A Brief Review of Bone Cell Function and Importance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37947654
PubMed Central
PMC10648520
DOI
10.3390/cells12212576
PII: cells12212576
Knihovny.cz E-zdroje
- Klíčová slova
- bone cells, microscopic and macroscopic intricacies, physiology of bone tissue,
- MeSH
- buněčná diferenciace fyziologie MeSH
- kosti a kostní tkáň MeSH
- lidé MeSH
- osteoblasty fyziologie MeSH
- osteoklasty * fyziologie MeSH
- resorpce kosti * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
This review focuses on understanding the macroscopic and microscopic characteristics of bone tissue and reviews current knowledge of its physiology. It explores how these features intricately collaborate to maintain the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, which plays a pivotal role in shaping not only our physical framework but also overall health. In this work, a comprehensive exploration of microscopic and macroscopic features of bone tissue is presented.
Zobrazit více v PubMed
Standring S. 40th ed. Churchill Livingstone Elsevier; London, UK: 2008. Gray’s Anatomy: The Anatomical Basis of Clinical Practice.
Bordoni B., Black A.C., Varacallo M. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: [(accessed on 30 August 2023)]. Anatomy, Tendons. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513237. PubMed
U.S. Department of Health and Human Services . Bone Health and Osteoporosis: A Report of the Surgeon General. U.S. Department of Health and Human Services, Office of the Surgeon General; Rockville, MD, USA: 2004. [(accessed on 30 August 2023)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK45513.
Shaker J.L., Deftos M.D. Calcium and Phosphate Homeostasis. Endocr. Reprod. Physiol. [(accessed on 30 August 2023)];2023 Available online: https://www.ncbi.nlm.nih.gov/books/NBK279023.
Kovacs E.J. Wheater’s Functional Histology: A Text and Colour Atlas. Arch. Pathol. Lab. Med. 2001;125:708. doi: 10.5858/2001-125-708b-WFHATA. DOI
Zhou R., Guo Q., Xiao Y., Guo Q., Huang Y., Li C., Luo X. Endocrine role of bone in the regulation of energy metabolism. Bone Res. 2021;9:25. doi: 10.1038/s41413-021-00142-4. PubMed DOI PMC
Guo Y.C., Yuan Q. Fibroblast growth factor 23 and bone mineralisation. Int. J. Oral Sci. 2015;7:8–13. doi: 10.1038/ijos.2015.1. PubMed DOI PMC
Guntur A.R., Rosen C.J. Bone as an endocrine organ. Endocr. Pract. 2012;18:758–762. doi: 10.4158/EP12141.RA. PubMed DOI PMC
Feng X. Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease. Curr. Chem. Biol. 2009;3:189–196. doi: 10.2174/187231309788166398. PubMed DOI PMC
Dalla Pria Bankoff A. Biomechanical Characteristics of the Bone. Hum. Musculoskelet. Biomech. 2012;61:86
Clarke B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 2008;3:S131–S139. doi: 10.2215/CJN.04151206. PubMed DOI PMC
Mescher L.A. 15th ed. McGraw Hill/Medical; Chicago, IL, USA: 2018. Junquiera’s Basic Histology Text and Atlas.
