Electrospun Poly(L-lactide-co-ε-caprolactone) Nanofibers with Hydroxyapatite Nanoparticles Mimic Cellular Interplay in Bone Regeneration

. 2025 Jun 04 ; 26 (11) : . [epub] 20250604

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40508197

Grantová podpora
CZ.02.01.01/00/22_008/0004562 Ministry of Education, Youth and Sports
824007 - iP-OSTEO the European Union's HORIZON 2020 Programme MSCA-RISE Marie Skłodow-ska-Curie Research and Innovation Staff Exchange Research Programme-2018
LM2023053 Ministry of Education, Youth and Sports
(LM2023050 Czech-Bioimaging Ministry of Education, Youth and Sports

This study investigates the impact of hydroxyapatite (HA) nanoparticles (NPs) on the cellular responses of poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds in bone tissue engineering applications. Three types of PLCL scaffolds were fabricated, varying in HANPs content. Saos-2 osteoblast-like cells (OBs) and THP-1-derived osteoclast-like cells (OCs) were co-cultured on the scaffolds, and cell proliferation was assessed using the MTS assay. The amount of double-stranded DNA (dsDNA) was quantified to evaluate cell proliferation. Expression levels of OBs and OCs markers were analyzed via quantitative polymerase chain reaction (qPCR) and the production of Collagen type I was visualized using confocal microscopy. Additionally, enzymatic activity of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP or ACP5) was measured to assess OB and OC function, respectively. Interestingly, despite the scaffold's structured character supporting the growth of the Saos-2 OBs and THP-1-derived OCs coculture, the incorporation of HANPs did not significantly enhance cellular responses compared to scaffolds without HANPs, except for collagen type I production. These findings suggest the need for further investigation into the potential benefits of HANPs in bone tissue engineering applications. Nevertheless, our study contributes valuable insights into optimizing biomaterial design for bone tissue regeneration, with implications for drug screening and material testing protocols.

Zobrazit více v PubMed

Šromová V., Sobola D., Kaspar P. A Brief Review of Bone Cell Function and Importance. Cells. 2023;12:2576. doi: 10.3390/cells12212576. PubMed DOI PMC

ElHawary H., Baradaran A., Abi-Rafeh J., Vorstenbosch J., Xu L., Efanov J.I. Bone Healing and Inflammation: Principles of Fracture and Repair. Semin. Plast. Surg. 2021;35:198–203. doi: 10.1055/s-0041-1732334. PubMed DOI PMC

Steffi C., Shi Z., Kong C.H., Wang W. Modulation of Osteoclast Interactions with Orthopaedic Biomaterials. J. Funct. Biomater. 2018;9:18. doi: 10.3390/jfb9010018. PubMed DOI PMC

Saul D., Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr. Rev. 2022;43:984–1002. doi: 10.1210/endrev/bnac008. PubMed DOI PMC

Nashi N., Nashi N., Kagda F.H., Kagda F.H. Current concepts of bone grafting in trauma surgery. J. Clin. Orthop. Trauma. 2023;43:102231. doi: 10.1016/j.jcot.2023.102231. PubMed DOI PMC

Chang L.-C. Comparison of Clinical Parameters in Dental Implant Therapy between Implant Site Development Using Porcine- and Bovine-Derived Xenografts. Technologies. 2021;9:72. doi: 10.3390/technologies9040072. DOI

Carvalho P.H.d.A., Ciaramicolo N.d.O., Júnior O.F., Pereira-Filho V.A. Clinical and laboratorial outcomes of xenogeneic biomaterials: Literature review. Front. Oral. Maxillofac. Med. 2023;5:8. doi: 10.21037/fomm-21-43. DOI

Galindo-Moreno P., Abril-García D., Carrillo-Galvez A.B., Zurita F., Martín-Morales N., O’valle F., Padial-Molina M. Maxillary sinus floor augmentation comparing bovine versus porcine bone xenografts mixed with autogenous bone graft. A split-mouth randomized controlled trial. Clin. Oral. Implant. Res. 2022;33:524–536. doi: 10.1111/clr.13912. PubMed DOI PMC

