Role of Sodium/Calcium Exchangers in Tumors

. 2020 Aug 31 ; 10 (9) : . [epub] 20200831

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32878087

Grantová podpora
APVV-16-0246 Agentúra na Podporu Výskumu a Vývoja - International
VEGA 2/0038/19. Vedecká Grantová Agentúra MŠVVaŠ SR a SAV - International

The sodium/calcium exchanger (NCX) is a unique calcium transport system, generally transporting calcium ions out of the cell in exchange for sodium ions. Nevertheless, under special conditions this transporter can also work in a reverse mode, in which direction of the ion transport is inverted-calcium ions are transported inside the cell and sodium ions are transported out of the cell. To date, three isoforms of the NCX have been identified and characterized in humans. Majority of information about the NCX function comes from isoform 1 (NCX1). Although knowledge about NCX function has evolved rapidly in recent years, little is known about these transport systems in cancer cells. This review aims to summarize current knowledge about NCX functions in individual types of cancer cells.

Zobrazit více v PubMed

Cui C., Merritt R., Fu L., Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B. 2017;7:3–17. doi: 10.1016/j.apsb.2016.11.001. PubMed DOI PMC

Baker P.F., Blaustein M.P., Hodgkin A.L., Steinhardt R.A. The influence of calcium on sodium efflux in squid axons. J. Physiol. 1969;200:431–458. doi: 10.1113/jphysiol.1969.sp008702. PubMed DOI PMC

Philipson K.D., Longoni S., Ward R. Purification of the cardiac Na+-Ca2+ exchange protein. Biochim. Biophys. Acta. 1988;945:298–306. doi: 10.1016/0005-2736(88)90492-0. PubMed DOI

Li Z., Matsuoka S., Hryshko L.V., Nicoll D.A., Bersohn M.M., Burke E.P., Lifton R.P., Philipson K.D. Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J. Biol. Chem. 1994;269:17434–17439. PubMed

Nicoll D.A., Quednau B.D., Qui Z., Xia Y.R., Lusis A.J., Philipson K.D. Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J. Biol. Chem. 1996;271:24914–24921. doi: 10.1074/jbc.271.40.24914. PubMed DOI

Khananshvili D. Basic and editing mechanisms underlying ion transport and regulation in NCX variants. Cell Calcium. 2020;85:102131. doi: 10.1016/j.ceca.2019.102131. PubMed DOI

Giladi M., Shor R., Lisnyansky M., Khananshvili D. Structure-functional basis of ion transport in sodium–calcium exchanger (NCX) proteins. Int. J. Mol. Sci. 2016;17:1949. doi: 10.3390/ijms17111949. PubMed DOI PMC

Molinaro P., Pannaccione A., Sisalli M.J., Secondo A., Cuomo O., Sirabella R., Cantile M., Ciccone R., Scorziello A., Renzo G.D., et al. A new cell-penetrating peptide that blocks the autoinhibitory XIP domain of NCX1 and enhances antiporter activity. Mol. Ther. 2015;23:465–476. doi: 10.1038/mt.2014.231. PubMed DOI PMC

Annunziato L., Secondo A., Pignataro G., Scorziello A., Molinaro P. New perspectives for selective NCX activators in neurodegenerative diseases. Cell Calcium. 2020;87:102170. doi: 10.1016/j.ceca.2020.102170. PubMed DOI

Wang C., Wang X., Li Y., Xia Z., Liu Y., Yu H., Xu G., Wu X., Zhao R., Zhang G. Chronic ethanol exposure reduces the expression of NCX3 in the hippocampus of male C57BL/6 mice. Neuroreport. 2019;30:397–403. doi: 10.1097/WNR.0000000000001214. PubMed DOI

Khaksar S., Bigdeli M.R. Anti-excitotoxic effects of cannabidiol are partly mediated by enhancement of NCX2 and NCX3 expression in animal model of cerebral ischemia. Eur. J. Pharmacol. 2017;794:270–279. doi: 10.1016/j.ejphar.2016.11.011. PubMed DOI

Marshall C.R., Fox J.A., Butland S.L., Ouellette B.F.F., Brinkman F.S.L., Tibbits G.F. Phylogeny of Na+/Ca2+ exchanger (NCX) genes from genomic data identifies new gene duplications and a new family member in fish species. Physiol. Genomics. 2005;21:161–173. doi: 10.1152/physiolgenomics.00286.2004. PubMed DOI

