RamA, a transcriptional regulator conferring florfenicol resistance in Leclercia adecarboxylata R25
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
Nos. LQ17H190001
Natural Science Foundation of Zhejiang Province
LY19C060002
Natural Science Foundation of Zhejiang Province
PubMed
32857336
PubMed Central
PMC7716942
DOI
10.1007/s12223-020-00816-2
PII: 10.1007/s12223-020-00816-2
Knihovny.cz E-resources
- Keywords
- Comparative genomics, Florfenicol, Leclercia adecarboxylata, Resistance-nodulation-division, ramA,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacterial Proteins genetics metabolism MeSH
- Enterobacteriaceae drug effects genetics metabolism MeSH
- Escherichia coli genetics MeSH
- Gene Knockout Techniques MeSH
- Cloning, Molecular MeSH
- Microbial Sensitivity Tests MeSH
- Drug Resistance, Multiple, Bacterial drug effects genetics MeSH
- RNA, Ribosomal, 16S MeSH
- Whole Genome Sequencing MeSH
- Thiamphenicol analogs & derivatives MeSH
- Trans-Activators genetics MeSH
- Computational Biology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacterial Proteins MeSH
- florfenicol MeSH Browser
- RNA, Ribosomal, 16S MeSH
- Thiamphenicol MeSH
- Trans-Activators MeSH
Due to the inappropriate use of florfenicol in agricultural practice, florfenicol resistance has become increasingly serious. In this work, we studied the novel florfenicol resistance mechanism of an animal-derived Leclercia adecarboxylata strain R25 with high-level florfenicol resistance. A random genomic DNA library was constructed to screen the novel florfenicol resistance gene. Gene cloning, gene knockout, and complementation combined with the minimum inhibitory concentration (MIC) detection were conducted to determine the function of the resistance-related gene. Sequencing and bioinformatics methods were applied to analyze the structure of the resistance gene-related sequences. Finally, we obtained a regulatory gene of an RND (resistance-nodulation-cell division) system, ramA, that confers resistance to florfenicol and other antibiotics. The ramA-deleted variant (LA-R25ΔramA) decreased the level of resistance against florfenicol and several other antibiotics, while a ramA-complemented strain (pUCP24-prom-ramA/LA-R25ΔramA) restored the drug resistance. The whole-genome sequencing revealed that there were five RND efflux pump genes (mdtABC, acrAB, acrD, acrEF, and acrAB-like) encoded over the chromosome, and ramA located upstream of the acrAB-like genes. The results of this work suggest that ramA confers resistance to florfenicol and other structurally unrelated antibiotics, presumably by regulating the RND efflux pump genes in L. adecarboxylata R25.
Department of Clinical Laboratory Zhejiang Hospital Hangzhou 310013 Zhejiang China
Medical Research Center Taizhou Hospital of Zhejiang Province Taizhou 317000 Zhejiang China
The 5th Affiliated Hospital Wenzhou Medical University Lishui 323000 Zhejiang China
Vocational and Technical College Lishui University Lishui 323000 China
See more in PubMed
Alessiani A, Sacchini L, Pontieri E, Gavini J, Di Giannatale E. Molecular typing of Salmonella enterica subspecies enterica serovar Typhimurium isolated in Abruzzo region (Italy) from 2008 to 2010. Vet Ital. 2014;50:31–39. doi: 10.12834/VetIt.1304.07. PubMed DOI
Bailey AM, Paulsen IT, Piddock LJ. RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother. 2008;52:3604–3611. doi: 10.1128/AAC.00661-08. PubMed DOI PMC
Bailey AM, Ivens A, Kingsley R, Cottell JL, Wain J, Piddock LJ. RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J Bacteriol. 2010;192:1607–1616. doi: 10.1128/JB.01517-09. PubMed DOI PMC
Braibant M, Chevalier J, Chaslus-Dancla E, Pages JM, Cloeckaert A. Structural and functional study of the phenicol-specific efflux pump FloR belonging to the major facilitator superfamily. Antimicrob Agents Chemother. 2005;49:2965–2971. doi: 10.1128/AAC.49.7.2965-2971.2005. PubMed DOI PMC
Chang SK, Lo DY, Wei HW, Kuo HC. Antimicrobial resistance of Escherichia coli isolates from canine urinary tract infections. J Vet Med Sci. 2015;77:59–65. doi: 10.1292/jvms.13-0281. PubMed DOI PMC
Chollet R, Chevalier J, Bollet C, Pages JM, Davin-Regli A. RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother. 2004;48:2518–2523. doi: 10.1128/AAC.48.7.2518-2523.2004. PubMed DOI PMC
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97:6640–6645. doi: 10.1073/pnas.120163297. PubMed DOI PMC
Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL. AraC/XylS Family of Transcriptional Regulators. Microbiol Mol Biol Rev. 1997;61:393–410. doi: 10.1128/.61.4.393-410.1997. PubMed DOI PMC