Steijvers E., Ghei A., Xia Z. Manufacturing artificial bone allografts: A perspective. Biomater. Transl. 2022;3:65–80. doi: 10.12336/biomatertransl.2022.01.007. PubMed DOI PMC

Donnaloja F., Jacchetti E., Soncini M., Raimondi M.T. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers. 2020;12:905. doi: 10.3390/polym12040905. PubMed DOI PMC

Xie H., Ruan S., Zhao M., Long J., Ma X., Guo J., Lin X. Preparation and characterization of 3D hydroxyapatite/collagen scaffolds and its application in bone regeneration with bone morphogenetic protein-2. RSC Adv. 2023;13:23010–23020. doi: 10.1039/D3RA03034B. PubMed DOI PMC

Noohi P., Mahdavi S.S., Abdekhodaie M.J., Nekoofar M.H., Baradaran-Rafii A. Photoreactive Hydrogels Based on Type I Collagen Extracted from Different Sources as Scaffolds for Tissue Engineering Applications: A Comparative Study. Materialia. 2023;27:101651. doi: 10.1016/j.mtla.2022.101651. DOI

Hoque M.E., Nuge T., Tshai K.Y., Nordin N., Prasad V. Gelatin Based Scaffolds For Tissue Engineering—A review. Polym. Res. J. 2015;9:15–32.

Liu X., Ma P.X. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 2009;30:4094–4103. doi: 10.1016/j.biomaterials.2009.04.024. PubMed DOI PMC

Wu E., Huang L., Shen Y., Wei Z., Li Y., Wang J., Chen Z. Application of gelatin-based composites in bone tissue engineering. Heliyon. 2024;10:e36258. doi: 10.1016/j.heliyon.2024.e36258. PubMed DOI PMC

Zhang D., Wu X., Chen J., Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact. Mater. 2017;3:129–138. doi: 10.1016/j.bioactmat.2017.08.004. PubMed DOI PMC

Haleem A., Javaid M., Khan R.H., Suman R. 3D printing applications in bone tissue engineering. J. Clin. Orthop. Trauma. 2020;11:S118–S124. doi: 10.1016/j.jcot.2019.12.002. PubMed DOI PMC

Cen L., Liu W., Cui L., Zhang W., Cao Y. Collagen Tissue Engineering: Development of Novel Biomaterials and Applications. Pediatr. Res. 2008;63:492–496. doi: 10.1203/PDR.0b013e31816c5bc3. PubMed DOI

Farjaminejad S., Farjaminejad R., Hasani M., Garcia-Godoy F., Abdouss M., Marya A., Harsoputranto A., Jamilian A. Advances and Challenges in Polymer-Based Scaffolds for Bone Tissue Engineering: A Path Towards Personalized Regenerative Medicine. Polymers. 2024;16:3303. doi: 10.3390/polym16233303. PubMed DOI PMC

Lopes M.S., Jardini A., Filho R.M. Poly (Lactic Acid) Production for Tissue Engineering Applications. Procedia Eng. 2012;42:1402–1413. doi: 10.1016/j.proeng.2012.07.534. DOI

Donate R., Monzón M., Alemán-Domínguez M.E. Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. e-Polymers. 2020;20:571–599. doi: 10.1515/epoly-2020-0046. DOI

Yang X., Wang Y., Zhou Y., Chen J., Wan Q. The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. Polymers. 2021;13:2754. doi: 10.3390/polym13162754. PubMed DOI PMC

Jin S., Xia X., Huang J., Yuan C., Zuo Y., Li Y., Li J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 2021;127:56–79. doi: 10.1016/j.actbio.2021.03.067. PubMed DOI

Pan Z., Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus. 2012;2:366–377. doi: 10.1098/rsfs.2011.0123. PubMed DOI PMC

