Model and Data Concur and Explain the Coexistence of Two Very Distinct Animal Behavioral Types
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CGL2004-03153
Ministerio de Ciencia y Tecnología
PubMed
32825577
PubMed Central
PMC7564360
DOI
10.3390/biology9090241
PII: biology9090241
Knihovny.cz E-zdroje
- Klíčová slova
- animal personality, behavioral syndromes, behavioral types, frequency-dependent selection, individual-based models, sexual cannibalism,
- Publikační typ
- časopisecké články MeSH
Behaviors may enhance fitness in some situations while being detrimental in others. Linked behaviors (behavioral syndromes) may be central to understanding the maintenance of behavioral variability in natural populations. The spillover hypothesis of premating sexual cannibalism by females explains genetically determined female aggression towards both prey and males: growth to a larger size translates into higher fecundity, but at the risk of insufficient sperm acquisition. Here, we use an individual-based model to determine the ecological scenarios under which this spillover strategy is more likely to evolve over a strategy in which females attack approaching males only once the female has previously secured sperm. We found that a classic spillover strategy could never prevail. However, a more realistic early-spillover strategy, in which females become adults earlier in addition to reaching a larger size, could be maintained in some ecological scenarios and even invade a population of females following the other strategy. We also found under some ecological scenarios that both behavioral types coexist through frequency-dependent selection. Additionally, using data from the spider Lycosa hispanica, we provide strong support for the prediction that the two strategies may coexist in the wild. Our results clarify how animal personalities evolve and are maintained in nature.
Zobrazit více v PubMed
Lande R. Natural Selection and Random Genetic Drift in Phenotypic Evolution. Evolution. 1976;30:314–334. doi: 10.1111/j.1558-5646.1976.tb00911.x. PubMed DOI
West-Eberhard M. Developmental Plasticity and Evolution. Oxford University Press; New York, NY, USA: 2003.
Bolnick D., Svanbäck R., Fordyce J., Yang L., Davis J., Hulsey C., Forister M. The Ecology of Individuals: Incidence and Implications of Individual Specialization. Am. Nat. 2003;161:1–28. doi: 10.1086/343878. PubMed DOI
Bolnick D., Amarasekare P., Araújo M., Bürger R., Levine J., Novak M., Rudolf V., Schreiber S., Urban M., Vasseur D. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 2011;26:183–192. doi: 10.1016/j.tree.2011.01.009. PubMed DOI PMC
Des Roches S., Post D., Turley N., Bailey J., Hendry A., Kinnison M., Schweitzer J., Palkovacs E. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2018;2 doi: 10.1038/s41559-017-0402-5. PubMed DOI
Raffard A., Santoul F., Cucherousset J., Blanchet S. The community and ecosystem consequences of intraspecific diversity: A meta-analysis. Biol. Rev. 2018;94 doi: 10.1111/brv.12472. PubMed DOI
Moya-Laraño J., Bilbao-Castro J., Barrionuevo Rosales G., Ruiz-Lupión D., Casado L.G., Montserrat M., Melian C., Magalhaes S. Eco-Evolutionary Spatial Dynamics: Rapid Evolution and Isolation Explain Food Web Persistence. Adv. Ecol. Res. 2014;50:75–143. doi: 10.1016/B978-0-12-801374-8.00003-7. DOI
Schoener T. The Newest Synthesis: Understanding the Interplay of Evolutionary and Ecological Dynamics. Science. 2011;331:426–429. doi: 10.1126/science.1193954. PubMed DOI
Yoshida T., Ellner S., Jones L., Bohannan B., Lenski R., Hairston N. Cryptic Population Dynamics: Rapid Evolution Masks Trophic Interactions. PLoS Biol. 2007;5:e235. doi: 10.1371/journal.pbio.0050235. PubMed DOI PMC
Roff D. Evolutionary Quantitative Genetics. Volume 2. Springer US; New York, NY, USA: 1997. Evolutionary Quantitative Genetic; p. 493.