Shu X., Huang J., Dong Y., Choi J., Langenbacher A., Chen J.N. Na,K-ATPase alpha2 and Ncx4a regulate zebrafish left-right patterning. Development. 2007;134:1921–1930. doi: 10.1242/dev.02851. PubMed DOI

Blaustein M.P., Lederer W.J. Sodium/calcium exchanger: Its physiological implications. Physiol. Rev. 1999;79:763–854. doi: 10.1152/physrev.1999.79.3.763. PubMed DOI

Gerkau N.J., Rakers C., Durry S., Petzhold G.C., Rose C.R. Reverse NCX attenuates cellular sodium loading in metabolically compromised cortex. Cereb. Cortex. 2018;28:4264–4280. doi: 10.1093/cercor/bhx280. PubMed DOI

Khananshvili D. Sodium-calcium exchangers (NCX): Molecular hallmarks underlying the tissue-specific and systemic functions. Pflugers Arch. 2014;466:43–60. doi: 10.1007/s00424-013-1405-y. PubMed DOI

Linck B., Qiu Z., He Z., Tong Q., Hilgemann D.W., Phillipson K.D. Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3) Am. J. Physiol. 1998;274:C415–C423. doi: 10.1152/ajpcell.1998.274.2.C415. PubMed DOI

Afridi H.I., Kazi T.G., Talpur F.N. Correlation of calcium and magnesium levels in the biological samples of different types of acute leukemia children. Biol. Trace Elem. Res. 2018;186:395–406. doi: 10.1007/s12011-018-1340-z. PubMed DOI

Garcia-Prieto C., Riaz Ahmed K.B., Chen Z., Zhou Y., Hammoudi N., Kang Y., Lou C., Mei Y., Jin Z., Huang P. Effective killing of leukemia cells by the natural product OSW-1 through disruption of cellular calcium homeostasis. J. Biol. Chem. 2013;288:3240–3250. doi: 10.1074/jbc.M112.384776. PubMed DOI PMC

Shattock M.J., Ottolia M., Bers D.M., Blaustein M.P., Boguslavskyi A., Bossuyt J., Bridge J.H., Chen-Izu Y., Clancy C.E., Edwards A., et al. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J. Physiol. 2015;593:1361–1382. doi: 10.1113/jphysiol.2014.282319. PubMed DOI PMC

Formisano L., Guida N., Mascolo L., Serani A., Laudati G., Pizzorusso V., Annunziato L. Transcriptional and epigenetic regulation of ncx1 and ncx3 in the brain. Cell Calcium. 2020;87:102194. doi: 10.1016/j.ceca.2020.102194. PubMed DOI

Perkins N.D., Gilmore T.D. Good cop, bad cop: The different faces of NF-kappaB. Cell Death Differ. 2006;13:759–772. doi: 10.1038/sj.cdd.4401838. PubMed DOI

Valsecchi V., Pignataro G., Del Prete A., Sirabella R., Matrone C., Boscia F., Scorziello A., Sisalli M.J., Esposito E., Zambrano N., et al. NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke. 2011;42:754–763. doi: 10.1161/STROKEAHA.110.597583. PubMed DOI

Hudecova S., Lencesova L., Csaderova L., Sirova M., Cholujova D., Cagala M., Kopacek J., Dobrota D., Pastorekova S., Krizanova O. Chemically mimicked hypoxia modulates gene expression and protein levels of the sodium calcium exchanger in HEK 293 cell line via HIF-1α. Gen. Physiol. Biophys. 2011;30:196–206. doi: 10.4149/gpb_2011_02_196. PubMed DOI

Liskova V., Hudecova S., Lencesova L., Iuliano F., Sirova M., Ondrias K., Pastorekova S., Krizanova O. Type 1 sodium calcium exchanger forms a complex with carbonic anhydrase IX and via reverse mode activity contributes to pH control in hypoxic tumors. Cancers. 2019;11:1139. doi: 10.3390/cancers11081139. PubMed DOI PMC