Gentile P., Chiono V., Carmagnola I., Hatton P.V. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2014;15:3640–3659. doi: 10.3390/ijms15033640. PubMed DOI PMC

Zhang C., Salick M.R., Cordie T.M., Ellingham T., Dan Y., Turng L.-S. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 2015;49:463–471. doi: 10.1016/j.msec.2015.01.024. PubMed DOI

Leal F., Nirwan V., Gonçalves A.M., Panitschewski N., Filová E., Fahmi A., Costa P.F. Bio-inspired nanoporous scaffold: Electrospun hybrid fibers based on self-assembled block copolymer mineralized with inorganic nanoparticles for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2024;73:1054–1067. doi: 10.1080/00914037.2023.2243369. DOI

de Souza J.R., Cardoso L.M., de Toledo P.T.A., Rahimnejad M., Kito L.T., Thim G.P., Campos T.M.B., Borges A.L.S., Bottino M.C. Biodegradable electrospun poly(L-lactide-co-ε-caprolactone)/polyethylene glycol/bioactive glass composite scaffold for bone tissue engineering. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2024;112:e35406. doi: 10.1002/jbm.b.35406. PubMed DOI PMC

Ciobanu P., Panuta A., Radu I., Forna N., Arcana S., Tudor R., Covaciu A., Niculescu V., Poroch V., Puha B. Treatment of Bone Defects Resulted after Excision of Enchondroma of the Hand in 15 Patients, Comparing the Techniques of Autologous Bone Graft, Injectable Bone Substitute and Spontaneous Healing. Appl. Sci. 2022;12:1300. doi: 10.3390/app12031300. DOI

Jain G., Blaauw D., Chang S. A Comparative Study of Two Bone Graft Substitutes—InterOss® Collagen and OCS-B Collagen®. J. Funct. Biomater. 2022;13:28. doi: 10.3390/jfb13010028. PubMed DOI PMC

Kim J.-S., Jang T.-S., Kim S.-Y., Lee W.-P. Octacalcium Phosphate Bone Substitute (Bontree®): From Basic Research to Clinical Case Study. Appl. Sci. 2021;11:7921. doi: 10.3390/app11177921. DOI

Ortega-Oller I., Padial-Molina M., Galindo-Moreno P., O’valle F., Jódar-Reyes A.B., Peula-García J.M. Bone Regeneration from PLGA Micro-Nanoparticles. BioMed Res. Int. 2015;2015:415289. doi: 10.1155/2015/415289. PubMed DOI PMC

Karbowniczek J.E., Kaniuk Ł., Berniak K., Gruszczyński A., Stachewicz U. Enhanced Cells Anchoring to Electrospun Hybrid Scaffolds With PHBV and HA Particles for Bone Tissue Regeneration. Front. Bioeng. Biotechnol. 2021;9:632029. doi: 10.3389/fbioe.2021.632029. PubMed DOI PMC

Samadian H., Mobasheri H., Azami M., Faridi-Majidi R. Osteoconductive and electroactive carbon nanofibers/hydroxyapatite nanocomposite tailored for bone tissue engineering: In vitro and in vivo studies. Sci. Rep. 2020;10:14853. doi: 10.1038/s41598-020-71455-3. PubMed DOI PMC

Lim D.-J. Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers. 2022;14:2123. doi: 10.3390/polym14102123. PubMed DOI PMC

Song H., Zhang Y., Zhang Z., Xiong S., Ma X., Li Y. Hydroxyapatite/NELL-1 Nanoparticles Electrospun Fibers for Osteoinduction in Bone Tissue Engineering Application. Int. J. Nanomed. 2021;16:4321–4332. doi: 10.2147/IJN.S309567. PubMed DOI PMC

Kaur K., Das S., Ghosh S. Regulation of Human Osteoblast-to-Osteocyte Differentiation by Direct-Write 3D Microperiodic Hydroxyapatite Scaffolds. ACS Omega. 2019;4:1504–1515. doi: 10.1021/acsomega.8b03272. DOI