Geng Y, Wang KY, Huang XL, Chen DF, Li CW, Ren SY, Liao YT, Zhou ZY, Liu QF, du ZJ, Lai WM. Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China. Transbound Emerg Dis. 2012;59:369–375. doi: 10.1111/j.1865-1682.2011.01280.x. PubMed DOI
George AM, Hall RM, Stokes HW. Multidrug resistance in Klebsiella pneumoniae: a novel gene, ramA, confers a multidrug resistance phenotype in Escherichia coli. Microbiology. 1995;141:1909–1920. doi: 10.1099/13500872-141-8-1909. PubMed DOI
Hansen LH, Vester B. A cfr-like gene from Clostridium difficile confers multiple antibiotic resistance by the same mechanism as the cfr gene. Antimicrob Agents Chemother. 2015;59:5841–5843. doi: 10.1128/AAC.01274-15. PubMed DOI PMC
He T, Shen J, Schwarz S, Wu C, Wang Y. Characterization of a genomic island in Stenotrophomonas maltophilia that carries a novel floR gene variant. J Antimicrob Chemother. 2015;70:1031–1036. doi: 10.1093/jac/dku491. PubMed DOI
Horiyama T, Nikaido E, Yamaguchi A, Nishino K. Roles of Salmonella multidrug efflux pumps in tigecycline resistance. J Antimicrob Chemother. 2011;66:105–110. doi: 10.1093/jac/dkq421. PubMed DOI
Keeney D, Ruzin A, Bradford PA. RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microb Drug Resist. 2007;13:1–6. doi: 10.1089/mdr.2006.9990. PubMed DOI
Kehrenberg C, Schwarz S. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob Agents Chemother. 2004;48:615–618. doi: 10.1128/aac.48.2.615-618.2004. PubMed DOI PMC
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC
Lang KS, Anderson JM, Schwarz S, Williamson L, Handelsman J, Singer RS. Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Appl Environ Microbiol. 2010;76:5321–5326. doi: 10.1128/AEM.00323-10. PubMed DOI PMC
Liu H, Wang Y, Wu C, Schwarz S, Shen Z, Jeon B, Ding S, Zhang Q, Shen J. A novel phenicol exporter gene, fexB, found in enterococci of animal origin. J Antimicrob Chemother. 2012;67:322–325. doi: 10.1093/jac/dkr481. PubMed DOI
Mikhail S et al. (2019) Evaluation of the synergy of ceftazidime-avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa 63:e00779-00719. 10.1128/AAC.00779-19 PubMed PMC
Nikaido HJAie, biology raom (2011) Structure and mechanism of RND-type multidrug efflux pumps 77:1 PubMed PMC
Sanchez-Abarca LI, et al. Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Blood. 2010;115:107–121. doi: 10.1182/blood-2009-03-210393. PubMed DOI
Schwarz S, Chaslus-Dancla E. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet Res. 2001;32:201–225. doi: 10.1051/vetres:2001120. PubMed DOI
Schwarz S, Werckenthin C, Kehrenberg C. Identification of a Plasmid-Borne Chloramphenicol-Florfenicol Resistance Gene in Staphylococcus sciuri. Antimicrob Agents Chemother. 2000;44:2530–2533. doi: 10.1128/AAC.44.9.2530-2533.2000. PubMed DOI PMC
Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 2004;28:519–542. doi: 10.1016/j.femsre.2004.04.001. PubMed DOI
Sheng ZK, et al. Mechanisms of tigecycline resistance among Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2014;58:6982–6985. doi: 10.1128/AAC.03808-14. PubMed DOI PMC
Stock I, Burak S, Wiedemann B. Natural antimicrobial susceptibility patterns and biochemical profiles of Leclercia adecarboxylata strains. Clin Microbiol Infect. 2004;10:724–733. doi: 10.1111/j.1469-0691.2004.00892.x. PubMed DOI
Sun Y, Dai M, Hao H, Wang Y, Huang L, Almofti YA, Liu Z, Yuan Z. The role of RamA on the development of ciprofloxacin resistance in Salmonella enterica serovar Typhimurium. PLoS One. 2011;6:e23471. doi: 10.1371/journal.pone.0023471. PubMed DOI PMC
Sun F, et al. Genetic characterization of a novel blaDIM-2-carrying megaplasmid p12969-DIM from clinical Pseudomonas putida. J Antimicrob Chemother. 2016;71:909–912. doi: 10.1093/jac/dkv426. PubMed DOI
Tang Y, Dai L, Sahin O, Wu Z, Liu M, Zhang Q. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen campylobacter. J Antimicrob Chemother. 2017;72:1581–1588. doi: 10.1093/jac/dkx023. PubMed DOI
Tao W, et al. Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase. Appl Environ Microbiol. 2012;78:6295–6301. doi: 10.1128/AEM.01154-12. PubMed DOI PMC
Wang X, et al. Genetic characterisation of clinical Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline: role of the global regulator RamA and its local repressor RamR. Int J Antimicrob Agents. 2015;45:635–640. doi: 10.1016/j.ijantimicag.2014.12.022. PubMed DOI
Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Feßler AT, Wu C, Yu H, Deng X, Xia X, Shen J. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015;70:2182–2190. doi: 10.1093/jac/dkv116. PubMed DOI
Yao Q, Zeng Z, Hou J, Deng Y, He L, Tian W, Zheng H, Chen Z, Liu JH. Dissemination of the rmtB gene carried on IncF and IncN plasmids among Enterobacteriaceae in a pig farm and its environment. J Antimicrob Chemother. 2011;66:2475–2479. doi: 10.1093/jac/dkr328. PubMed DOI