Cowin S.C., Telega J.J. Bone Mechanics Handbook, 2nd Edition. Appl. Mech. Rev. 2003;56:B61–B63. doi: 10.1115/1.1579463. DOI
Lü X., Wang J., Li B., Zhang Z., Zhao L. Gene expression profile study on osteoinductive effect of natural hydroxyapatite. J. Biomed. Mater. Res. Part A. 2014;102:2833–2841. doi: 10.1002/jbm.a.34951. PubMed DOI
Albrektsson T., Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001;10:S96–S101. doi: 10.1007/s005860100282. PubMed DOI PMC
Florencio-Silva R., Sasso G.R.D.S., Sasso-Cerri E., Simões M.J., Cerri P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Biomed Res. Int. 2015;2015:421746. doi: 10.1155/2015/421746. PubMed DOI PMC
Boyce B.F., Xing L. The RANKL/RANK/OPG pathway. Curr. Osteoporos. Rep. 2007;5:98–104. doi: 10.1007/s11914-007-0024-y. PubMed DOI
Kim J.M., Lin C., Stavre Z., Greenblatt M.B., Shim J.H. Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells. 2020;9:2073. doi: 10.3390/cells9092073. PubMed DOI PMC
Feng X., McDonald J.M. Disorders of bone remodeling. Annu. Rev. Pathol. 2011;6:121–145. doi: 10.1146/annurev-pathol-011110-130203. PubMed DOI PMC
Caetano-Lopes J., Canhão H., Fonseca J.E. Osteoblasts and bone formation. Acta Reum. Port. 2007;32:103–110. PubMed
Schaffler M.B., Kennedy O.D. Osteocyte signaling in bone. Curr. Osteoporos. Rep. 2012;10:118–125. doi: 10.1007/s11914-012-0105-4. PubMed DOI PMC
Aarden E.M., Nijweide P.J., Burger E.H. Function of osteocytes in bone. J. Cell. Biochem. 1994;55:287–299. doi: 10.1002/jcb.240550304. PubMed DOI
Franz-Odendaal T.A., Hall B.K., Witten P.E. Buried alive: How osteoblasts become osteocytes. Dev. Dyn. 2006;235:176–190. doi: 10.1002/dvdy.20603. PubMed DOI
Mullen C.A., Haugh M.G., Schaffler M.B., Majeska R.J., McNamara L.M. Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. J. Mech. Behav. Biomed. Mater. 2013;28:183–194. doi: 10.1016/j.jmbbm.2013.06.013. PubMed DOI PMC
Marotti G., Canè V., Palazzini S., Palumbo C. Structure-function relationships in the osteocyte. Ital. J. Miner. Electrolyte Metab. 1990;4:93–106.
Palumbo C., Palazzini S., Zaffe D., Marotti G. Osteocyte differentiation in the tibia of newborn rabbit: An ultrastructural study of the formation of cytoplasmic processes. Acta Anat. 1990;137:350–358. doi: 10.1159/000146907. PubMed DOI
Pérez-Campo F.M., Santurtún A., García-Ibarbia C., Pascual M.A., Valero C., Garcés C., Sañudo C., Zarrabeitia M.T., Riancho J.A. Osterix and RUNX2 are Transcriptional Regulators of Sclerostin in Human Bone. Calcif. Tissue Int. 2016;99:302–309. doi: 10.1007/s00223-016-0144-4. PubMed DOI
Komori T. Osteoimmunology: Interactions of the Immune and Skeletal Systems II. Volume 658 Springer; Berlin/Heidelberg, Germany: 2010. Regulation of osteoblast differentiation by runx2.