Anjum S., Arya D.K., Saeed M., Ali D., Athar M.S., Yulin W., Alarifi S., Wu X., Rajinikanth P., Ao Q. Multifunctional electrospun nanofibrous scaffold enriched with alendronate and hydroxyapatite for balancing osteogenic and osteoclast activity to promote bone regeneration. Front. Bioeng. Biotechnol. 2023;11:1302594. doi: 10.3389/fbioe.2023.1302594. PubMed DOI PMC

Hedvičáková V., Žižková R., Buzgo M., Vištejnová L., Klein P., Hovořáková M., Bartoš M., Steklíková K., Luňáčková J., Šebová E., et al. The Gradual Release of Alendronate for the Treatment of Critical Bone Defects in Osteoporotic and Control Rats. Int. J. Nanomed. 2023;18:541–560. doi: 10.2147/IJN.S386784. PubMed DOI PMC

Stastna E., Castkova K., Rahel J. Influence of Hydroxyapatite Nanoparticles and Surface Plasma Treatment on Bioactivity of Polycaprolactone Nanofibers. Polymers. 2020;12:1877. doi: 10.3390/polym12091877. PubMed DOI PMC

Zakaria S.M., Zein S.H.S., Othman M.R., Jansen J.A. Hydroxyapatite nanoparticles: Electrospinning and calcination of hydroxyapatite/polyvinyl butyral nanofibers and growth kinetics. J. Biomed. Mater. Res. Part. A. 2013;101A:1977–1985. doi: 10.1002/jbm.a.34506. PubMed DOI

Meesuk L., Suwanprateeb J., Thammarakcharoen F., Tantrawatpan C., Kheolamai P., Palang I., Tantikanlayaporn D., Manochantr S. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Sci. Rep. 2022;12:19509. doi: 10.1038/s41598-022-24160-2. PubMed DOI PMC

Luo X., Chen J., Song W.-X., Tang N., Luo J., Deng Z.-L., Sharff K.A., He G., Bi Y., He B.-C., et al. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Mod. Pathol. 2008;88:1264–1277. doi: 10.1038/labinvest.2008.98. PubMed DOI PMC

Nabil H., Kummu O., Lehenkari P., Rysä J., Risteli J., Hakkola J., Hukkanen J. Rifampicin induces the bone form of alkaline phosphatase in humans. Basic. Clin. Pharmacol. Toxicol. 2022;130:81–94. doi: 10.1111/bcpt.13586. PubMed DOI

Trivedi S., Srivastava K., Gupta A., Saluja T.S., Kumar S., Mehrotra D., Singh S.K. A quantitative method to determine osteogenic differentiation aptness of scaffold. J. Oral. Biol. Craniofacial Res. 2020;10:158–160. doi: 10.1016/j.jobcr.2020.04.006. PubMed DOI PMC

Sato M., Saitoh I., Kiyokawa Y., Iwase Y., Kubota N., Ibano N., Noguchi H., Yamasaki Y., Inada E. Tissue-Nonspecific Alkaline Phosphatase, a Possible Mediator of Cell Maturation: Towards a New Paradigm. Cells. 2021;10:3338. doi: 10.3390/cells10123338. PubMed DOI PMC

Shimasaki M., Ichiseki T., Ueda S., Hirata H., Kawahara N., Ueda Y. Mesenchymal Stem Cells Preconditioned with Hypoxia and Dexamethasone Promote Osteoblast Differentiation Under Stress Conditions. Int. J. Med. Sci. 2024;21:1511–1517. doi: 10.7150/ijms.91222. PubMed DOI PMC

Grundt A., Grafe I.A., Liegibel U., Sommer U., Nawroth P., Kasperk C. Direct effects of osteoprotegerin on human bone cell metabolism. Biochem. Biophys. Res. Commun. 2009;389:550–555. doi: 10.1016/j.bbrc.2009.09.026. PubMed DOI

