Synchrony matters more than species richness in plant community stability at a global scale
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
BBS/E/C/000J0300
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
32900958
PubMed Central
PMC7533703
DOI
10.1073/pnas.1920405117
PII: 1920405117
Knihovny.cz E-zdroje
- Klíčová slova
- climate change drivers, evenness, species richness, stability, synchrony,
- MeSH
- ekosystém MeSH
- klimatické změny MeSH
- půda chemie MeSH
- rostliny klasifikace metabolismus MeSH
- sekvestrace uhlíku MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- půda MeSH
The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.
Biological Earth and Environmental Sciences University of New South Wales 2052 Sydney Australia
Botany Department Senckenberg Natural History Museum Goerlitz 02826 Goerlitz Germany
Centre for Ecological Research and Forestry Applications 08193 Cerdanyola del Vallès Catalonia Spain
Centro de Investigaciones sobre Desertificación 46113 Valencia Spain
Department of Biological Sciences Kent State University Kent OH 44242
Department of Botany and Zoology Faculty of Science Masaryk University 61137 Brno Czech Republic
Department of Botany Faculty of Science Charles University Praha Czech Republic
Department of Botany Institute of Ecology and Earth Sciences University of Tartu 51005 Tartu Estonia
Department of Conservation Biology Estación Biológica de Doñana 41092 Sevilla Spain
Department of Environmental Biology University of Navarra Pamplona Spain
Department of Environmental Science and Policy University of California Davis CA 95616
Department of Plant Biology and Ecology Universidad de Sevilla 41012 Sevilla Spain
Department of Plant Biology and Ecology University of the Basque Country 48940 Leioa Spain
Department of Plant Sciences University of California Davis CA 95616
Department of Wildland Resources and the Ecology Center Utah State University Logan UT 84322
German Centre for Integrative Biodiversity Research Halle Jena Leipzig 04103 Leipzig Germany
Institute of Botany of the Czech Academy of Sciences 25243 Průhonice Czech Republic
Institute of Botany of the Czech Academy of Sciences 37982 Třeboň Czech Republic
Instituto Pirenaico de Ecología 22700 Jaca Zaragoza Spain
International Institute Zittau Technische Universität Dresden 02763 Zittau Germany
Manaaki Whenua Landcare Research 7640 Lincoln New Zealand
Mpala Research Centre Nanyuki Kenya
The James Hutton Institute Craigiebuckler Aberdeen United Kingdom
Université Clermont Auvergne INRAE VetAgro Sup UMR Ecosystème Prairial Clermont Ferrand France
University of Liverpool Liverpool United Kingdom
Wadden Sea National Park of Schleswig Holstein 25832 Tönning Germany
Zobrazit více v PubMed
Thibaut L. M., Connolly S. R., Understanding diversity-stability relationships: Towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013). PubMed PMC
Tilman D., Downing J. A., Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).
Isbell F. et al. ., Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018). PubMed PMC
McNaughton S. J., Stability and diversity of ecological communities. Nature 274, 251–253 (1978).
Hautier Y. et al. ., Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015). PubMed
Hautier Y. et al. ., Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014). PubMed
Isbell F. et al. ., Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015). PubMed
Hallett L. M. et al. ., Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 95, 1693–1700 (2014). PubMed
de Mazancourt C. et al. ., Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013). PubMed
Zhang J. et al. ., Effects of grassland management on the community structure, aboveground biomass and stability of a temperate steppe in Inner Mongolia, China. J. Arid Land 8, 422–433 (2016).
Gross K. et al. ., Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014). PubMed
McCann K. S., The diversity-stability debate. Nature 405, 228–233 (2000). PubMed
Blüthgen N. et al. ., Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat. Commun. 7, 10697 (2016). PubMed PMC
Doak D. F. et al. ., The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998). PubMed
Valone T. J., Barber N. A., An empirical evaluation of the insurance hypothesis in diversity-stability models. Ecology 89, 522–531 (2008). PubMed
Lepš J., Májeková M., Vítová A., Doležal J., de Bello F., Stabilizing effects in temporal fluctuations: Management, traits, and species richness in high-diversity communities. Ecology 99, 360–371 (2018). PubMed
Gonzalez A., Loreau M., The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).