Yang F., Tang W., So S., de Crombrugghe B., Zhang C. Sclerostin is a direct target of osteoblast-specific transcription factor osterix. Biochem. Biophys. Res. Commun. 2010;400:684–688. doi: 10.1016/j.bbrc.2010.08.128. PubMed DOI PMC
Tresguerres F.G.F., Torres J., López-Quiles J., Hernández G., Vega J.A., Tresguerres I.F. The osteocyte: A multifunctional cell within the bone. Ann. Anat. 2020;227:151422. doi: 10.1016/j.aanat.2019.151422. PubMed DOI
Bonewald L.F. The amazing osteocyte. J. Bone Miner. Res. 2011;26:229–238. doi: 10.1002/jbmr.320. PubMed DOI PMC
Wysolmerski J.J. Osteocytic osteolysis: Time for a second look? Bonekey Rep. 2012;1:229. doi: 10.1038/bonekey.2012.229. PubMed DOI PMC
Tazawa K., Hoshi K., Kawamoto S., Tanaka M., Ejiri S., Ozawa H. Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered. J. Bone Miner. Metab. 2004;22:524–529. doi: 10.1007/s00774-004-0519-x. PubMed DOI
Neuman W.F., Ramp W.K. The concept of a bone membrane: Some implications. This work was supported in part by Public Health Service Training Grant No. 1 Tl DE-175 and in part by the United States Atomic Energy Commission Contract No. At-30-1-49 and has been assigned Report No. U. Cell. Mech. Calcium Transf. Homeost. 1971:197–209. doi: 10.1016/B978-0-12-518050-4.50017-3. DOI
Klein-Nulend J., Bakker A.D., Bacabac R.G., Vatsa A., Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54:182–190. doi: 10.1016/j.bone.2012.10.013. PubMed DOI
Bonewald L.F. Mechanosensation and transduction in osteocytes. BoneKEy-Osteovision. 2006;3:7–15. doi: 10.1138/20060233. PubMed DOI PMC
Qin L., Liu W., Cao H., Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23. doi: 10.1038/s41413-020-0099-y. PubMed DOI PMC
Kim S.W., Lu Y., Williams E.A., Lai F., Lee J.Y., Enishi T., Balani D.H., Ominsky M.S., Ke H.Z., Kronenberg H.M., et al. Sclerostin Antibody Administration Converts Bone Lining Cells Into Active Osteoblasts. J. Bone Miner. Res. 2017;32:892–901. doi: 10.1002/jbmr.3038. PubMed DOI PMC
Arias C.F., Herrero M.A., Echeverri L.F., Oleaga G.E., López J.M. Bone remodeling: A tissue-level process emerging from cell-level molecular algorithms. PLoS ONE. 2018;13:e0204171. doi: 10.1371/journal.pone.0204171. PubMed DOI PMC
Seiler S., Heine G.H., Fliser D. Clinical relevance of FGF-23 in chronic kidney disease. Kidney Int. 2009;76:S34–S42. doi: 10.1038/ki.2009.405. PubMed DOI
Jüppner H. Phosphate and FGF-23. Kidney Int. 2011;79:S24–S27. doi: 10.1038/ki.2011.27. PubMed DOI
Yuan Q., Jiang Y., Zhao X., Sato T., Densmore M., Schüler C., Erben R.G., McKee M.D., Lanske B. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice. J. Bone Miner. Res. 2014;29:693–704. doi: 10.1002/jbmr.2079. PubMed DOI PMC
Chen X., Wang Z., Duan N., Zhu G., Schwarz E.M., Xie C. Osteoblast–osteoclast interactions. Connect. Tissue Res. 2018;59:99–107. doi: 10.1080/03008207.2017.1290085. PubMed DOI PMC
Qu F., Song Y., Wu Y., Huang Y., Zhong Q., Zhang Y., Fan Z., Xu C. The protective role of Ephrin-B2/EphB4 signaling in osteogenic differentiation under inflammatory environment. Exp. Cell Res. 2021;400:112505. doi: 10.1016/j.yexcr.2021.112505. PubMed DOI
Vrahnas C., Sims N.A. EphrinB2 Signalling in Osteoblast Differentiation, Bone Formation and Endochondral Ossification. Curr. Mol. Biol. Rep. 2015;1:148–156. doi: 10.1007/s40610-015-0024-0. DOI
Li Z., Hao J., Duan X., Wu N., Zhou Z., Yang F., Li J., Zhao Z., Huang S. The role of semaphorin 3A in bone remodeling. Front. Cell. Neurosci. 2017;11:40. doi: 10.3389/fncel.2017.00040. PubMed DOI PMC
Ushach I., Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J. Leukoc. Biol. 2016;100:481–489. doi: 10.1189/jlb.3RU0316-144R. PubMed DOI PMC
Wiktor-Jedrzejczak W., Bartocci A., Ferrante A.W., Ahmed-Ansari A., Sell K.W., Pollard J.W., Stanley E.R. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA. 1990;87:4828–4832. doi: 10.1073/pnas.87.12.4828. PubMed DOI PMC
Lee N.K. RANK Signaling Pathways and Key Molecules Inducing Osteoclast Differentiation. Biomed. Sci. Lett. 2017;23:295–302. doi: 10.15616/BSL.2017.23.4.295. DOI