Shetty S., Paul T.V., Kapoor N., Bondu J.D., Thomas N. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian. J. Endocrinol. Metab. 2016;20:846–852. doi: 10.4103/2230-8210.192914. PubMed DOI PMC

Kim J.H., Kim K., Kim I., Seong S., Koh J.-T., Kim N. The ATF3–OPG Axis Contributes to Bone Formation by Regulating the Differentiation of Osteoclasts, Osteoblasts, and Adipocytes. Int. J. Mol. Sci. 2022;23:3500. doi: 10.3390/ijms23073500. PubMed DOI PMC

Yu H., de Vos P., Ren Y. Overexpression of osteoprotegerin promotes preosteoblast differentiation to mature osteoblasts. Angle Orthod. 2011;81:100–106. doi: 10.2319/050210-238.1. PubMed DOI PMC

Thomas G., Baker S., Eisman J., Gardiner E. Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J. Endocrinol. 2001;170:451–460. doi: 10.1677/joe.0.1700451. PubMed DOI

Troen B.R. The Regulation of Cathepsin K Gene Expression. Ann. N.Y. Acad. Sci. 2006;1068:165–172. doi: 10.1196/annals.1346.018. PubMed DOI

Corisdeo S., Gyda M., Zaidi M., Moonga B.S., Troen B.R. New Insights into the Regulation of Cathepsin K Gene Expression by Osteoprotegerin Ligand. Biochem. Biophys. Res. Commun. 2001;285:335–339. doi: 10.1006/bbrc.2001.5127. PubMed DOI

Hsu H., Lacey D.L., Dunstan C.R., Solovyev I., Colombero A., Timms E., Tan H.-L., Elliott G., Kelley M.J., Sarosi I., et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA. 1999;96:3540–3545. doi: 10.1073/pnas.96.7.3540. PubMed DOI PMC

Pang M., Martinez A.F., Jacobs J., Balkan W., Troen B.R. RANK ligand and interferon gamma differentially regulate cathepsin gene expression in pre-osteoclastic cells. Biochem. Biophys. Res. Commun. 2005;328:756–763. doi: 10.1016/j.bbrc.2004.12.005. PubMed DOI

Shalhoub V., Faust J., Boyle W.J., Dunstan C.R., Kelley M., Kaufman S., Lacey D.L. Osteoprotegerin and osteoprotegerin ligand effects on osteoclast formation from human peripheral blood mononuclear cell precursors. J. Cell. Biochem. 1999;72:251–261. doi: 10.1002/(SICI)1097-4644(19990201)72:2<251::AID-JCB9>3.0.CO;2-W. PubMed DOI

Fuller K., Lawrence K.M., Ross J.L., Grabowska U.B., Shiroo M., Samuelsson B., Chambers T.J. Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone. 2008;42:200–211. doi: 10.1016/j.bone.2007.09.044. PubMed DOI

Zenger S., Hollberg K., Ljusberg J., Norgård M., Ek-Rylander B., Kiviranta R., Andersson G. Proteolytic processing and polarized secretion of tartrate-resistant acid phosphatase is altered in a subpopulation of metaphyseal osteoclasts in cathepsin K-deficient mice. Bone. 2007;41:820–832. doi: 10.1016/j.bone.2007.07.010. PubMed DOI

Wang Y., Liu Y., Huang Z., Chen X., Zhang B. The roles of osteoprotegerin in cancer, far beyond a bone player. Cell Death Discov. 2022;8:252. doi: 10.1038/s41420-022-01042-0. PubMed DOI PMC

Yun T.J., Tallquist M.D., Aicher A., Rafferty K.L., Marshall A.J., Moon J.J., Ewings M.K., Mohaupt M., Herring S.W., Clark E.A. Osteoprotegerin, a Crucial Regulator of Bone Metabolism, Also Regulates B Cell Development and Function1. J. Immunol. 2001;166:1482–1491. doi: 10.4049/jimmunol.166.3.1482. PubMed DOI

