Chronic Exposure to Organophosphates Pesticides and Risk of Metabolic Disorder in Cohort from Pakistan and Cameroon
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33652791
PubMed Central
PMC7967685
DOI
10.3390/ijerph18052310
PII: ijerph18052310
Knihovny.cz E-zdroje
- Klíčová slova
- dyslipidemia, liver malfunctioning, metabolic disorder, organophosphorus, pesticides,
- MeSH
- insekticidy * MeSH
- lidé MeSH
- organofosforové sloučeniny MeSH
- pesticidy * toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Kamerun epidemiologie MeSH
- Pákistán epidemiologie MeSH
- Názvy látek
- insekticidy * MeSH
- organofosforové sloučeniny MeSH
- pesticidy * MeSH
(1) Background: Organophosphorus pesticides (OPPs) are major chemicals used in agriculture for eradication of insecticides/pesticides. Unfortunately, the longtime exposure of human beings to OPPs could lead to metabolic disorder such as high blood pressure, hyperglycemia, overweight or dyslipidemia. The aim of this research is to evaluate the possible metabolic dysregulations as a consequence of chronic OPPs exposure to individuals in Cameroon and Pakistan. (2) Methods: Blood samples were collected from 300 participants in each country, into ethylenediaminetetraacetic acid (EDTA) tubes. The samples were extracted with solid phase extraction (methanol/water) for analysis of OPPs with gas chromatography mass spectrometry. The spectrophotometry and Enzyme Linked ImmunoSorbent Assay (ELISA) were used to measure the hepatic, renal, pancreatic and cardiovascular functions. The atherogenic index (AI) was also determined in OPPs exposed and nonexposed cohorts. (3) Results: The results showed the presence of malathion, parathion and chlorpyrifos OPPs residues in Cameroonians, and malathion and chlorpyrifos in Pakistani samples, respectively. Elevated Body Mass Index (BMI), insulin, blood glucose, dyslipidemia and hypertension were noted in OPPs chronic exposed groups. In addition, dysregulated liver and kidney function profiles were observed in all participants regardless of gender and age groups. (4) Conclusions: The study concludes that both the study cohorts showed several metabolic dysregulations attributable to chronic exposure to a mixture of OPPs which may provide precursors for establishment of metabolic syndrome and other chronic diseases. Further different extended population-based studies are suggested to understand the differential metabolic dysfunctions caused by structurally different OPPs mixtures exposure.
Department of Biochemistry Yaoundé 1 University Yaoundé 8024 Cameroon
Department of Biosciences COMSATS University Islamabad Chak Shahzad Islamabad 45550 Pakistan
Institute of Medical Research and Medical Plants Studies Yaounde 1457 Cameroon
Zobrazit více v PubMed
Li J., Ren F., Li Y., Luo J., Pang G. Chlorpyrifos Induces Metabolic Disruption by Altering Levels of Reproductive Hormones. J. Agric. Food Chem. 2019;67:10553–10562. doi: 10.1021/acs.jafc.9b03602. PubMed DOI
Peris-Sampedro F., Blanco J., Cabré M., Basaure P., Guardia-Escote L., Domingo J.L., Sánchez D.J., Colomina M.T. New mechanistic insights on the metabolic-disruptor role of chlorpyrifos in apoE mice: A focus on insulin- and leptin-signalling pathways. Arch. Toxicol. 2018;92:1717–1728. doi: 10.1007/s00204-018-2174-3. PubMed DOI
Al-Eryani L., Wahlang B., Falkner K.C., Guardiola J.J., Clair H.B., Prough R.A., Cave M. Identification of Environmental Chemicals Associated with the Development of Toxicant-associated Fatty Liver Disease in Rodents. Toxicol. Pathol. 2015;43:482–497. doi: 10.1177/0192623314549960. PubMed DOI PMC
Wahlang B., Falkner K.C., Gregory B., Ansert D., Young D., Conklin D.J., Bhatnagar A., McClain C.J., Cave M. Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. J. Nutr. Biochem. 2013;24:1587–1595. doi: 10.1016/j.jnutbio.2013.01.009. PubMed DOI PMC
Baygi F., Jensen O.C., Qorbani M., Farshad A., Salehi S.A., Mohammadi-Nasrabadi F., Asayesh H., Shidfar F. Prevalence and associated factors of cardio-metabolic risk factors in Iranian seafarers. Int. Marit Health. 2016;67:59–65. doi: 10.5603/IMH.2016.0013. PubMed DOI
Ching Y.K., Chin Y.S., Appukutty M., Gan W.Y., Ramanchadran V., Chan Y.M. Prevalence of Metabolic Syndrome and Its Associated Factors among Vegetarians in Malaysia. Int. J. Environ. Res. Public Health. 2018;15:2031. doi: 10.3390/ijerph15092031. PubMed DOI PMC
Iqbal Hydrie M.Z., Shera A.S., Fawwad A., Basit A., Hussain A. Prevalence of Metabolic Syndrome in Urban Pakistan (Karachi): Comparison of Newly Proposed International Diabetes Federation and Modified Adult Treatment Panel III Criteria. Metab. Syndr. Relat. Disord. 2009;7:119–124. doi: 10.1089/met.2008.0055. PubMed DOI
Ewane M.E., Mandengue S.-H., Ahmadou G., Tamba S.M., Dzudie A., Luma H.-N. Dépistage des maladies cardiovasculaires et des facteurs de risque dans une cohorte de 270 Camerounais: Effets des activités physiques et sportives: Screening for cardiovascular diseases and risk factors in a cohort of 270 Cameroon inhabitants: Effect of physical and sport activities. Méd. Mal. Métab. 2011;5:655–658.