Simonet W.S., Lacey D.L., Dunstan C.R., Kelley M., Chang M.S., Lüthy R., Nguyen H.Q., Wooden S., Bennett L., Boone T., et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–319. doi: 10.1016/S0092-8674(00)80209-3. PubMed DOI
Boyce B.F., Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008;473:139–146. doi: 10.1016/j.abb.2008.03.018. PubMed DOI PMC
Carrillo-López N., Martínez-Arias L., Fernández-Villabrille S., Ruiz-Torres M.P., Dusso A., Cannata-Andía J.B., Naves-Díaz M., Panizo S. Role of the RANK/RANKL/OPG and Wnt/β-Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcif. Tissue Int. 2021;108:439–451. doi: 10.1007/s00223-020-00803-2. PubMed DOI
Luo J., Zhou W., Zhou X., Li D., Weng J., Yi Z., Cho S.G., Li C., Yi T., Wu X., et al. Regulation of bone formation and remodeling by G-protein-coupled receptor 48. Development. 2009;136:2747–2756. doi: 10.1242/dev.033571. PubMed DOI PMC
Luo J., Yang Z., Ma Y., Yue Z., Lin H., Qu G., Huang J., Dai W., Li C., Zheng C., et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat. Med. 2016;22:539–546. doi: 10.1038/nm.4076. PubMed DOI
Houschyar K.S., Tapking C., Borrelli M.R., Popp D., Duscher D., Maan Z.N., Chelliah M.P., Li J., Harati K., Wallner C., et al. Wnt Pathway in Bone Repair and Regeneration—What Do We Know So Far. Front. Cell Dev. Biol. 2019;6:170. doi: 10.3389/fcell.2018.00170. PubMed DOI PMC
Maeda K., Kobayashi Y., Udagawa N., Uehara S., Ishihara A., Mizoguchi T., Kikuchi Y., Takada I., Kato S., Kani S., et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat. Med. 2012;18:405–412. doi: 10.1038/nm.2653. PubMed DOI
Lojk J., Marc J. Roles of non-canonical wnt signalling pathways in bone biology. Int. J. Mol. Sci. 2021;22:10840. doi: 10.3390/ijms221910840. PubMed DOI PMC
Lee S.H., Rho J., Jeong D., Sul J.Y., Kim T., Kim N., Kang J.S., Miyamoto T., Suda T., Lee S.K., et al. V-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 2006;12:1403–1409. doi: 10.1038/nm1514. PubMed DOI
Lontos K., Adamik J., Tsagianni A., Galson D.L., Chirgwin J.M., Suvannasankha A. The role of Semaphorin 4D in bone remodeling and cancer metastasis. Front. Endocrinol. 2018;9:322. doi: 10.3389/fendo.2018.00322. PubMed DOI PMC
Ryu J., Kim H.J., Chang E.J., Huang H., Banno Y., Kim H.H. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 2006;25:5840–5851. doi: 10.1038/sj.emboj.7601430. PubMed DOI PMC
Takeshita S., Fumoto T., Matsuoka K., Park K.A., Aburatani H., Kato S., Ito M., Ikeda K. Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation. J. Clin. Investig. 2013;123:3914–3924. doi: 10.1172/JCI69493. PubMed DOI PMC
Yu Y., Tong M., Tang B., Shi X. Increased level of Complement C3 in patients with osteoporosis and enhanced osteogenic ability in osteoblasts with Complement component 3 knockdown. Res. Sq. 2022:1–15. doi: 10.21203/rs.3.rs-1444255/v2. DOI
Lewiecki E.M. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther. Adv. Musculoskelet. Dis. 2014;6:48–57. doi: 10.1177/1759720X13510479. PubMed DOI PMC
Gao Y., Patil S., Qian A. The role of micrornas in bone metabolism and disease. Int. J. Mol. Sci. 2020;21:6081. doi: 10.3390/ijms21176081. PubMed DOI PMC
Silva B.C., Bilezikian J.P. Parathyroid hormone: Anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 2015;22:41–50. doi: 10.1016/j.coph.2015.03.005. PubMed DOI PMC
Qin L., Raggatt L.J., Partridge N.C. Parathyroid hormone: A double-edged sword for bone metabolism. Trends Endocrinol. Metab. 2004;15:60–65. doi: 10.1016/j.tem.2004.01.006. PubMed DOI
Janssens K., Ten Dijke P., Janssens S., Van Hul W. Transforming growth factor-β1 to the bone. Endocr. Rev. 2005;26:743–774. doi: 10.1210/er.2004-0001. PubMed DOI
Chang B., Liu X. Osteon: Structure, Turnover, and Regeneration. Tissue Eng. Part B Rev. 2022;28:261–278. doi: 10.1089/ten.teb.2020.0322. PubMed DOI PMC
An Y.H., Draughn R.A. Mechanical Testing of Bone and the Bone-Implant Interface. CRC Press; Boca Raton, FL, USA: 1999.