Dingemanse N., Wolf M. Between-individual differences in behavioural plasticity within populations: Causes and consequences. Anim. Behav. 2013;85:1031–1039. doi: 10.1016/j.anbehav.2012.12.032. DOI
Sih A., Bell A., Johnson J., Robert Z. Behavioral syndromes: An integrative overview. Q. Rev. Biol. 2004;79:241–277. doi: 10.1086/422893. PubMed DOI
Sih A., Bell A., Johnson J. Behavioral syndrome: An ecological and evolutionary overview. Trends Ecol. Evol. 2004;19:372–378. doi: 10.1016/j.tree.2004.04.009. PubMed DOI
Bell A. Future directions in behavioural syndromes research. Proc. Biol. Sci. 2007;274:755–761. doi: 10.1098/rspb.2006.0199. PubMed DOI PMC
Sih A., Cote J., Evans M., Fogarty S., Pruitt J. Ecological implications of behavioural syndromes. Ecol. Lett. 2012;15:278–289. doi: 10.1111/j.1461-0248.2011.01731.x. PubMed DOI
Wolf M., Weissing F. Animal personalities: Consequences for ecology and evolution. Trends Ecol. Evol. 2012;27:452–461. doi: 10.1016/j.tree.2012.05.001. PubMed DOI
Réale D., Reader S., Sol D., McDougall P., Dingemanse N. Integrating animal temperament within ecology and evolution. Biol. Rev. Camb. Philos. Soc. 2007;82:291–318. doi: 10.1111/j.1469-185X.2007.00010.x. PubMed DOI
Réale D., Garant D., Humphries M., Bergeron P., Careau V., Montiglio P.-O. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010;365:4051–4063. doi: 10.1098/rstb.2010.0208. PubMed DOI PMC
Maynard-Smith J. Evolution and the Theory of Games. Cambridge University Press; Cambridge, UK: 1982.
Maynard-Smith J., Harper D. The Evolution of Aggression: Can Selection Generate Variability? [and Discussion] Philos. Trans. R. Soc. Lond. B Biol. Sci. 1988;319:557–570. doi: 10.1098/rstb.1988.0065. PubMed DOI
Wolf M., van Doorn S., Weissing F. Evolutionary emergence of responsive and unresponsive personalities.Evolutionary emergence of responsive and unresponsive personalities. Proc. Natl. Acad. Sci. USA. 2008;105:15825–15830. doi: 10.1073/pnas.0805473105. PubMed DOI PMC
Wolf M., Mcnamara J., Wolf M., McNamara J.M. On the evolution of personalities via frequency-dependent selection. Am. Nat. 2012;179:679–692. doi: 10.1086/665656. PubMed DOI
Wolf M., Weissing F. An explanatory framework for adaptive personality differences. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010;365:3959–3968. doi: 10.1098/rstb.2010.0215. PubMed DOI PMC
Bell A. Behavioural differences between individuals and two populations of stickleback (Gasterosteus aculeatus) J. Evol. Biol. 2005;18:464–473. doi: 10.1111/j.1420-9101.2004.00817.x. PubMed DOI
Dingemanse N., Wright J., Kazem A., Thomas D., Hickling R., Dawnay N. Behavioural syndromes differ predictably between 12 populations of three-spined stickleback. J. Anim. Ecol. 2007;76:1128–1138. doi: 10.1111/j.1365-2656.2007.01284.x. PubMed DOI
Dingemanse N., Kazem A., Réale D., Wright J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 2010;25:81–89. doi: 10.1016/j.tree.2009.07.013. PubMed DOI
Dingemanse N., Bouwman K., van de Pol M., Overveld T., Patrick S., Matthysen E., Quinn J. Variation in personality and behavioural plasticity across four populations of the great tit Parus major. J. Anim. Ecol. 2012;81:116–126. doi: 10.1111/j.1365-2656.2011.01877.x. PubMed DOI
Elgar M. Cannibalism: Ecology and Evolution among Diverse Taxa. Oxford University Press; Oxford, UK: 1992. Sexual cannibalism in spiders and other invertebrates.