Allan E. et al. ., More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl. Acad. Sci. U.S.A. 108, 17034–17039 (2011). PubMed PMC
Loreau M., de Mazancourt C., Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16 (suppl. 1), 106–115 (2013). PubMed
Ives A. R., Gross K., Klug J. L., Stability and variability in competitive communities. Science 286, 542–544 (1999). PubMed
Tilman D., Biodiversity: Population versus ecosystem stability. Ecology 77, 350–363 (1996).
Májeková M., de Bello F., Doležal J., Lepš J., Plant functional traits as determinants of population stability. Ecology 95, 2369–2374 (2014).
Tilman D., Reich P. B., Knops J. M. H., Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006). PubMed
Tredennick A. T., Adler P. B., Adler F. R., The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence. Ecol. Lett. 20, 958–968 (2017). PubMed
Craven D. et al. ., Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018). PubMed
Houlahan J. E. et al. ., Compensatory dynamics are rare in natural ecological communities. Proc. Natl. Acad. Sci. U.S.A. 104, 3273–3277 (2007). PubMed PMC
Lepš J., Variability in population and community biomass in a grassland community affected by environmental productivity and diversity. Oikos 107, 64–71 (2004).
Lepš J., Götzenberger L., Valencia E., de Bello F., Accounting for long‐term directional trends on year‐to‐year synchrony in species fluctuations. Ecography 42, 1728–1741 (2019).
Valencia E. et al. ., Directional trends in species composition over time can lead to a widespread overemphasis of year‐to‐year asynchrony. J. Veg. Sci., 10.1111/jvs.12916 (2020). DOI
Chesson P., Huntly N., The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997). PubMed
Sasaki T., Lauenroth W. K., Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166, 761–768 (2011). PubMed
Valone T. J., Balaban-Feld J., Impact of exotic invasion on the temporal stability of natural annual plant communities. Oikos 127, 56–62 (2018).
de Bello F. et al. ., Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J. Veg. Sci. 20, 475–486 (2009).
Pistón N. et al. ., Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328 (2019).
Koerner S. E. et al. ., Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018). PubMed
McArdle B. H., Gaston K. J., The temporal variability of densities: Back to basics. Oikos 74, 165–171 (1995).
Tilman D., Lehman C. L., Bristow C. E., Diversity-stability relationships: Statistical inevitability or ecological consequence? Am. Nat. 151, 277–282 (1998). PubMed
Smith B., Wilson J. B., A consumer’s guide to evenness indices. Oikos 76, 70–82 (1996).
Loreau M., de Mazancourt C., Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008). PubMed
Hallett L. M. et al. ., Codyn: An r package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).
Grace J. B., Structural Equation Modeling and Natural Systems, (Cambridge University Press, Cambridge, United Kingdom, 2006).
Shipley B., Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009). PubMed
Laliberté E., Legendre P., A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010). PubMed
Shipley B., The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013). PubMed
Grace J. B., Bollen K. A., Interpreting the results from multiple regression and structural equation models. Bull. Ecol. Soc. Am. 86, 283–295 (2005).
R Development Core Team , R: A Language and Environment for Statistical Computing, Version 3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2018). https://www.r-project.org/. Accessed 10 December 2018.
Lefcheck J. S., Piecewise S. E. M., Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Bates D., Mächler M., Bolker B., Walker S., Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
Valencia E., et al. , Synchrony matters more than species richness in plant community stability at a global scale. Figshare. 10.6084/m9.figshare.7886582.v1. Deposited 18 November 2019. PubMed DOI PMC
Functional trait trade-offs define plant population stability across different biomes
Synchrony matters more than species richness in plant community stability at a global scale
figshare
10.6084/m9.figshare.7886582.v1