Zhang K., Barragan-Adjemian C., Ye L., Kotha S., Dallas M., Lu Y., Zhao S., Harris M., Harris S.E., Feng J.Q., et al. E11/gp38 Selective Expression in Osteocytes: Regulation by Mechanical Strain and Role in Dendrite Elongation. Mol. Cell. Biol. 2006;26:4539–4552. doi: 10.1128/MCB.02120-05. PubMed DOI PMC
Bonewald L.F. Generation and function of osteocyte dendritic processes. J. Musculoskelet. Neuronal Interact. 2005;5:321–324. PubMed
Milovanovic P., Busse B. Inter-site Variability of the Human Osteocyte Lacunar Network: Implications for Bone Quality. Curr. Osteoporos. Rep. 2019;17:105–115. doi: 10.1007/s11914-019-00508-y. PubMed DOI
Shapiro F., Wu J.Y. Woven bone overview: Structural classification based on its integral role in developmental, repair and pathological bone formation throughout vertebrate groups. Eur. Cells Mater. 2019;38:137–167. doi: 10.22203/eCM.v038a11. PubMed DOI
Oftadeh R., Perez-Viloria M., Villa-Camacho J.C., Vaziri A., Nazarian A. Biomechanics and Mechanobiology of Trabecular Bone: A Review. J. Biomech. Eng. 2015;137:010802–01080215. doi: 10.1115/1.4029176. PubMed DOI PMC
Rho J.Y., Kuhn-Spearing L., Zioupos P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998;20:92–102. doi: 10.1016/S1350-4533(98)00007-1. PubMed DOI
Allen M.R., Hock J.M., Burr D.B. Periosteum: Biology, regulation, and response to osteoporosis therapies. Bone. 2004;35:1003–1012. doi: 10.1016/j.bone.2004.07.014. PubMed DOI
Nahian A., Chauhan P.R. Histology, Periosteum and Endosteum. StatPearls Publishing; Treasure Island, FL, USA: 2020. PubMed
Dwek J.R. The periosteum: What is it, where is it, and what mimics it in its absence? Skeletal Radiol. 2010;39:319–323. doi: 10.1007/s00256-009-0849-9. PubMed DOI PMC
Lucas D. Structural organization of the bone marrow and its role in hematopoiesis. Curr. Opin. Hematol. 2021;28:36–42. doi: 10.1097/MOH.0000000000000621. PubMed DOI PMC
Breeland G., Sinkler M.A., Menezes R.G. Embryology, Bone Ossification. StatPearls Publishing; Treasure Island, FL, USA: 2022. PubMed
Allen M.R., Burr D.B. Basic and Applied Bone Biology. Academic Press; Cambridge, MA, USA: 2019. Bone Growth, Modeling, and Remodeling.