Elgar M., Schneider J. Advances in The Study of Behavior. Volume 34. Elsevier; Amsterdam, The Netherlands: 2004. Evolutionary Significance of Sexual Cannibalism; pp. 135–163.
Arnqvist G., Henriksson S. Sexual cannibalism in fishing spider and a model for the evolution of sexual cannibalism based on genetic constraints. Evol. Ecol. 1997;11:255–273. doi: 10.1023/A:1018412302621. DOI
Johnson J., Sih A. Fear, food, sex and parental care: A syndrome of boldness in the fishing spider, Dolomedes triton. Anim. Behav. 2007;74:1131–1138. doi: 10.1016/j.anbehav.2007.02.006. DOI
Johnson J., Sih A. Precopulatory sexual cannibalism in fishing spiders (Dolomedes triton): A role for behavioral syndromes. Behav. Ecol. Sociobiol. 2005;58:390–396. doi: 10.1007/s00265-005-0943-5. DOI
Kralj-Fišer S., Schneider J., Kuntner M., Hauber M. Challenging the Aggressive Spillover Hypothesis: Is Pre-Copulatory Sexual Cannibalism a Part of a Behavioural Syndrome? Ethology. 2013;119 doi: 10.1111/eth.12111. DOI
Moya-Laraño J., Pascual J., Wise D. Mating patterns in late-maturing female Mediterranean tarantulas may reflect the costs and benefits of sexual cannibalism. Anim. Behav. 2003;66:469–476. doi: 10.1006/anbe.2003.2262. DOI
Rabaneda-Bueno R., Aguado S., Fernández-Montraveta C., Moya-Laraño J. Does female personality determine mate choice through sexual cannibalism? Ethology. 2014;120 doi: 10.1111/eth.12197. DOI
Riechert S., Hedrick A. A test for correlations among fitness-linked behavioural traits in the spider Agelenopsis aperta (Araneae, Agelenidae) Anim. Behav. 1993;46:669–675. doi: 10.1006/anbe.1993.1243. DOI
Kralj-Fišer S., Čandek K., Lokovšek T., Čelik T., Cheng R.-C., Elgar M., Kuntner M. Mate choice and sexual size dimorphism, not personality, explain female aggression and sexual cannibalism in raft spiders. Anim. Behav. 2016;111 doi: 10.1016/j.anbehav.2015.10.013. DOI
Newman J., Elgar M. Sexual Cannibalism in Orb-Weaving Spiders: An Economic Model. Am. Nat. 1991;138:1372–1395. doi: 10.1086/285292. DOI
Moya-Laraño J., Orta-Ocaña J., José Antonio B., Bach C., Wise D. Intriguing compensation by adult female spiders for food limitation experienced as juveniles. Oikos. 2003;101:539–548. doi: 10.1034/j.1600-0706.2003.12316.x. DOI
Barry K., Holwell G., Herberstein M. Female praying mantids use sexual cannibalism as a foraging strategy to increase fecundity. Behav. Ecol. 2008;19:710–715. doi: 10.1093/beheco/arm156. DOI
Gavín Centol P., Kralj-Fišer S., De Mas Castroverde E., Ruiz-Lupión D., Moya-Laraño J. Feeding regime, adult age and sexual size dimorphism as determinants of pre-copulatory sexual cannibalism in virgin wolf spiders. Behav. Ecol. Sociobiol. 2017;71 doi: 10.1007/s00265-016-2228-6. DOI
Wilder S., Rypstra A. Sexual size dimorphism mediates the occurrence of state-dependent sexual cannibalism in a wolf spider. Anim. Behav. 2008;76:447–454. doi: 10.1016/j.anbehav.2007.12.023. DOI
Rabaneda-Bueno R., Rodríguez-Gironés M., Aguado S., Fernández-Montraveta C., De Mas Castroverde E., Wise D., Moya-Laraño J. Sexual Cannibalism: High Incidence in a Natural Population with Benefits to Females. PLoS ONE. 2008;3:e3484. doi: 10.1371/journal.pone.0003484. PubMed DOI PMC
