Role of Sodium/Calcium Exchangers in Tumors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
APVV-16-0246
Agentúra na Podporu Výskumu a Vývoja - International
VEGA 2/0038/19.
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV - International
PubMed
32878087
PubMed Central
PMC7563772
DOI
10.3390/biom10091257
PII: biom10091257
Knihovny.cz E-zdroje
- Klíčová slova
- apoptosis, calcium, cancer cells, sodium-calcium exchanger,
- MeSH
- invazivní růst nádoru MeSH
- iontový transport MeSH
- lidé MeSH
- nádory metabolismus MeSH
- pumpa pro výměnu sodíku a vápníku metabolismus MeSH
- sodík metabolismus MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- pumpa pro výměnu sodíku a vápníku MeSH
- sodík MeSH
- vápník MeSH
The sodium/calcium exchanger (NCX) is a unique calcium transport system, generally transporting calcium ions out of the cell in exchange for sodium ions. Nevertheless, under special conditions this transporter can also work in a reverse mode, in which direction of the ion transport is inverted-calcium ions are transported inside the cell and sodium ions are transported out of the cell. To date, three isoforms of the NCX have been identified and characterized in humans. Majority of information about the NCX function comes from isoform 1 (NCX1). Although knowledge about NCX function has evolved rapidly in recent years, little is known about these transport systems in cancer cells. This review aims to summarize current knowledge about NCX functions in individual types of cancer cells.
Zobrazit více v PubMed
Cui C., Merritt R., Fu L., Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B. 2017;7:3–17. doi: 10.1016/j.apsb.2016.11.001. PubMed DOI PMC
Baker P.F., Blaustein M.P., Hodgkin A.L., Steinhardt R.A. The influence of calcium on sodium efflux in squid axons. J. Physiol. 1969;200:431–458. doi: 10.1113/jphysiol.1969.sp008702. PubMed DOI PMC
Philipson K.D., Longoni S., Ward R. Purification of the cardiac Na+-Ca2+ exchange protein. Biochim. Biophys. Acta. 1988;945:298–306. doi: 10.1016/0005-2736(88)90492-0. PubMed DOI
Li Z., Matsuoka S., Hryshko L.V., Nicoll D.A., Bersohn M.M., Burke E.P., Lifton R.P., Philipson K.D. Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J. Biol. Chem. 1994;269:17434–17439. PubMed
Nicoll D.A., Quednau B.D., Qui Z., Xia Y.R., Lusis A.J., Philipson K.D. Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J. Biol. Chem. 1996;271:24914–24921. doi: 10.1074/jbc.271.40.24914. PubMed DOI
Khananshvili D. Basic and editing mechanisms underlying ion transport and regulation in NCX variants. Cell Calcium. 2020;85:102131. doi: 10.1016/j.ceca.2019.102131. PubMed DOI
Giladi M., Shor R., Lisnyansky M., Khananshvili D. Structure-functional basis of ion transport in sodium–calcium exchanger (NCX) proteins. Int. J. Mol. Sci. 2016;17:1949. doi: 10.3390/ijms17111949. PubMed DOI PMC
Molinaro P., Pannaccione A., Sisalli M.J., Secondo A., Cuomo O., Sirabella R., Cantile M., Ciccone R., Scorziello A., Renzo G.D., et al. A new cell-penetrating peptide that blocks the autoinhibitory XIP domain of NCX1 and enhances antiporter activity. Mol. Ther. 2015;23:465–476. doi: 10.1038/mt.2014.231. PubMed DOI PMC
Annunziato L., Secondo A., Pignataro G., Scorziello A., Molinaro P. New perspectives for selective NCX activators in neurodegenerative diseases. Cell Calcium. 2020;87:102170. doi: 10.1016/j.ceca.2020.102170. PubMed DOI
Wang C., Wang X., Li Y., Xia Z., Liu Y., Yu H., Xu G., Wu X., Zhao R., Zhang G. Chronic ethanol exposure reduces the expression of NCX3 in the hippocampus of male C57BL/6 mice. Neuroreport. 2019;30:397–403. doi: 10.1097/WNR.0000000000001214. PubMed DOI
Khaksar S., Bigdeli M.R. Anti-excitotoxic effects of cannabidiol are partly mediated by enhancement of NCX2 and NCX3 expression in animal model of cerebral ischemia. Eur. J. Pharmacol. 2017;794:270–279. doi: 10.1016/j.ejphar.2016.11.011. PubMed DOI
Marshall C.R., Fox J.A., Butland S.L., Ouellette B.F.F., Brinkman F.S.L., Tibbits G.F. Phylogeny of Na+/Ca2+ exchanger (NCX) genes from genomic data identifies new gene duplications and a new family member in fish species. Physiol. Genomics. 2005;21:161–173. doi: 10.1152/physiolgenomics.00286.2004. PubMed DOI
Shu X., Huang J., Dong Y., Choi J., Langenbacher A., Chen J.N. Na,K-ATPase alpha2 and Ncx4a regulate zebrafish left-right patterning. Development. 2007;134:1921–1930. doi: 10.1242/dev.02851. PubMed DOI
Blaustein M.P., Lederer W.J. Sodium/calcium exchanger: Its physiological implications. Physiol. Rev. 1999;79:763–854. doi: 10.1152/physrev.1999.79.3.763. PubMed DOI
Gerkau N.J., Rakers C., Durry S., Petzhold G.C., Rose C.R. Reverse NCX attenuates cellular sodium loading in metabolically compromised cortex. Cereb. Cortex. 2018;28:4264–4280. doi: 10.1093/cercor/bhx280. PubMed DOI
Khananshvili D. Sodium-calcium exchangers (NCX): Molecular hallmarks underlying the tissue-specific and systemic functions. Pflugers Arch. 2014;466:43–60. doi: 10.1007/s00424-013-1405-y. PubMed DOI
Linck B., Qiu Z., He Z., Tong Q., Hilgemann D.W., Phillipson K.D. Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3) Am. J. Physiol. 1998;274:C415–C423. doi: 10.1152/ajpcell.1998.274.2.C415. PubMed DOI
Afridi H.I., Kazi T.G., Talpur F.N. Correlation of calcium and magnesium levels in the biological samples of different types of acute leukemia children. Biol. Trace Elem. Res. 2018;186:395–406. doi: 10.1007/s12011-018-1340-z. PubMed DOI
Garcia-Prieto C., Riaz Ahmed K.B., Chen Z., Zhou Y., Hammoudi N., Kang Y., Lou C., Mei Y., Jin Z., Huang P. Effective killing of leukemia cells by the natural product OSW-1 through disruption of cellular calcium homeostasis. J. Biol. Chem. 2013;288:3240–3250. doi: 10.1074/jbc.M112.384776. PubMed DOI PMC
Shattock M.J., Ottolia M., Bers D.M., Blaustein M.P., Boguslavskyi A., Bossuyt J., Bridge J.H., Chen-Izu Y., Clancy C.E., Edwards A., et al. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J. Physiol. 2015;593:1361–1382. doi: 10.1113/jphysiol.2014.282319. PubMed DOI PMC
Formisano L., Guida N., Mascolo L., Serani A., Laudati G., Pizzorusso V., Annunziato L. Transcriptional and epigenetic regulation of ncx1 and ncx3 in the brain. Cell Calcium. 2020;87:102194. doi: 10.1016/j.ceca.2020.102194. PubMed DOI
Perkins N.D., Gilmore T.D. Good cop, bad cop: The different faces of NF-kappaB. Cell Death Differ. 2006;13:759–772. doi: 10.1038/sj.cdd.4401838. PubMed DOI
Valsecchi V., Pignataro G., Del Prete A., Sirabella R., Matrone C., Boscia F., Scorziello A., Sisalli M.J., Esposito E., Zambrano N., et al. NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke. 2011;42:754–763. doi: 10.1161/STROKEAHA.110.597583. PubMed DOI
Hudecova S., Lencesova L., Csaderova L., Sirova M., Cholujova D., Cagala M., Kopacek J., Dobrota D., Pastorekova S., Krizanova O. Chemically mimicked hypoxia modulates gene expression and protein levels of the sodium calcium exchanger in HEK 293 cell line via HIF-1α. Gen. Physiol. Biophys. 2011;30:196–206. doi: 10.4149/gpb_2011_02_196. PubMed DOI
Liskova V., Hudecova S., Lencesova L., Iuliano F., Sirova M., Ondrias K., Pastorekova S., Krizanova O. Type 1 sodium calcium exchanger forms a complex with carbonic anhydrase IX and via reverse mode activity contributes to pH control in hypoxic tumors. Cancers. 2019;11:1139. doi: 10.3390/cancers11081139. PubMed DOI PMC
Wen J., Pang Y., Zhou T., Qi X., Zhao M., Xuan B., Meng X., Guo Y., Liu Q., Liang H., et al. Essential role of Na+/Ca2+ exchanger 1 in smoking-induced growth and migration of esophageal squamous cell carcinoma. Oncotarget. 2016;7:63816–63828. doi: 10.18632/oncotarget.11695. PubMed DOI PMC
Ding J., Jin Z., Yang X., Lou J., Shan W., Hu Y., Du Q., Liao Q., Xu J., Xie R. Plasma membrane Ca2+-permeable channels and sodium/calcium exchangers in tumorigenesis and tumor development of the upper gastrointestinal tract. Cancer Lett. 2020;475:14–21. doi: 10.1016/j.canlet.2020.01.026. PubMed DOI
Xu J., Ji B., Wen G., Yang Y., Jin H., Liu X., Xie R., Song W., Song P., Dong H., et al. Na+/H+ exchanger 1, Na+/Ca2+ exchanger 1 and calmodulin complex regulates interleukin 6-mediated cellular behavior of human hepatocellular carcinoma. Carcinogenesis. 2016;37:290–300. doi: 10.1093/carcin/bgw004. PubMed DOI
Almilaji A., Yan J., Hosseinzadeh Z., Schmid E., Gawaz M., Lang F. Up-regulation of Na+/Ca2+ exchange in megakaryocytes following TGFβ1 treatment. Cell. Physiol. Biochem. 2016;39:693–699. doi: 10.1159/000445660. PubMed DOI
Xu J., Yang Y., Xie R., Liu J., Nie X., An J., Wen G., Liu X., Jin H., Tuo B. The NCX1/TRPC6 complex mediates TGFβ-driven migration and invasion of human hepatocellular carcinoma cells. Cancer Res. 2018;78:2564–2576. doi: 10.1158/0008-5472.CAN-17-2061. PubMed DOI
Dong H., Shim K.N., Li J.M., Estrema C., Ornelas T.A., Nguyen F., Liu S., Ramamoorthy S.L., Ho S., Carethers J.M., et al. Molecular mechanisms underlying Ca2+-mediated motility of human pancreatic duct cells. Am. J. Physiol. Cell Physiol. 2010;299:C1493–C1503. doi: 10.1152/ajpcell.00242.2010. PubMed DOI PMC
Chovancova B., Hudecova S., Lencesova L., Babula P., Rezuchova I., Penesova A., Grman M., Moravcik R., Zeman M., Krizanova O. Melatonin-induced changes in cytosolic calcium might be responsible for apoptosis induction in tumour cells. Cell. Physiol. Biochem. 2017;44:763–777. doi: 10.1159/000485290. PubMed DOI
Huai J., Shao Y., Sun X., Jin Y., Wu J., Huang Z. Melatonin ameliorates acute necrotizing pancreatitis by the regulation of cytosolic Ca2+ homeostasis. Pancreatology. 2012;12:257–263. doi: 10.1016/j.pan.2012.02.004. PubMed DOI
Tan D.X., Reiter R., Manchester L.C., Yan M.T., El-Sawi M., Sainz R.M., Mayo J.C., Kohen R., Allegra M., Hardeland R. Chemical and physical properties and potential mechanisms: Melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2002;2:181–197. doi: 10.2174/1568026023394443. PubMed DOI
Mahdi S.H., Cheng H., Li J., Feng R. The effect of TGF-beta-induced epithelial-mesenchymal transition on the expression of intracellular calcium-handling proteins in T47D and MCF-7 human breast cancer cells. Arch. Biochem. Biophys. 2015;583:18–26. doi: 10.1016/j.abb.2015.07.008. PubMed DOI
Chovancova B., Liskova V., Miklikova S., Hudecova S., Babula P., Penesova A., Sevcikova A., Durinikova E., Novakova M., Matuskova M., et al. Calcium signaling affects migration and proliferation differently in individual cancer cells due to nifedipine treatment. Biochem. Pharmacol. 2020;171:113695. doi: 10.1016/j.bcp.2019.113695. PubMed DOI
Hu H.J., Wang S.S., Wang Y.X., Liu Y., Feng X.M., Shen Y., Zhu L., Chen H.Z., Song M. Blockade of the forward Na+/Ca2+ exchanger suppresses the growth of glioblastoma cells through Ca2+-mediated cell death. Br. J. Pharmacol. 2019;176:2691–2707. doi: 10.1111/bph.14692. PubMed DOI PMC
Esteves G.N.N., Ferraz L.S., Alvarez M.M.P., Costac C.A.D., Lopes R.M., Tersariolb I.L.D.S., Rodrigues T. BRAF and NRAS mutated melanoma: Different Ca2+ responses, Na+/Ca2+ exchanger expression, and sensitivity to inhibitors. Cell Calcium. 2020;90:102241. doi: 10.1016/j.ceca.2020.102241. PubMed DOI
Brustovetsky T., Brittain M.K., Sheets P.L., Cummins T.R., Pinelis V., Brustovetsky N. KB-R7943, an inhibitor of the reverse Na+/Ca2+ exchanger, blocks N-methyl-D-aspartate receptor and inhibits mitochondrial complex I. Br. J. Pharmacol. 2011;162:255–270. doi: 10.1111/j.1476-5381.2010.01054.x. PubMed DOI PMC
Barrientos G., Bose D.D., Feng W., Padilla I., Pessah I.N. The Na+/Ca2+ exchange inhibitor 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate (KB-R7943) also blocks ryanodine receptors type 1 (RyR1) and type 2 (RyR2) channels. Mol. Pharmacol. 2009;76:560–568. doi: 10.1124/mol.109.057265. PubMed DOI PMC
Long Z., Chen B., Liu Q., Zhao J., Yang Z., Dong X., Xia L., Huang S., Hu X., Song B., et al. The reverse-mode NCX1 activity inhibitor KB-R7943 promotes prostate cancer cell death by activating the JNK pathway and blocking autophagic flux. Oncotarget. 2016;7:42059–42070. doi: 10.18632/oncotarget.9806. PubMed DOI PMC
Sennoune S.R., Santos J.M., Hussain F., Martinez-Zaguilan R. Sodium calcium exchanger operates in the reverse mode in metastatic human melanoma cells. Cell. Mol. Biol. 2015;61:40–49. PubMed
Szadvari I., Hudecova S., Chovancova B., Matuskova M., Cholujova D., Lencesova L., Valerian D., Ondrias K., Babula P., Krizanova O. Sodium/calcium exchanger is involved in apoptosis induced by H2S in tumor cells through decreased levels of intracellular pH. Nitric Oxide. 2019;87:1–9. doi: 10.1016/j.niox.2019.02.011. PubMed DOI
Becker H.M. Carbonic anhydrase IX and acid transport in cancer. Br. J. Cancer. 2020;122:157–167. doi: 10.1038/s41416-019-0642-z. PubMed DOI PMC
Soltysova A., Breza J., Takacova M., Feruszova J., Hudecova S., Novotna B., Rozborilova E., Pastorekova S., Kadasi L., Krizanova O. Deregulation of energetic metabolism in the clear cell renal cell carcinoma: A multiple pathway analysis based on microarray profiling. Int. J. Oncol. 2015;47:287–295. doi: 10.3892/ijo.2015.3014. PubMed DOI
Riemann A., Ihling A., Schneider B., Gekle M., Thews O. Impact of extracellular acidosis on intracellular pH control and cell signaling in tumor cells. Adv. Exp. Med. Biol. 2013;789:221–228. doi: 10.1007/978-1-4614-7411-1_30. PubMed DOI
Asgharzadeh M.R., Barar J., Pourseif M.M., Eskandani M., Jafari Niya M., Mashayekhi R., Omidi Y. Molecular machineries of pH dysregulation in tumor microenvironment: Potential target for cancer therapy. Bioimpacts. 2017;7:115–133. doi: 10.15171/bi.2017.15. PubMed DOI PMC
Reshkin S.J., Cardone R.A., Harguindey S. Na+-H+ exchanger, pH regulation and cancer. Recent Pat. Anticancer Drug. Discov. 2013;8:85–99. doi: 10.2174/1574892811308010085. PubMed DOI
Andrikopoulos P., Kieswich J., Harwood S.M., Baba A., Matsuda T., Barbeau O., Jones K., Eccles S.A., Yaqoob M.M. Endothelial angiogenesis and barrier function in response to thrombin require Ca2+ influx through the Na+/Ca2+ exchanger. J. Biol. Chem. 2015;290:18412–18428. doi: 10.1074/jbc.M114.628156. PubMed DOI PMC
Tani M. Mechanisms of overload in reperfused ischemic myocardium. Annu. Rev. Physiol. 1990;52:543–559. doi: 10.1146/annurev.ph.52.030190.002551. PubMed DOI
Song Y., Lee S.Y., Kim S., Choi I., Kim S.H., Shum D., Heo J., Kim A.R., Kim K.M., Seo H.R. Inhibitors of Na+/K+ ATPase exhibit antitumor effects on multicellular tumor spheroids of hepatocellular carcinoma. Sci. Rep. 2020;10:5318. doi: 10.1038/s41598-020-62134-4. PubMed DOI PMC
Guo W., Wei B., Chen T., Xu X., Ruan F., Xiang M. The Na+/K+ ATPase inhibitor ouabain attenuates stemness and chemoresistance of osteosarcoma cells. Med. Sci. Monit. 2019;25:9426–9434. doi: 10.12659/MSM.919266. PubMed DOI PMC
Ding X., He Z., Zhou K., Cheng J., Yao H., Lu D., Cai R., Jin Y., Dong B., Xu Y., et al. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J. Natl. Cancer Inst. 2010;102:1052–1068. doi: 10.1093/jnci/djq217. PubMed DOI
Song M., Chen D., Yu S.P. The TRPC channel blocker SKF 96365 inhibits glioblastoma cell growth by enhancing reverse mode of the Na+/Ca2+ exchanger and increasing intracellular Ca2+ Br. J. Pharmcol. 2014;171:3432–3447. doi: 10.1111/bph.12691. PubMed DOI PMC
Secondo A., Staiano I.R., Scorziello A., Sirabella R., Boscia F., Adornetto A., Canzoniero L.M.T., Di Renzo G., Annunziato L. The Na+/Ca2+ exchanger isoform 3 (NCX3) but not isoform 2 (NCX2) and 1 (NCX1) singly transfected in BHK cells plays a protective role in a model of in vitro hypoxia. Ann. N. Y. Acad. Sci. 2007;1099:481–485. doi: 10.1196/annals.1387.052. PubMed DOI
Liu T., Zhao J., Ibarra C., Garcia M.U., Uhlen P., Nister M. Glycosylation controls sodium-calcium exchanger 3 sub-cellular localization during cell cycle. Eur. J. Cell Biol. 2018;97:190–203. doi: 10.1016/j.ejcb.2018.02.004. PubMed DOI
Michel L.Y.M., Verkaart S., Latta F., Hoenderop J.G.J., Bindels R.J.M. Differential regulation of the Na+-Ca2+ exchanger 3 (NCX3) by protein kinase PKC and PKA. Cell Calcium. 2017;65:52–62. doi: 10.1016/j.ceca.2017.02.005. PubMed DOI
Pannaccione A., Piccialli I., Secondo A., Ciccone R., Molinaro P., Boscia F., Annunziatio L. The Na+/Ca2+ exchanger in Alzheimer’s disease. Cell Calcium. 2020;87:102190. doi: 10.1016/j.ceca.2020.102190. PubMed DOI
Pelzl L., Hosseinzadeh Z., Alzoubi K., Al-Maghout T., Schmidt S., Stournaras C., Lang F. Impact of Na+/Ca2+ exchangers on therapy resistance of ovary carcinoma cells. Cell. Physiol. Biochem. 2015;37:1857–1868. doi: 10.1159/000438547. PubMed DOI
Pelzl L., Hosseinzadeh Z., Al-Maghout T., Singh Y., Sahu I., Bissinger R., Schmidt S., Alkahtani S., Stournaras C., Toulany M., et al. Role of Na+/Ca2+ exchangers in therapy resistance of medulloblastoma cells. Cell. Physiol. Biochem. 2017;42:1240–1251. doi: 10.1159/000478953. PubMed DOI
Rodrigues T., Estevez G.N.N., Tersariol I.L.D.S. Na+/Ca2+ exchangers: Unexploited opportunities for cancer therapy? Biochem. Pharmacol. 2019;163:357–361. doi: 10.1016/j.bcp.2019.02.032. PubMed DOI
Qu M., Yu J., Liu H., Ren Y., Ma C., Bu X., Lan Q. The candidate tumor suppressor gene SLC8A2 inhibits invasion, angiogenesis and growth of glioblastoma. Mol. Cells. 2017;40:761–772. doi: 10.14348/molcells.2017.0104. PubMed DOI PMC