Ortega N., Behonick D.J., Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 2004;14:86–93. doi: 10.1016/j.tcb.2003.12.003. PubMed DOI PMC
Carter D.R., Van der Meulen M.C.H., Beaupré G.S. Mechanical factors in bone growth and development. Bone. 1996;18:S5–S10. doi: 10.1016/8756-3282(95)00373-8. PubMed DOI
Ricordeau A., Mellouli N. A stochastic bone remodeling process; Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro; Paris, France. 14–17 May 2008; pp. 1207–1210.
Raggatt L.J., Partridge N.C. Cellular and Molecular Mechanisms of Bone Remodeling. J. Biol. Chem. 2010;285:25103–25108. doi: 10.1074/jbc.R109.041087. PubMed DOI PMC
Riggs B.L., Khosla S., Melton L.J. A Unitary Model for Involutional Osteoporosis: Estrogen Deficiency Causes Both Type I and Type II Osteoporosis in Postmenopausal Women and Contributes to Bone Loss in Aging Men. J. Bone Miner. Res. 1998;13:763–773. doi: 10.1359/jbmr.1998.13.5.763. PubMed DOI
Russell G., Mueller G., Shipman C., Croucher P. The Molecular Basis of Skeletogenesis: Novartis Foundation Symposium. John Wiley & Sons, Ltd.; Chichester, UK: 2001. Clinical Disorders of Bone Resorption; pp. 251–271. PubMed
Eastell R. Treatment of Postmenopausal Osteoporosis. N. Engl. J. Med. 1998;338:736–746. doi: 10.1056/NEJM199803123381107. PubMed DOI
Prestwood M.D.K.M., Pilbeam M.D.C.C., Raisz M.D.L.G. Treatment of osteoporosis. Annu. Rev. Med. 1995;46:249–256. doi: 10.1146/annurev.med.46.1.249. PubMed DOI
Charles J.M., Key L.L. Developmental spectrum of children with congenital osteopetrosis. J. Pediatr. 1998;132:371–374. doi: 10.1016/S0022-3476(98)70467-6. PubMed DOI
De Rosa G., Testa A., Giacomini D., Carrozza C., Astazi P., Caradonna P. Prospective study of bone loss in pre- and post-menopausal women on L-thyroxine therapy for non-toxic goitre. Clin. Endocrinol. 1997;47:529–535. doi: 10.1046/j.1365-2265.1997.3221125.x. PubMed DOI
DEMPSTER D.W., COSMAN F., PARISIEN M., SHEN V., LINDSAY R. Anabolic Actions of Parathyroid Hormone on Bone. Endocr. Rev. 1993;14:690–709. doi: 10.1210/edrv-14-6-690. PubMed DOI
Kölbl O., Knelles D., Barthel T., Kraus U., Flentje M., Eulert J. Randomized trial comparing early postoperative irradiation vs. the use of nonsteroidal antiinflammatory drugs for prevention of heterotopic ossification following prosthetic total hip replacement. Int. J. Radiat. Oncol. 1997;39:961–966. doi: 10.1016/S0360-3016(97)00496-3. PubMed DOI
Mohanty M. Cellular basis for failure of joint prosthesis. Biomed. Mater. Eng. 1996;6:165–172. doi: 10.3233/BME-1996-6304. PubMed DOI
MEE A., DIXON J., HOYLAND J., DAVIES M., SELBY P., MAWER E. Detection of canine distemper virus in 100% of Paget’s disease samples by in situ-reverse transcriptase-polymerase chain reaction. Bone. 1998;23:171–175. doi: 10.1016/S8756-3282(98)00079-9. PubMed DOI
Nellissery M.J., Padalecki S.S., Brkanac Z., Singer F.R., Roodman G.D., Unni K.K., Leach R.J., Hansen M.F. Evidence for a Novel Osteosarcoma Tumor-Suppressor Gene in the Chromosome 18 Region Genetically Linked with Paget Disease of Bone. Am. J. Hum. Genet. 1998;63:817–824. doi: 10.1086/302019. PubMed DOI PMC