Johnson J. Sexual cannibalism in fishing spiders (Dolomedes triton): An evaluation of two explanations for female aggression towards potential mates. Anim. Behav. 2001;61:905–914. doi: 10.1006/anbe.2000.1679. DOI
Erez T., Schneider J.M., Lubin Y. Is Male Cohabitation Costly for Females of the Spider Stegodyphus lineatus (Eresidae)? Ethology. 2005;111:693–704. doi: 10.1111/j.1439-0310.2005.01090.x. DOI
Dingemanse N., Both C., Drent P., Tinbergen J. Fitness consequences of avian personalities in a fluctuating environment. Proc. Biol. Sci. 2004;271:847–852. doi: 10.1098/rspb.2004.2680. PubMed DOI PMC
Dingemanse N., Réale D. Natural selection and animal personality. Behaviour. 2005;142 doi: 10.1163/156853905774539445. DOI
Smith B., Blumstein D. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 2008;19:448–455. doi: 10.1093/beheco/arm144. DOI
Moya-Laraño J. Senescence and food limitation in a slowly aging spider. Funct. Ecol. 2002;16:734–741. doi: 10.1046/j.1365-2435.2002.00685.x. DOI
Moya-Laraño J., Orta-Ocana J., José Antonio B., Bach C., Wise D. Territoriality in a Cannibalistic Burrowing Wolf Spider. Ecology. 2002;83:356–361. doi: 10.2307/2680019. DOI
Biro P., Abrahams M., Post J., Parkinson E. Behavioural trade offs between growth and mortality explain evolution of submaximal growth rates. J. Anim. Ecol. 2006;75:1165–1171. doi: 10.1111/j.1365-2656.2006.01137.x. PubMed DOI
DeAngelis D.L., Mooij W.M. Individual-Based Modeling of Ecological and Evolutionary Processes. Annu. Rev. Ecol. Evol. Syst. 2005;36:147–168. doi: 10.1146/annurev.ecolsys.36.102003.152644. DOI
Deangelis D., Grimm V. Individual-based models in ecology after four decades. F1000Prime Rep. 2014;6:39. doi: 10.12703/P6-39. PubMed DOI PMC
Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J., Goss-Custard J., Grand T., Heinz S., Huse G., et al. A Standard Protocol for Describing Individual-Based and Agent Based Models. Ecol. Modell. 2006;198:115–126. doi: 10.1016/j.ecolmodel.2006.04.023. DOI
Planas E., Fernández-Montraveta C., Ribera C. Molecular systematics of the wolf spider genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin. Mol. Phylogenet. Evol. 2013;67 doi: 10.1016/j.ympev.2013.02.006. PubMed DOI
Riechert S., Maynard-Smith J. Genetic analyses of two behavioural traits linked to individual fitness in the desert spider Agelenopsis aperta. Anim. Behav. 1989;37:624–637. doi: 10.1016/0003-3472(89)90041-9. DOI
Král J., Musilová J., Stahlavsky F., Rezác M., Akan Z., Edwards R., Coyle F., Ribera C. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae) Chromosome Res. 2006;14:859–880. doi: 10.1007/s10577-006-1095-9. PubMed DOI
Fernandez-Montraveta C., Ortega J. Sex differences in the agonistic behaviour of a lycosid spider (Araneae Lycosidae) Ethol. Ecol. Evol. 1993;5:293–301. doi: 10.1080/08927014.1993.9523017. DOI
Elgar M. Sperm Competition and Sexual Selection. Academic Press; Cambridge, MA, USA: 1998. Sperm Competition and Sexual Selection in Spiders and Other Arachnids; pp. 307–339.
Orta J.M., Moya-Laraño J., Barrientos J.A. Datos fenológicos de una población de Lycosa tarantula fasciiventris L. Dufour, 1835, en el Noroeste de la Península Ibérica (Araneae, Lycosidae) Bolletino Accad. Gioenia Sci. Nat. 1993;26:15–26.