Bettiche F., Grunberge O., Belhamra M. Contamination of Water by Pesticides under Intensive Production System. [(accessed on 27 October 2019)];2017 Available online: http://revues.univ-biskra.dz/index.php/cds/article/view/2189.
Czajka M., Matysiak-Kucharek M., Jodłowska-Jędrych B., Sawicki K., Fal B., Drop B., Kruszewski M., Kapka-Skrzypczak L. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. Environ. Res. 2019;178:108685. doi: 10.1016/j.envres.2019.108685. PubMed DOI
Nurulain S., Szegi P., Tekes K., Nh Naqvi S. Antioxidants in Organophosphorus Compounds Poisoning. Arch. Ind. Hyg. Toxicol. 2013;64:169–177. doi: 10.2478/10004-1254-64-2013-2294. PubMed DOI
Rathish D., Agampodi S.B., Jayasumana M.A.C.S., Siribaddana S.H. From organophosphate poisoning to diabetes mellitus: The incretin effect. Med. Hypotheses. 2016;91:53–55. doi: 10.1016/j.mehy.2016.04.002. PubMed DOI
Sánchez-Santed F., Colomina M.T., Herrero Hernández E. Organophosphate pesticide exposure and neurodegeneration. Cortex. 2016;74:417–426. doi: 10.1016/j.cortex.2015.10.003. PubMed DOI
Pakzad M., Fouladdel S., Nili-Ahmadabadi A., Pourkhalili N., Baeeri M., Azizi E., Sabzevari O., Ostad S.N., Abdollahi M. Sublethal exposures of diazinon alters glucose homostasis in Wistar rats: Biochemical and molecular evidences of oxidative stress in adipose tissues. Pestic Biochem. Physiol. 2013;105:57–61. doi: 10.1016/j.pestbp.2012.11.008. PubMed DOI
Romero-Navarro G., Lopez-Aceves T., Rojas-Ochoa A., Fernandez Mejia C. Effect of dichlorvos on hepatic and pancreatic glucokinase activity and gene expression, and on insulin mRNA levels. Life Sci. 2006;78:1015–1020. doi: 10.1016/j.lfs.2005.06.010. PubMed DOI
Arsenault A.L., Gibson M.A., Mader M.E. Hypoglycemia in Malathion-treated chick embryos. Can. J. Zool. 1975;53:1055–1057. doi: 10.1139/z75-122. PubMed DOI
Pérez J.J., Williams M.K., Weerasekera G., Smith K., Whyatt R.M., Needham L.L., Barr D.B. Measurement of pyrethroid, organophosphorus, and carbamate insecticides in human plasma using isotope dilution gas chromatography–high resolution mass spectrometry. J. Chromatogr. B. 2010;878:2554–2562. PubMed PMC
Armbruster D.A., Pry T. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 2008;29:S49. PubMed PMC
Worek F., Mast U., Kiderlen D., Diepold C., Eyer P. Improved determination of acetylcholinesterase activity in human whole blood. Clin. Chim. Acta. 1999;288:73–90. doi: 10.1016/S0009-8981(99)00144-8. PubMed DOI
Youmbissi T.J., Djoumessi S., Nouedoui C., Ndobo P., Meli J. Profil lipidique d’un groupe d’hypertendus camerounais noirs africains. Méd. d’Afrique Noire. 2001;48:305–314.