Wen J., Pang Y., Zhou T., Qi X., Zhao M., Xuan B., Meng X., Guo Y., Liu Q., Liang H., et al. Essential role of Na+/Ca2+ exchanger 1 in smoking-induced growth and migration of esophageal squamous cell carcinoma. Oncotarget. 2016;7:63816–63828. doi: 10.18632/oncotarget.11695. PubMed DOI PMC

Ding J., Jin Z., Yang X., Lou J., Shan W., Hu Y., Du Q., Liao Q., Xu J., Xie R. Plasma membrane Ca2+-permeable channels and sodium/calcium exchangers in tumorigenesis and tumor development of the upper gastrointestinal tract. Cancer Lett. 2020;475:14–21. doi: 10.1016/j.canlet.2020.01.026. PubMed DOI

Xu J., Ji B., Wen G., Yang Y., Jin H., Liu X., Xie R., Song W., Song P., Dong H., et al. Na+/H+ exchanger 1, Na+/Ca2+ exchanger 1 and calmodulin complex regulates interleukin 6-mediated cellular behavior of human hepatocellular carcinoma. Carcinogenesis. 2016;37:290–300. doi: 10.1093/carcin/bgw004. PubMed DOI

Almilaji A., Yan J., Hosseinzadeh Z., Schmid E., Gawaz M., Lang F. Up-regulation of Na+/Ca2+ exchange in megakaryocytes following TGFβ1 treatment. Cell. Physiol. Biochem. 2016;39:693–699. doi: 10.1159/000445660. PubMed DOI

Xu J., Yang Y., Xie R., Liu J., Nie X., An J., Wen G., Liu X., Jin H., Tuo B. The NCX1/TRPC6 complex mediates TGFβ-driven migration and invasion of human hepatocellular carcinoma cells. Cancer Res. 2018;78:2564–2576. doi: 10.1158/0008-5472.CAN-17-2061. PubMed DOI

Dong H., Shim K.N., Li J.M., Estrema C., Ornelas T.A., Nguyen F., Liu S., Ramamoorthy S.L., Ho S., Carethers J.M., et al. Molecular mechanisms underlying Ca2+-mediated motility of human pancreatic duct cells. Am. J. Physiol. Cell Physiol. 2010;299:C1493–C1503. doi: 10.1152/ajpcell.00242.2010. PubMed DOI PMC

Chovancova B., Hudecova S., Lencesova L., Babula P., Rezuchova I., Penesova A., Grman M., Moravcik R., Zeman M., Krizanova O. Melatonin-induced changes in cytosolic calcium might be responsible for apoptosis induction in tumour cells. Cell. Physiol. Biochem. 2017;44:763–777. doi: 10.1159/000485290. PubMed DOI

Huai J., Shao Y., Sun X., Jin Y., Wu J., Huang Z. Melatonin ameliorates acute necrotizing pancreatitis by the regulation of cytosolic Ca2+ homeostasis. Pancreatology. 2012;12:257–263. doi: 10.1016/j.pan.2012.02.004. PubMed DOI

Tan D.X., Reiter R., Manchester L.C., Yan M.T., El-Sawi M., Sainz R.M., Mayo J.C., Kohen R., Allegra M., Hardeland R. Chemical and physical properties and potential mechanisms: Melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2002;2:181–197. doi: 10.2174/1568026023394443. PubMed DOI

Mahdi S.H., Cheng H., Li J., Feng R. The effect of TGF-beta-induced epithelial-mesenchymal transition on the expression of intracellular calcium-handling proteins in T47D and MCF-7 human breast cancer cells. Arch. Biochem. Biophys. 2015;583:18–26. doi: 10.1016/j.abb.2015.07.008. PubMed DOI

Chovancova B., Liskova V., Miklikova S., Hudecova S., Babula P., Penesova A., Sevcikova A., Durinikova E., Novakova M., Matuskova M., et al. Calcium signaling affects migration and proliferation differently in individual cancer cells due to nifedipine treatment. Biochem. Pharmacol. 2020;171:113695. doi: 10.1016/j.bcp.2019.113695. PubMed DOI

Hu H.J., Wang S.S., Wang Y.X., Liu Y., Feng X.M., Shen Y., Zhu L., Chen H.Z., Song M. Blockade of the forward Na+/Ca2+ exchanger suppresses the growth of glioblastoma cells through Ca2+-mediated cell death. Br. J. Pharmacol. 2019;176:2691–2707. doi: 10.1111/bph.14692. PubMed DOI PMC

