao H., Turng L.-S., Li Q. Crystalline Morphology of Electrospun Poly(ε-caprolactone) (PCL) Nanofibers. Ind. Eng. Chem. Res. 2013;52:4939–4949. doi: 10.1021/ie302185e. DOI
Bergström L. Shear thinning and shear thickening of concentrated ceramic suspensions. Colloids Surfaces A Physicochem. Eng. Asp. 1998;133:151–155. doi: 10.1016/S0927-7757(97)00133-7. DOI
Malijevský A. Does surface roughness amplify wetting? J. Chem. Phys. 2014;141:184703. doi: 10.1063/1.4901128. PubMed DOI
Van Gaens W., Bogaerts A. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J. Phys. D Appl. Phys. 2013;46:275201. doi: 10.1088/0022-3727/46/27/275201. DOI
Cao H., McHugh K.J., Chew S.Y., Anderson J.M. The topographical effect of electrospun nanofibrous scaffolds on thein vivoandin vitroforeign body reaction. J. Biomed. Mater. Res. Part A. 2009;9999:1151–1159. doi: 10.1002/jbm.a.32609. PubMed DOI PMC
Bhatia S.K., Yetter A.B. Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements. Cell Biol. Toxicol. 2007;24:315–319. doi: 10.1007/s10565-007-9040-z. PubMed DOI