Amir A., Haleem F., Mahesar G., Abdul Sattar R., Qureshi T., Syed J.G., Ali Khan M. Epidemiological, Poisoning Characteristics and Treatment Outcomes of Patients Admitted to the National Poisoning Control Centre at Karachi, Pakistan: A Six Month Analysis. [(accessed on 31 January 2020)];Cureus. 2019 Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929263/ PubMed PMC
Chuang C.-S., Yang K.-W., Yen C.-M., Lin C.-L., Kao C.-H. Risk of Seizures in Patients with Organophosphate Poisoning: A Nationwide Population-Based Study. Int. J. Environ. Res. Public Health. 2019;16:3147. doi: 10.3390/ijerph16173147. PubMed DOI PMC
Kwesiga B., Ario A.R., Bulage L., Harris J., Zhu B.-P. Fatal cases associated with eating chapatti contaminated with organophosphate in Tororo District, Eastern Uganda, 2015, case series. BMC Public Health. 2019;19:767. doi: 10.1186/s12889-019-7143-0. PubMed DOI PMC
Paul K.C., Ling C., Lee A., To T.M., Cockburn M., Haan M., Ritz B. Cognitive decline, mortality, and organophosphorus exposure in aging Mexican Americans. Environ. Res. 2018;160:132–139. doi: 10.1016/j.envres.2017.09.017. PubMed DOI PMC
Eyasu M., Dida T., Worku Y., Worku S., Shafie M. Acute poisonings during pregnancy and in other non-pregnant women in emergency departments of four government hospitals, Addis Ababa, Ethiopia: 2010–2015. Trop. Med. Int. Health. 2017;22:1350–1360. doi: 10.1111/tmi.12940. PubMed DOI
Karunarathne A., Gunnell D., Konradsen F., Eddleston M. How many premature deaths from pesticide suicide have occurred since the agricultural Green Revolution? Clin. Toxicol. 2019;58:227–232. doi: 10.1080/15563650.2019.1662433. PubMed DOI
Casida J.E., Baron R.L., Eto M., Engel J.L. Potentiation and neurotoxicity induced by certain organophosphates. Biochem. Pharmacol. 1963;12:73–83. doi: 10.1016/0006-2952(63)90011-X. PubMed DOI
Frawley J.P., Fuyat H.N., Hagan E.C., Blake J.R., Fitzhugh O.G. Marked Potentiation in Mammalian Toxicity from Simultaneous Administration of Twoanticholinesterase Compounds. J. Pharmacol. Exp. Ther. 1957;121:96–106. PubMed
Mbah J., Raza S., Judith N., Anwar F., Habib R., Batool S., Nurulain S.M. Mixture of Organophosphates Chronic Exposure and Pancreatic Dysregulations in Two Different Population Samples. [(accessed on 2 January 2021)];Front. Public Health. 2020 Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655777/ PubMed PMC
Mbah L.J., Habib R., Judith Laure N., Raza S., Nepovimova E., Kuca K., Batool S., Muhammad Nurulain S. Oxidative Stress and Analysis of Selected SNPs of ACHE (rs 2571598), BCHE (rs 3495), CAT (rs 7943316), SIRT1 (rs 10823108), GSTP1 (rs 1695), and Gene GSTM1, GSTT1 in Chronic Organophosphates Exposed Groups from Cameroon and Pakistan. Int. J. Mol. Sci. 2020;21:6432. doi: 10.3390/ijms21176432. PubMed DOI PMC
Mbah N.L.J., Habib R., Judith N., Iqbal M., Nepovimova E., Kuca K., Batool S., Nurulain S.M. Analysis of PON1 gene polymorphisms (rs662 and rs854560) and inflammatory markers in organophosphate pesticides exposed cohorts from two distinct populations. Environ. Res. 2020;191:110210. PubMed
Muñoz-Quezada M.T., Lucero B.A., Iglesias V.P., Muñoz M.P., Cornejo C.A., Achu E., Baumert B., Hanchey A., Concha C., Brito A.M., et al. Chronic exposure to organophosphate (OP) pesticides and neuropsychological functioning in farm workers: A review. Int. J. Occup. Environ. Health. 2016;22:68–79. PubMed PMC
Vidyasagar J., Karunakar N., Reddy M.S., Rajnarayana K., Surender T., Krishna D.R. Oxidative stress and antioxidant status in acute organophosphorous insecticide poisoning. Indian J. Pharmacol. 2004;36:76.