Uhl G., Gunnarsson B. Female genitalia in Pityohyphantes phrygianus, a spider with a skewed sex ratio. J. Zool. 2001;255:367–376. doi: 10.1017/S0952836901001467. DOI
Jakob E., Marshall S., Uetz G., Jakob E.M., Marshall S.D., Uetz G.W. Estimating fitness: A comparison of body condition indices. Oikos. 1996;77:61. doi: 10.2307/3545585. DOI
Moya-Laraño J., Pascual J., Wise D. Approach Strategy by which Male Mediterranean Tarantulas Adjust to the Cannibalistic Behaviour of Females. Ethology. 2004;110:717–724. doi: 10.1111/j.1439-0310.2004.01012.x. DOI
Moya-Laraño J. Ph.D. Thesis. Universitat Autònoma de Barcelona; Barcelona, Spain: 1999. Limitación por el Alimento, Territorialidad y Canibalismo en la Tarántula Mediterránea, Lycosa tarentula (L.) (Araneae, Lycosidae)
Moya-Laraño J., Macías-Ordóñez R., Blanckenhorn W., Fernández-Montraveta C. Analysing body condition: Mass, volume or density? J. Anim. Ecol. 2008;77:1099–1108. doi: 10.1111/j.1365-2656.2008.01433.x. PubMed DOI
Higgins E., Rankin A. Mortality risk of rapid growth in the spider Nephila clavipes. Funct. Ecol. 2001;15:24–28. doi: 10.1046/j.1365-2435.2001.00491.x. DOI
Uetz G. Foraging strategies of spiders. Trends Ecol. Evol. 1992;7:155–159. doi: 10.1016/0169-5347(92)90209-T. PubMed DOI
Prokop P., Václav R. Seasonal aspects of sexual cannibalism in the praying mantis (Mantis religiosa) J. Ethol. 2008;26:213–218. doi: 10.1007/s10164-007-0050-3. DOI
Samu F., Toft S., Kiss B., Samu F., Toft S., Kiss B. Factors influencing cannibalism in the wolf spider Pardosa agrestis (Araneae, Lycosidae) Behav. Ecol. Sociobiol. 1999;45:349–354. doi: 10.1007/s002650050570. DOI
Wise D. Spiders in Ecological Webs. Cambridge University Press; Cambridge, UK: 1993. DOI
Rabaneda-Bueno R. Ph.D. Thesis. Autonomous University of Madrid; Madrid, Spain: 2014. El Canibalismo Sexual en la Tarántula Ibérica (Lycosa hispanica): Ecología y Evolución de Estrategias Conductuales.
R Core Development Team . R: A Language and Environment for Statistical Computing. R Core; Vienna, Austria: 2014.
Luttbeg B., Sih A. Risk, resources and state-dependent adaptive behavioural syndromes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010;365:3977–3990. doi: 10.1098/rstb.2010.0207. PubMed DOI PMC
Moya-Laraño J., Verdeny-Vilalta O., Rowntree J., Melguizo-Ruiz N., Montserrat M., Laiolo P. Climate Change and Eco-Evolutionary Dynamics in Food Webs. Adv. Ecol. Res. 2012;47:1–80. doi: 10.1016/B978-0-12-398315-2.00001-6. DOI
Morse D. A test of sexual cannibalism models, using a sit-and-wait predator. Biol. J. Linn. Soc. 2004;81:427–437. doi: 10.1111/j.1095-8312.2003.00294.x. DOI
Morse D. Mating frequencies of male crab spiders, Misumena vatia (Araneae, Thomisidae) J. Arachnol. 2007;35:84–88. doi: 10.1636/ST06-13.1. DOI
Legrand R., Morse D. Factors driving extreme sexual size dimorphism of a sit-and-wait predator under low density. Biol. J. Linn. Soc. 2008;71:643–664. doi: 10.1111/j.1095-8312.2000.tb01283.x. DOI
Darwin C. The Descent of Man and Selection in Relation to Sex. 1st ed. John Murray; London, UK: 1871. DOI
Kreiter N., Wise D. Age-related changes in movement patterns in the fishing spider, Dolomedes triton (Araneae, Pisauridae) J. Arachnol. 1996;24:24–33.