Esteves G.N.N., Ferraz L.S., Alvarez M.M.P., Costac C.A.D., Lopes R.M., Tersariolb I.L.D.S., Rodrigues T. BRAF and NRAS mutated melanoma: Different Ca2+ responses, Na+/Ca2+ exchanger expression, and sensitivity to inhibitors. Cell Calcium. 2020;90:102241. doi: 10.1016/j.ceca.2020.102241. PubMed DOI

Brustovetsky T., Brittain M.K., Sheets P.L., Cummins T.R., Pinelis V., Brustovetsky N. KB-R7943, an inhibitor of the reverse Na+/Ca2+ exchanger, blocks N-methyl-D-aspartate receptor and inhibits mitochondrial complex I. Br. J. Pharmacol. 2011;162:255–270. doi: 10.1111/j.1476-5381.2010.01054.x. PubMed DOI PMC

Barrientos G., Bose D.D., Feng W., Padilla I., Pessah I.N. The Na+/Ca2+ exchange inhibitor 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate (KB-R7943) also blocks ryanodine receptors type 1 (RyR1) and type 2 (RyR2) channels. Mol. Pharmacol. 2009;76:560–568. doi: 10.1124/mol.109.057265. PubMed DOI PMC

Long Z., Chen B., Liu Q., Zhao J., Yang Z., Dong X., Xia L., Huang S., Hu X., Song B., et al. The reverse-mode NCX1 activity inhibitor KB-R7943 promotes prostate cancer cell death by activating the JNK pathway and blocking autophagic flux. Oncotarget. 2016;7:42059–42070. doi: 10.18632/oncotarget.9806. PubMed DOI PMC

Sennoune S.R., Santos J.M., Hussain F., Martinez-Zaguilan R. Sodium calcium exchanger operates in the reverse mode in metastatic human melanoma cells. Cell. Mol. Biol. 2015;61:40–49. PubMed

Szadvari I., Hudecova S., Chovancova B., Matuskova M., Cholujova D., Lencesova L., Valerian D., Ondrias K., Babula P., Krizanova O. Sodium/calcium exchanger is involved in apoptosis induced by H2S in tumor cells through decreased levels of intracellular pH. Nitric Oxide. 2019;87:1–9. doi: 10.1016/j.niox.2019.02.011. PubMed DOI

Becker H.M. Carbonic anhydrase IX and acid transport in cancer. Br. J. Cancer. 2020;122:157–167. doi: 10.1038/s41416-019-0642-z. PubMed DOI PMC

Soltysova A., Breza J., Takacova M., Feruszova J., Hudecova S., Novotna B., Rozborilova E., Pastorekova S., Kadasi L., Krizanova O. Deregulation of energetic metabolism in the clear cell renal cell carcinoma: A multiple pathway analysis based on microarray profiling. Int. J. Oncol. 2015;47:287–295. doi: 10.3892/ijo.2015.3014. PubMed DOI

Riemann A., Ihling A., Schneider B., Gekle M., Thews O. Impact of extracellular acidosis on intracellular pH control and cell signaling in tumor cells. Adv. Exp. Med. Biol. 2013;789:221–228. doi: 10.1007/978-1-4614-7411-1_30. PubMed DOI

Asgharzadeh M.R., Barar J., Pourseif M.M., Eskandani M., Jafari Niya M., Mashayekhi R., Omidi Y. Molecular machineries of pH dysregulation in tumor microenvironment: Potential target for cancer therapy. Bioimpacts. 2017;7:115–133. doi: 10.15171/bi.2017.15. PubMed DOI PMC

Reshkin S.J., Cardone R.A., Harguindey S. Na+-H+ exchanger, pH regulation and cancer. Recent Pat. Anticancer Drug. Discov. 2013;8:85–99. doi: 10.2174/1574892811308010085. PubMed DOI

Andrikopoulos P., Kieswich J., Harwood S.M., Baba A., Matsuda T., Barbeau O., Jones K., Eccles S.A., Yaqoob M.M. Endothelial angiogenesis and barrier function in response to thrombin require Ca2+ influx through the Na+/Ca2+ exchanger. J. Biol. Chem. 2015;290:18412–18428. doi: 10.1074/jbc.M114.628156. PubMed DOI PMC