Nurulain S.M., Ojha S., Tekes K., Shafiullah M., Kalasz H., Adem A. Efficacy of N-Acetylcysteine, Glutathione, and Ascorbic Acid in Acute Toxicity of Paraoxon to Wistar Rats: Survival Study. [(accessed on 21 October 2018)];Oxid. Med. Cell Longev. 2015 Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4488549/ PubMed PMC
Pournourmohammadi S., Ostad S.N., Azizi E., Ghahremani M.H., Farzami B., Minaie B., Larijani B., Abdollahi M. Induction of insulin resistance by malathion: Evidence for disrupted islets cells metabolism and mitochondrial dysfunction. Pestic Biochem. Physiol. 2007;88:346–352. doi: 10.1016/j.pestbp.2007.02.001. DOI
Gangemi S., Gofita E., Costa C., Teodoro M., Briguglio G., Nikitovic D., Tzanakakis G., Tsatsakis A.M., Wilks M.F., Spandidos D.A., et al. Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (Review) Int. J. Mol. Med. 2016;38:1012–1020. doi: 10.3892/ijmm.2016.2728. PubMed DOI PMC
Kamath V., Rajini P. Altered glucose homeostasis and oxidative impairment in pancreas of rats subjected to dimethoate intoxication. Toxicology. 2007;231:137–146. doi: 10.1016/j.tox.2006.11.072. PubMed DOI
Lee D.-H., Steffes M.W., Sjödin A., Jones R.S., Needham L.L., Jacobs D.R., Jr. Low Dose Organochlorine Pesticides and Polychlorinated Biphenyls Predict Obesity, Dyslipidemia, and Insulin Resistance among People Free of Diabetes. PLoS ONE. 2011;6:e15977. doi: 10.1371/journal.pone.0015977. PubMed DOI PMC
Mostafalou S., Abdollahi M. Pesticides: An update of human exposure and toxicity. Arch. Toxicol. 2017;91:549–599. doi: 10.1007/s00204-016-1849-x. PubMed DOI
Panahi P., Vosough-Ghanbari S., Pournourmohammadi S., Ostad S.N., Nikfar S., Minaie B., Abdollahi M. Stimulatory Effects of Malathion on the Key Enzymes Activities of Insulin Secretion in Langerhans Islets, Glutamate Dehydrogenase and Glucokinase. Toxicol. Mech. Methods. 2006;16:161–167. doi: 10.1080/15376520500191623. PubMed DOI
Rattner B.A., Franson J.C. Methyl parathion and fenvalerate toxicity in American kestrels: Acute physiological responses and effects of cold. Can. J. Physiol. Pharmacol. 1984;62:787–792. doi: 10.1139/y84-129. PubMed DOI
Rodrigues M.A.L.R., Puga F.R., Chenker E., Mazanti M.T. Short-term effect of malathion on rats’ blood glucose and on glucose utilization by mammalian cells in vitro. Ecotoxicol. Environ. Saf. 1986;12:110–113. doi: 10.1016/0147-6513(86)90046-1. PubMed DOI
Vadhana M.S.D., Carloni M., Nasuti C., Fedeli D., Gabbianelli R. Early life permethrin insecticide treatment leads to heart damage in adult rats. Exp. Gerontol. 2011;46:731–738. doi: 10.1016/j.exger.2011.05.005. PubMed DOI
Sharaf A.A., Mohaned A.M., Abu M.E.-G., Mousa A.H. Control of snail hosts of bilharziasis in Egypt. 3. Effect of the organophosphorous insecticide, dursban, on carbohydrate metabolism of the snails Biomphalaria alexandria and Bulinus truncatus. Egypt J. Bilharz. 1975;2:49–61. PubMed
Rezg R., Mornagui B., El-Arbi M., Kamoun A., El-Fazaa S., Gharbi N. Effect of subchronic exposure to malathion on glycogen phosphorylase and hexokinase activities in rat liver using native PAGE. Toxicology. 2006;223:9–14. doi: 10.1016/j.tox.2006.02.020. PubMed DOI
Brůha R. Non-Alcoholic Fatty Liver Disease. Vnitr Lek. 2019;65:571–575. PubMed
Tong J., Guo J.-J. Key molecular pathways in the progression of non-alcoholic steatohepatitis. Eur. Rev. Med. Pharmacol. Sci. 2019;23:8515–8522. PubMed
Mossa A., Refaie A., Ramadan A. Effect of Exposure to Mixture of Four Organophosphate Insecticides at No Observed Adverse Effect Level Dose on Rat Liver: The Protective Role of Vitamin C-SciAlert Responsive Version. [(accessed on 31 October 2019)];2011 Available online: https://scialert.net/fulltextmobile/?doi=rjet.2011.323.335.
Castorina R., Bradman A., McKone T.E., Barr D.B., Harnly M.E., Eskenazi B. Cumulative organophosphate pesticide exposure and risk assessment among pregnant women living in an agricultural community: A case study from the CHAMACOS cohort. Environ. Health Perspect. 2003;111:1640–1648. doi: 10.1289/ehp.5887. PubMed DOI PMC
Hernández A.F., Parrón T., Tsatsakis A.M., Requena M., Alarcón R., López-Guarnido O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology. 2013;307:136–145. PubMed
Rizzati V., Briand O., Guillou H., Gamet-Payrastre L. Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chem. Biol. Interact. 2016;254:231–246. doi: 10.1016/j.cbi.2016.06.003. PubMed DOI