Jimi E., Kokabu S., Matsubara T., Nakatomi C., Matsuo K., Watanabe S. NF-κB acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma. Oral. Sci. Int. 2016;13:1–6. doi: 10.1016/S1348-8643(15)00038-5. DOI

Li Y.-P., Chen W. Characterization of mouse cathepsin K gene, the gene promoter, and the gene expression. J. Bone Miner. Res. 1999;14:487–499. doi: 10.1359/jbmr.1999.14.4.487. PubMed DOI

Zhang S., Wang X., Li G., Chong Y., Zhang J., Guo X., Li B., Bi Z. Osteoclast regulation of osteoblasts via RANK-RANKL reverse signal transduction in vitro. Mol. Med. Rep. 2017;16:3994–4000. doi: 10.3892/mmr.2017.7039. PubMed DOI PMC

Schoppet M., Preissner K.T., Hofbauer L.C. RANK ligand and osteoprotegerin: Paracrine regulators of bone metabolism and vascular function. Arter. Thromb. Vasc. Biol. 2002;22:549–553. doi: 10.1161/01.ATV.0000012303.37971.DA. PubMed DOI

Zhu S., Hu X., Tao Y., Ping Z., Wang L., Shi J., Wu X., Zhang W., Yang H., Nie Z., et al. Strontium inhibits titanium particle-induced osteoclast activation and chronic inflammation via suppression of NF-κB pathway. Sci. Rep. 2016;6:36251. doi: 10.1038/srep36251. PubMed DOI PMC

Owen R., Reilly G.C. In vitro Models of Bone Remodelling and Associated Disorders. Front. Bioeng. Biotechnol. 2018;6:134. doi: 10.3389/fbioe.2018.00134. PubMed DOI PMC

Kumari S., Katiyar S., Darshna, Anand A., Singh D., Singh B.N., Mallick S.P., Mishra A., Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front. Chem. 2022;10:1051678. doi: 10.3389/fchem.2022.1051678. PubMed DOI PMC

Liang W., Ding P., Li G., Lu E., Zhao Z. Hydroxyapatite nanoparticles facilitate osteoblast differentiation and bone formation within sagittal suture during expansion in rats. Drug Des. Devel. Ther. 2021;15:905–917. doi: 10.2147/DDDT.S299641. PubMed DOI PMC

Jolly J.J., Chin K.-Y., Farhana M.F.N., Alias E., Chua K.H., Hasan W.N.W., Ima-Nirwana S. Optimization of the static human osteoblast/osteoclast co-culture system. Iran. J. Med. Sci. 2018;43:208–213. PubMed PMC

Lynch M.P., Stein J.L., Stein G.S., Lian J.B. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: Modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp. Cell Res. 1995;216:35–45. doi: 10.1006/excr.1995.1005. PubMed DOI

Komori T. Regulation of Osteoblast Differentiation by Runx2. In: Choi Y., editor. Osteoimmunology. Volume 658. Advances in Experimental Medicine and Biology; Springer; Boston, MA, USA: 2009. PubMed DOI

Neve A., Corrado A., Cantatore F.P. Osteocalcin: Skeletal and extra-skeletal effects. J. Cell. Physiol. 2013;228:1149–1153. doi: 10.1002/jcp.24278. PubMed DOI

Pasquier J., Thomas B., Hoarau-Véchot J., Odeh T., Robay A., Chidiac O., Dargham S.R., Turjoman R., Halama A., Fakhro K., et al. Circulating microparticles in acute diabetic Charcot foot exhibit a high content of inflammatory cytokines, and support monocyte-to-osteoclast cell induction. Sci. Rep. 2017;7:16450. doi: 10.1038/s41598-017-16365-7. PubMed DOI PMC

Li Z.H., Si Y., Xu G., Chen X.M., Xiong H., Lai L., Zheng Y.Q., Zhang Z.G. High-dose PMA with RANKL and MCSF induces THP-1 cell differentiation into human functional osteoclasts in vitro. Mol. Med. Rep. 2017;16:8380–8384. doi: 10.3892/mmr.2017.7625. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...