Kreiter N., Wise D. Prey availability limits fecundity and movement patterns of female fishing spiders. Oecologia. 2001;127:417–424. doi: 10.1007/s004420000607. PubMed DOI
Aisenberg A., Viera C., Costa F.G. Daring females, devoted males, and reversed sexual size dimorphism in the sand-dwelling spider Allocosa brasiliensis (Araneae, Lycosidae) Behav. Ecol. Sociobiol. 2007;62:29–35. doi: 10.1007/s00265-007-0435-x. DOI
Foellmer M., Moya-Laraño J. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism. Oxford University Press; New York, NY, USA: 2007. Sexual size dimorphism in spiders: Patterns and processes; pp. 71–81.
Hurd L., Eisenberg R., Fagan W., Tilmon K., Snyder W., Vandersall K., Datz S., Welch J. Cannibalism Reverses Male-Biased Sex Ratio in Adult Mantids: Female Strategy against Food Limitation? Oikos. 1994;69:193. doi: 10.2307/3546137. DOI
Fitzpatrick M., Feder E., Rowe L., Sokolowski M. Maintaining a behavior polymorphism by frequency-dependent selection on a single gene. Nature. 2007;447:210–212. doi: 10.1038/nature05764. PubMed DOI
Wright S. On the roles of directed and random changes in gene frequency in the genetics of populations. Evolution. 1948;2:279–294. doi: 10.1111/j.1558-5646.1948.tb02746.x. PubMed DOI
Fisher R.A. The Genetic Theory of Natural Selection. Oxford University Press; Oxford, UK: 1930.
Clarke B., O’Donald P. Frequency-dependent selection. Heredity (Edinb.) 1964;19:201–206. doi: 10.1038/hdy.1964.25. DOI
Wolf M., van Doorn S., Leimar O., Weissing F. Life history tradeoffs favour the evolution of personality. Nature. 2007;447:581–584. doi: 10.1038/nature05835. PubMed DOI
Neff B., Sherman P. Behavioral syndromes versus Darwinian algorithms. Trends Ecol. Evol. 2004;19 doi: 10.1016/j.tree.2004.09.017. DOI
Ruiz-Gomez M.D.L., Kittilsen S., Höglund E., Huntingford F., Sørensen C., Pottinger T., Bakken M., Winberg S., Korzan W., Øverli Ø. Behavioral plasticity in rainbow trout (Oncorhynchus mykiss) with divergent coping styles: When doves become hawks. Horm. Behav. 2008;54:534–538. doi: 10.1016/j.yhbeh.2008.05.005. PubMed DOI
Brodin T. Behavioral syndrome over the boundaries of life-025EFcarryovers from larvae to adult damselfly. Behav. Ecol. 2009;20:30–37. doi: 10.1093/beheco/arn111. DOI
Minderman J., Reid J., Evans P., Whittingham M. Personality traits in wild starlings: Exploration behavior and environmental sensitivity. Behav. Ecol. 2009;20:830–837. doi: 10.1093/beheco/arp067. DOI
Nelson X., Wilson D., Evans C. Behavioral Syndromes in Stable Social Groups: An Artifact of External Constraints? Ethology. 2008;114:1154–1165. doi: 10.1111/j.1439-0310.2008.01568.x. DOI
Wilson A., Godin J.-G. Boldness and behavioral syndromes in the bluegill sunfish, Lepomis macrochirus. Behav. Ecol. 2009;20:231–237. doi: 10.1093/beheco/arp018. DOI
Logue D., Mishra S., McCaffrey D., Ball D., Cade W. A behavioral syndrome linking courtship behavior toward males and females predicts reproductive success from a single mating in the hissing cockroach, Gromphadorhina portentosa. Behav. Ecol. 2009;20:781–788. doi: 10.1093/beheco/arp061. DOI
Gould S.J. Only his wings remained. Nat. Hist. 1984;93:10–18.