Tani M. Mechanisms of overload in reperfused ischemic myocardium. Annu. Rev. Physiol. 1990;52:543–559. doi: 10.1146/annurev.ph.52.030190.002551. PubMed DOI

Song Y., Lee S.Y., Kim S., Choi I., Kim S.H., Shum D., Heo J., Kim A.R., Kim K.M., Seo H.R. Inhibitors of Na+/K+ ATPase exhibit antitumor effects on multicellular tumor spheroids of hepatocellular carcinoma. Sci. Rep. 2020;10:5318. doi: 10.1038/s41598-020-62134-4. PubMed DOI PMC

Guo W., Wei B., Chen T., Xu X., Ruan F., Xiang M. The Na+/K+ ATPase inhibitor ouabain attenuates stemness and chemoresistance of osteosarcoma cells. Med. Sci. Monit. 2019;25:9426–9434. doi: 10.12659/MSM.919266. PubMed DOI PMC

Ding X., He Z., Zhou K., Cheng J., Yao H., Lu D., Cai R., Jin Y., Dong B., Xu Y., et al. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J. Natl. Cancer Inst. 2010;102:1052–1068. doi: 10.1093/jnci/djq217. PubMed DOI

Song M., Chen D., Yu S.P. The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na+/Ca2+ exchanger and increasing intracellular Ca2+ Br. J. Pharmcol. 2014;171:3432–3447. doi: 10.1111/bph.12691. PubMed DOI PMC

Secondo A., Staiano I.R., Scorziello A., Sirabella R., Boscia F., Adornetto A., Canzoniero L.M.T., Di Renzo G., Annunziato L. The Na+/Ca2+ exchanger isoform 3 (NCX3) but not isoform 2 (NCX2) and 1 (NCX1) singly transfected in BHK cells plays a protective role in a model of in vitro hypoxia. Ann. N. Y. Acad. Sci. 2007;1099:481–485. doi: 10.1196/annals.1387.052. PubMed DOI

Liu T., Zhao J., Ibarra C., Garcia M.U., Uhlen P., Nister M. Glycosylation controls sodium-calcium exchanger 3 sub-cellular localization during cell cycle. Eur. J. Cell Biol. 2018;97:190–203. doi: 10.1016/j.ejcb.2018.02.004. PubMed DOI

Michel L.Y.M., Verkaart S., Latta F., Hoenderop J.G.J., Bindels R.J.M. Differential regulation of the Na+-Ca2+ exchanger 3 (NCX3) by protein kinase PKC and PKA. Cell Calcium. 2017;65:52–62. doi: 10.1016/j.ceca.2017.02.005. PubMed DOI

Pannaccione A., Piccialli I., Secondo A., Ciccone R., Molinaro P., Boscia F., Annunziatio L. The Na+/Ca2+ exchanger in Alzheimer’s disease. Cell Calcium. 2020;87:102190. doi: 10.1016/j.ceca.2020.102190. PubMed DOI

Pelzl L., Hosseinzadeh Z., Alzoubi K., Al-Maghout T., Schmidt S., Stournaras C., Lang F. Impact of Na+/Ca2+ exchangers on therapy resistance of ovary carcinoma cells. Cell. Physiol. Biochem. 2015;37:1857–1868. doi: 10.1159/000438547. PubMed DOI

Pelzl L., Hosseinzadeh Z., Al-Maghout T., Singh Y., Sahu I., Bissinger R., Schmidt S., Alkahtani S., Stournaras C., Toulany M., et al. Role of Na+/Ca2+ exchangers in therapy resistance of medulloblastoma cells. Cell. Physiol. Biochem. 2017;42:1240–1251. doi: 10.1159/000478953. PubMed DOI

Rodrigues T., Estevez G.N.N., Tersariol I.L.D.S. Na+/Ca2+ exchangers: Unexploited opportunities for cancer therapy? Biochem. Pharmacol. 2019;163:357–361. doi: 10.1016/j.bcp.2019.02.032. PubMed DOI

Qu M., Yu J., Liu H., Ren Y., Ma C., Bu X., Lan Q. The candidate tumor suppressor gene SLC8A2 inhibits invasion, angiogenesis and growth of glioblastoma. Mol. Cells. 2017;40:761–772. doi: 10.14348/molcells.2017.0104. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace