Oxidative Stress and Analysis of Selected SNPs of ACHE (rs 2571598), BCHE (rs 3495), CAT (rs 7943316), SIRT1 (rs 10823108), GSTP1 (rs 1695), and Gene GSTM1, GSTT1 in Chronic Organophosphates Exposed Groups from Cameroon and Pakistan
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VT2019-2021
UHK
CEP - Centrální evidence projektů
Internal project
COMSATS University Islamabad
Internal project
The World Academy of Sciences (TWAS)
PubMed
32899431
PubMed Central
PMC7503738
DOI
10.3390/ijms21176432
PII: ijms21176432
Knihovny.cz E-zdroje
- Klíčová slova
- SNPs, antioxidants, cholinergic enzymes, organophosphates, toxicogenetics,
- MeSH
- acetylcholinesterasa genetika MeSH
- butyrylcholinesterasa genetika MeSH
- dospělí MeSH
- glutathion-S-transferasa fí genetika MeSH
- glutathion MeSH
- glutathiontransferasa genetika MeSH
- GPI-vázané proteiny genetika MeSH
- interakce genů a prostředí * MeSH
- jednonukleotidový polymorfismus * MeSH
- katalasa genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- malondialdehyd MeSH
- mladiství MeSH
- mladý dospělý MeSH
- organofosforové sloučeniny škodlivé účinky MeSH
- oxidační stres genetika MeSH
- sirtuin 1 genetika MeSH
- vystavení vlivu životního prostředí škodlivé účinky analýza MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Kamerun MeSH
- Pákistán MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- ACHE protein, human MeSH Prohlížeč
- BCHE protein, human MeSH Prohlížeč
- butyrylcholinesterasa MeSH
- glutathion-S-transferasa fí MeSH
- glutathion MeSH
- glutathione S-transferase M1 MeSH Prohlížeč
- glutathione S-transferase T1 MeSH Prohlížeč
- glutathiontransferasa MeSH
- GPI-vázané proteiny MeSH
- GSTP1 protein, human MeSH Prohlížeč
- katalasa MeSH
- malondialdehyd MeSH
- organofosforové sloučeniny MeSH
- SIRT1 protein, human MeSH Prohlížeč
- sirtuin 1 MeSH
The detrimental effects of organophosphates (OPs) on human health are thought to be of systemic, i.e., irreversible inhibition of acetylcholinesterase (AChE) at nerve synapses. However, several studies have shown that AChE inhibition alone cannot explain all the toxicological manifestations in prolonged exposure to OPs. The present study aimed to assess the status of antioxidants malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) (reduced), catalase, and ferric reducing antioxidant power (FRAP) in chronic OP-exposed groups from Cameroon and Pakistan. Molecular analysis of genetic polymorphisms (SNPs) of glutathione transferases (GSTM1, GSTP1, GSTT1), catalase gene (CAT, rs7943316), sirtuin 1 gene (SIRT1, rs10823108), acetylcholinesterase gene (ACHE, rs2571598), and butyrylcholinesterase gene (BCHE, rs3495) were screened in the OP-exposed individuals to find the possible causative association with oxidative stress and toxicity. Cholinesterase and antioxidant activities were measured by colorimetric methods using a spectrophotometer. Salting-out method was employed for DNA extraction from blood followed by restriction fragment length polymorphism (RFLP) for molecular analysis. Cholinergic enzymes were significantly decreased in OP-exposed groups. Catalase and SOD were decreased and MDA and FRAP were increased in OP-exposed groups compared to unexposed groups in both groups. GSH was decreased only in Pakistani OPs-exposed group. Molecular analysis of ACHE, BCHE, Catalase, GSTP1, and GSTM1 SNPs revealed a tentative association with their phenotypic expression that is level of antioxidant and cholinergic enzymes. The study concludes that chronic OPs exposure induces oxidative stress which is associated with the related SNP polymorphism. The toxicogenetics of understudied SNPs were examined for the first time to our understanding. The findings may lead to a newer area of investigation on OPs induced health issues and toxicogenetics.
Department of Biochemistry Yaoundé 1 University Yaoundé 8024 Cameroon
Department of Biosciences COMSATS University Islamabad Chak Shahzad Islamabad 45550 Pakistan
Department of Mathematics COMSATS University Islamabad Chak Shahzad Islamabad 45550 Pakistan
Zobrazit více v PubMed
Bettiche F. Contamination of Water by Pesticides under Intensive Production System. [(accessed on 27 October 2019)];2017 Available online: http://revues.univ-biskra.dz/index.php/cds/article/view/2189.
Suratman S., Edwards J.W., Babina K. Organophosphate pesticides exposure among farmworkers: Pathways and risk of adverse health effects. Rev. Environ. Health. 2015;30:65–79. PubMed
Li J., Ren F., Li Y., Luo J., Pang G. Chlorpyrifos Induces Metabolic Disruption by Altering Levels of Reproductive Hormones. J. Agric. Food Chem. 2019;67:10553–10562. doi: 10.1021/acs.jafc.9b03602. PubMed DOI
Mostafalou S., Abdollahi M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2016;91:549–599. doi: 10.1007/s00204-016-1849-x. PubMed DOI
Wang-Cahill F.A. Draft Human Health and Ecological Risk Assessment for Diazinon in Exotic Fruit Fly Applications. [(accessed on 27 April 2018)]; Available online: https://www.aphis.usda.gov/plant_health/ea/downloads/2018/fruit-fly-draft-diazinon-hhera.pdf.
Czajka M., Matysiak-Kucharek M., Jodłowska-Jędrych B., Sawicki K., Fal B., Drop B., Kruszewski M., Kapka-Skrzypczak L. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. Environ. Res. 2019;178:108685. doi: 10.1016/j.envres.2019.108685. PubMed DOI
Nurulain S.M., Shafiullah M., Yasin J., Adem A., Al Kaabi J., Tariq S., Adeghate E., Ojha S. Terbufos-sulfone exacerbates cardiac lesions in diabetic rats: A sub-acute toxicity study. Arch. Ind. Hyg. Toxicol. 2016;67:126–135. doi: 10.1515/aiht-2016-67-2776. PubMed DOI
Iqbal A., Malik S., Nurulain S.M., Musilek K., Kuca K., Kalasz H., Fatmi M.Q. Reactivation potency of two novel oximes (K456 and K733) against paraoxon-inhibited acetyl and butyrylcholinesterase: In silico and in vitro models. Chem. Biol. Interact. 2019;310:108735. doi: 10.1016/j.cbi.2019.108735. PubMed DOI
Nurulain S.M., Szegi P., Tekes K., Naqvi S.N. Antioxidants in Organophosphorus Compounds Poisoning. Arch. Ind. Hyg. Toxicol. 2013;64:169–177. doi: 10.2478/10004-1254-64-2013-2294. PubMed DOI
Miladinović D.Ć., Borozan S., Ivanović S. Involvement of cholinesterases in oxidative stress induced by chlorpyrifos in the brain of Japanese quail. Poult. Sci. 2018;97:1564–1571. doi: 10.3382/ps/pey018. PubMed DOI
Kori R.K., Hasan W., Jain A.K., Yadav R. Cholinesterase inhibition and its association with hematological, biochemical and oxidative stress markers in chronic pesticide exposed agriculture workers. J. Biochem. Mol. Toxicol. 2019;33:e22367. doi: 10.1002/jbt.22367. PubMed DOI
Peeples E.S., Schopfer L.M., Duysen E.G., Spaulding R., Voelker T., Thompson C.M., Lockridge O. Albumin, a New Biomarker of Organophosphorus Toxicant Exposure, Identified by Mass Spectrometry. Toxicol. Sci. 2005;83:303–312. doi: 10.1093/toxsci/kfi023. PubMed DOI
Chang C.H., Yu C.J., Du J.C., Chiou H.C., Chen H.C., Yang W., Chung M.Y., Chen Y.S., Hwang B., Mao I.F., et al. The interactions among organophosphate pesticide exposure, oxidative stress, and genetic polymorphisms of dopamine receptor D4 increase the risk of attention deficit/hyperactivity disorder in children. Environ. Res. 2018;160:339–346. doi: 10.1016/j.envres.2017.10.011. PubMed DOI
Karami-Mohajeri S., Ahmadipour A., Rahimi H.R., Abdollahi M. Adverse effects of organophosphorus pesticides on the liver: A brief summary of four decades of research. Arhiv Higijenu Rada Toksikol. 2017;68:261–275. doi: 10.1515/aiht-2017-68-2989. PubMed DOI
Shi H., Sui Y., Wang X., Luo Y., Ji L. Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005;140:115–121. doi: 10.1016/j.cca.2005.01.009. PubMed DOI
Lukaszewicz-Hussain A. Role of oxidative stress in organophosphate insecticide toxicity—Short review. Pestic. Biochem. Physiol. 2010;98:145–150. doi: 10.1016/j.pestbp.2010.07.006. DOI
Nanda M., Kumar V., Fatima N., Pruthi V., Verma M., Chauhan P., Vlaskin M.S., Grigorenko A.V. Detoxification mechanism of organophosphorus pesticide via carboxylestrase pathway that triggers de novo TAG biosynthesis in oleaginous microalgae. Aquat. Toxicol. 2019;209:49–55. doi: 10.1016/j.aquatox.2019.01.019. PubMed DOI
Park J.H., Ko J., Park Y.S., Park J., Hwang J., Koh H.C. Clearance of Damaged Mitochondria Through PINK1 Stabilization by JNK and ERK MAPK Signaling in Chlorpyrifos-Treated Neuroblastoma Cells. Mol. Neurobiol. 2017;54:1844–1857. doi: 10.1007/s12035-016-9753-1. PubMed DOI
Dai H., Deng Y., Zhang J., Han H., Zhao M., Li Y., Zhang C., Tian J., Bing G., Zhao L. PINK1/Parkin-mediated mitophagy alleviates chlorpyrifos-induced apoptosis in SH-SY5Y cells. Toxicology. 2015;334:72–80. doi: 10.1016/j.tox.2015.06.003. PubMed DOI
Das G.P., Shaik A.P., Jamil K. Cytotoxicity and Genotoxicity Induced by the Pesticide Profenofos on Cultured Human Peripheral Blood Lymphocytes. Drug Chem. Toxicol. 2006;29:313–322. PubMed
Prakasam A., Sethupathy S., Lalitha S. Plasma and RBCs antioxidant status in occupational male pesticide sprayers. Clin. Chim. Acta. 2001;310:107–112. doi: 10.1016/S0009-8981(01)00487-9. PubMed DOI
Rastogi S.K., Satyanarayan P.V.V., Ravishankar D., Tripathi S. A study on oxidative stress and antioxidant status of agricultural workers exposed to organophosphorus insecticides during spraying. Indian J. Occup. Environ. Med. 2009;13:131–134. doi: 10.4103/0019-5278.58916. PubMed DOI PMC
Alves J.S., Silva F.R., Silva G.F., Salvador M., Kvitko K., Rohr P., Santos C.E.D., Dias J.F., Henriques J.A., Silva J.D. Investigation of potential biomarkers for the early diagnosis of cellular stability after the exposure of agricultural workers to pesticides. Anais Acad. Brasileira Ciências. 2016;88:349–360. doi: 10.1590/0001-3765201520150181. PubMed DOI
Ogut S., Gultekin F., Kisioglu A.N., Kucukoner E. Oxidative stress in the blood of farm workers following intensive pesticide exposure. Toxicol. Ind. Health. 2011;27:820–825. doi: 10.1177/0748233711399311. PubMed DOI
Wafa T., Nadia K., Amel N., Ikbal C., Insaf T., Asma K., Hedi M.A., Mohamed H. Oxidative stress, hematological and biochemical alterations in farmers exposed to pesticides. J. Environ. Sci. Health Part B. 2013;48:1058–1069. doi: 10.1080/03601234.2013.824285. PubMed DOI
Lu S., Liu S., Cui J., Liu X., Zhao C., Fan L., Yin S., Hu H. Combination of Patulin and Chlorpyrifos Synergistically Induces Hepatotoxicity via Inhibition of Catalase Activity and Generation of Reactive Oxygen Species. J. Agric. Food Chem. 2019;67:11474–11480. doi: 10.1021/acs.jafc.9b04814. PubMed DOI
Ahmad I., Shukla S., Kumar A., Singh C., Patel D.K., Pandey H.P., Singh C. Maneb and paraquat-induced modulation of toxicant responsive genes in the rat liver: Comparison with polymorphonuclear leukocytes. Chem. Biol. Interact. 2010;188:566–579. doi: 10.1016/j.cbi.2010.09.023. PubMed DOI
Hernández A.F., López O., Pena G., Serrano J.L., Parrón T., Rodrigo L., Gil F., Pla A. Implications of Paraoxonase-1 (PON1) Activity and Polymorphisms on Biochemical and Clinical Outcomes in Workers Exposed to Pesticides. In: Mackness B., Mackness M., Aviram M., editors. The Paraoxonases: Their Role in Disease Development and Xenobiotic Metabolism. Springer; Dordrecht, The Netherlands: 2008. [(accessed on 29 December 2019)]. pp. 221–237. Available online: DOI
Amir A., Haleem F., Mahesar G., Sattar R.A., Qureshi T., Syed J.G., Khan M.A. Epidemiological, Poisoning Characteristics and Treatment Outcomes of Patients Admitted to the National Poisoning Control Centre at Karachi, Pakistan: A Six Month Analysis. [(accessed on 31 January 2020)];Cureus. 2019 11:e6229. doi: 10.7759/cureus.6229. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929263/ PubMed DOI PMC
Chuang C.S., Yang K.W., Yen C.M., Lin C.L., Lin C.L. Risk of Seizures in Patients with Organophosphate Poisoning: A Nationwide Population-Based Study. Int. J. Environ. Res. Public Health. 2019;16:3147. doi: 10.3390/ijerph16173147. PubMed DOI PMC
Kwesiga B., Ario A.R., Bulage L., Harris J.R., Zhu B.P. Fatal cases associated with eating chapatti contaminated with organophosphate in Tororo District, Eastern Uganda, 2015: Case series. BMC Public Health. 2019;19:767. doi: 10.1186/s12889-019-7143-0. PubMed DOI PMC
Paul K.C., Ling C., Lee A., To T.M., Cockburn M., Haan M., Ritz B. Cognitive decline, mortality, and organophosphorus exposure in aging Mexican Americans. Environ. Res. 2018;160:132–139. doi: 10.1016/j.envres.2017.09.017. PubMed DOI PMC
Eyasu M., Dida T., Worku Y., Shafie M. Acute poisonings during pregnancy and in other non-pregnant women in emergency departments of four government hospitals, Addis Ababa, Ethiopia: 2010–2015. Trop. Med. Int. Health. 2017;22:1350–1360. doi: 10.1111/tmi.12940. PubMed DOI
Frawley J.P., Fuyat H.N., Hagan E.C., Blake J.R., Fitzhugh O.G. Marked Potentiation in Mammalian Toxicity from Simultaneous Administration of Twoanticholinesterase Compounds. J. Pharmacol. Exp. Ther. 1957;121:96–106. PubMed
Casida J.E., Baron R.L., Eto M., Engel J.L. Potentiation and neurotoxicity induced by certain organophosphates. Biochem. Pharmacol. 1963;12:73–83. doi: 10.1016/0006-2952(63)90011-X. PubMed DOI
Muñoz-Quezada M.T., Lucero B.A., Iglesias V.P., Muñoz M.P., Cornejo C.A., Achu E., Baumert B., Hanchey A., Concha C., Brito A.M., et al. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: A review. Int. J. Occup. Environ. Health. 2016;22:68–79. doi: 10.1080/10773525.2015.1123848. PubMed DOI PMC
Vidyasagar J., Karunakar N., Reddy M.S., Rajnarayana K., Surender T., Krishna D.R. Oxidative stress and antioxidant status in acute organophosphorous insecticide poisoning. Indian J. Pharmacol. 2004;36:76–79.
Hamza R.Z.M.M. Hyperglycemic effect of Chlorpyrifos, Profenofos and possible ameliorative role of Propolis and ginseng. Sci. Agric. 2014;1:9–14.
Jamshidi H.R., Ghahremani M.H., Ostad S.N., Sharifzadeh M., Dehpour A.R., Abdollahi M. Effects of diazinon on the activity and gene expression of mitochondrial glutamate dehydrogenase from rat pancreatic Langerhans islets. Pestic. Biochem. Physiol. 2009;93:23–27. doi: 10.1016/j.pestbp.2008.09.002. DOI
Lasram M.M., Bouzid K., Douib I.B., Annabi A., El Elj N., El Fazaa S., Abdelmoula J., Gharbi N. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat. Drug Chem. Toxicol. 2015;38:227–234. doi: 10.3109/01480545.2014.933348. PubMed DOI
Pourkhalili N., Pournourmohammadi S., Rahimi F., Vosough-Ghanbari S., Baeeri M., Ostad S.N., Abdollahi M. Comparative Effects of Calcium Channel Blockers, Autonomic Nervous System Blockers, and Free Radical Scavengers on Diazinon-Induced Hyposecretion of Insulin from Isolated Islets of Langerhans in Rats. Arch. Ind. Hyg. Toxicol. 2009;60:157–164. doi: 10.2478/10004-1254-60-2009-1917. PubMed DOI
Bautista-Covarrubias J., Aguilar-Juárez M., Voltolina D., Navarro-Nava R., Aranda-Morales S., Arreola-Hernández J., Soto-Jiménez M., Frías-Espericueta M.G. Immunological response of white shrimp (Litopenaeus vannamei) to sublethal concentrations of malathion and endosulfan, and their mixture. Ecotoxicol. Environ. Saf. 2020;188:109893. doi: 10.1016/j.ecoenv.2019.109893. PubMed DOI
Ouardi F.Z., Anarghou H., Malqui H., Ouasmi N., Chigr M., Najimi M., Chigr F. Gestational and Lactational Exposure to Malathion Affects Antioxidant Status and Neurobehavior in Mice Pups and Offspring. J. Mol. Neurosci. 2019;69:17–27. doi: 10.1007/s12031-018-1252-6. PubMed DOI
Aly N., El-Gendy K., Mahmoud F., El-Sebae A.K. Protective effect of vitamin C against chlorpyrifos oxidative stress in male mice. Pestic. Biochem. Physiol. 2010;97:7–12. doi: 10.1016/j.pestbp.2009.11.007. DOI
Lopez-Sandoval J., Sanchez-Enriquez S., Rivera-Leon E., Bastidas-Ramirez B., Garcia-Garcia M., Gonzalez-Hita M. Cardiovascular Risk Factors in Adolescents: Role of Insulin Resistance and Obesity. Acta Endocrinol. Buchar. 2018;14:330–337. doi: 10.4183/aeb.2018.330. PubMed DOI PMC
Pellegrino D., La Russa D., Marrone A. Oxidative Imbalance and Kidney Damage: New Study Perspectives from Animal Models to Hospitalized Patients. Antioxidants. 2019;8:594. doi: 10.3390/antiox8120594. PubMed DOI PMC
Sheikhansari G., Soltani-Zangbar M.S., Pourmoghadam Z., Kamrani A., Azizi R., Aghebati-Maleki L., Danaii S., Koushaeian L., Hojat-Farsangi M., Yousefi M. Oxidative stress, inflammatory settings, and microRNA regulation in the recurrent implantation failure patients with metabolic syndrome. Am. J. Reprod. Immunol. 2019;82:e13170. doi: 10.1111/aji.13170. PubMed DOI
Akhgari M., Abdollahi M., Kebryaeezadeh A., Hosseini R., Sabzevari O. Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum. Exp. Toxicol. 2003;22:205–211. doi: 10.1191/0960327103ht346oa. PubMed DOI
Surajudeen Y.A., Sheu R.K., Ayokulehin K.M., Olatunbosun A.G. Oxidative stress indices in Nigerian pesticide applicators and farmers occupationally exposed to organophosphate pesticides. Int. J. Appl. Basic Med. Res. 2014;4:S37–S40. PubMed PMC
Palmirotta R., Carella C., Silvestris E., Cives M., Stucci S.L., Tucci M., Lovero D., Silvestris F. SNPs in predicting clinical efficacy and toxicity of chemotherapy: Walking through the quicksand. Oncotarget. 2018;9:25355–25382. doi: 10.18632/oncotarget.25256. PubMed DOI PMC
Lien M.Y., Lin C.W., Tsai H.C., Chen Y.T., Tsai M.H., Hua C.H., Yang S.F., Tang C. Impact of CCL4 gene polymorphisms and environmental factors on oral cancer development and clinical characteristics. Oncotarget. 2017;8:31424–31434. doi: 10.18632/oncotarget.15615. PubMed DOI PMC
Mikhed Y., Görlach A., Knaus U.G., Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Boil. 2015;5:275–289. doi: 10.1016/j.redox.2015.05.008. PubMed DOI PMC
Liu Y., Xie L., Zhao J., Huang X., Song L., Luo J., Ma L., Li S., Qin X. Association Between Catalase Gene Polymorphisms and Risk of Chronic Hepatitis B, Hepatitis B Virus-Related Liver Cirrhosis and Hepatocellular Carcinoma in Guangxi Population. [(accessed on 20 February 2020)];Medicine. 2015 94:e702. doi: 10.1097/MD.0000000000000702. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554034/ PubMed DOI PMC
Arévalo-Jaramillo P., Idrobo A., Salcedo L., Cabrera A., Vintimilla A., Carrión M., Bailón-Moscoso N. Biochemical and genotoxic effects in women exposed to pesticides in Southern Ecuador. Environ. Sci. Pollut. Res. 2019;26:24911–24921. doi: 10.1007/s11356-019-05725-7. PubMed DOI
Valeeva E.T., Mukhammadiyeva G.F., Bakirov A.B. Polymorphism of Glutathione S-transferase Genes and the Risk of Toxic Liver Damage in Petrochemical Workers. Int. J. Occup. Environ. Med. 2020;11:53–58. doi: 10.15171/ijoem.2020.1771. PubMed DOI PMC
Hernández-Guerrero C., Parra-Carriedo A., Ruiz-De-Santiago D., Galicia-Castillo O., Buenrostro-Jáuregui M., Díaz-Gutiérrez C. Genetic polymorphisms of antioxidant enzymes CAT and SOD affect the outcome of clinical, biochemical, and anthropometric variables in people with obesity under a dietary intervention. Genes Nutr. 2018;13:1. doi: 10.1186/s12263-017-0590-2. PubMed DOI PMC
Scacchi R., Ruggeri M., Corbo R.M. Variation of the butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) genes in coronary artery disease. Clin. Chim. Acta. 2011;412:1341–1344. doi: 10.1016/j.cca.2011.03.033. PubMed DOI
Yue X.G., Yang Z.G., Zhang Y., Qin G.J., Liu F. Correlations between SIRT1 gene polymorphisms and diabetic kidney disease. R. Soc. Open Sci. 2018;5:171871. doi: 10.1098/rsos.171871. PubMed DOI PMC
Hernández A.F., López O., Rodrigo L., Gil F., Pena G., Serrano J.L., Parrón T., Alvarez J.C., Lorente J.A., Pla A. Changes in erythrocyte enzymes in humans long-term exposed to pesticides: Influence of several markers of individual susceptibility. Toxicol. Lett. 2005;159:13–21. doi: 10.1016/j.toxlet.2005.04.008. PubMed DOI
Worek F., Mast U., Kiderlen D., Diepold C., Eyer P. Improved determination of acetylcholinesterase activity in human whole blood. Clin. Chim. Acta. 1999;288:73–90. doi: 10.1016/S0009-8981(99)00144-8. PubMed DOI
Pérez J.J., Williams M.K., Weerasekera G., Smith K., Whyatt R.M., Needham L.L., Barr D.B. Measurement of pyrethroid, organophosphorus, and carbamate insecticides in human plasma using isotope dilution gas chromatography—High resolution mass spectrometry. J. Chromatogr. B. 2010;878:2554–2562. doi: 10.1016/j.jchromb.2010.03.015. PubMed DOI PMC
Wilbur K.M., Bernheim F., Shapiro O.W. The thiobarbituric acid reagent as a test for the oxidation of unsaturated fatty acids by various agents. Arch. Biochem. Biophys. 1949;24:305–313. PubMed
Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI
Misra H.P., Fridovich I. Superoxide dismutase: “Positive” spectrophotometric assays. Anal. Biochem. 1977;79:553–560. doi: 10.1016/0003-2697(77)90429-8. PubMed DOI
Benzie I.F., Strain J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI
Boutin J.A., Kass G.E., Moldéus P. Drug-induced hydrogen peroxide production in isolated rat hepatocytes. Toxicology. 1989;54:129–137. doi: 10.1016/0300-483X(89)90039-5. PubMed DOI
Gornall A.G., Bardawill C.J., David M.M. Determination of serum proteins by means of the biuret reaction. J. Boil. Chem. 1949;177:751–766. PubMed
Lahiri D.K., Numberger J.I. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19:5444. doi: 10.1093/nar/19.19.5444. PubMed DOI PMC