Synchrony matters more than species richness in plant community stability at a global scale

. 2020 Sep 29 ; 117 (39) : 24345-24351. [epub] 20200908

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid32900958

Grantová podpora
BBS/E/C/000J0300 Biotechnology and Biological Sciences Research Council - United Kingdom

The stability of ecological communities is critical for the stable provisioning of ecosystem services, such as food and forage production, carbon sequestration, and soil fertility. Greater biodiversity is expected to enhance stability across years by decreasing synchrony among species, but the drivers of stability in nature remain poorly resolved. Our analysis of time series from 79 datasets across the world showed that stability was associated more strongly with the degree of synchrony among dominant species than with species richness. The relatively weak influence of species richness is consistent with theory predicting that the effect of richness on stability weakens when synchrony is higher than expected under random fluctuations, which was the case in most communities. Land management, nutrient addition, and climate change treatments had relatively weak and varying effects on stability, modifying how species richness, synchrony, and stability interact. Our results demonstrate the prevalence of biotic drivers on ecosystem stability, with the potential for environmental drivers to alter the intricate relationship among richness, synchrony, and stability.

Biological Earth and Environmental Sciences University of New South Wales 2052 Sydney Australia

Biology Research Centre Institute of Entomology Czech Academy of Sciences 37005 České Budějovice Czech Republic

Botany Department Senckenberg Natural History Museum Goerlitz 02826 Goerlitz Germany

Center in Ecology and Evolutionary Ecology Université Paul Valéry Montpellier 3 34293 Montpellier France

Centre for Ecological Research and Forestry Applications 08193 Cerdanyola del Vallès Catalonia Spain

Centro de Investigaciones sobre Desertificación 46113 Valencia Spain

Community Ecology Swiss Federal Institute for Forest Snow and Landscape Research 8903 Birmensdorf Switzerland

Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences 11103 Groningen The Netherlands

Departamento de Biología y Geología Física y Química Inorgánica Escuela Superior de Ciencias Experimentales y Tecnología Universidad Rey Juan Carlos 28933 Móstoles Spain;

Department of Biological Sciences and Bjerknes Centre for Climate Research University of Bergen 5020 Bergen Norway

Department of Biological Sciences Kent State University Kent OH 44242

Department of Botany and Zoology Faculty of Science Masaryk University 61137 Brno Czech Republic

Department of Botany Faculty of Science Charles University Praha Czech Republic

Department of Botany Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic

Department of Botany Institute of Ecology and Earth Sciences University of Tartu 51005 Tartu Estonia

Department of Conservation Biology Estación Biológica de Doñana 41092 Sevilla Spain

Department of Disturbance Ecology Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany

Department of Ecosystem Biology Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic

Department of Environmental Biology University of Navarra Pamplona Spain

Department of Environmental Science and Policy University of California Davis CA 95616

Department of Plant Biology and Ecology Universidad de Sevilla 41012 Sevilla Spain

Department of Plant Biology and Ecology University of the Basque Country 48940 Leioa Spain

Department of Plant Sciences University of California Davis CA 95616

Department of Silviculture and Forest Ecology of the Temperate Zones University of Göttingen 37077 Göttingen Germany

Department of Wildland Resources and the Ecology Center Utah State University Logan UT 84322

German Centre for Integrative Biodiversity Research Halle Jena Leipzig 04103 Leipzig Germany

Institute of Botany of the Czech Academy of Sciences 25243 Průhonice Czech Republic

Institute of Botany of the Czech Academy of Sciences 37982 Třeboň Czech Republic

Institute of Ecology and Botany Centre for Ecological Research Hungarian Academy of Sciences Vácrátót Hungary

Institute of Wetland Ecology and Clone Ecology Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University 318000 Taizhou China

Instituto Pirenaico de Ecología 22700 Jaca Zaragoza Spain

International Institute Zittau Technische Universität Dresden 02763 Zittau Germany

Laboratory of Ecosystem Network Observation and Modelling Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences 100101 Beijing China

Manaaki Whenua Landcare Research 7640 Lincoln New Zealand

Mpala Research Centre Nanyuki Kenya

Plant Ecology Group Bayreuth Center for Ecology and Environmental Research University of Bayreuth 95447 Bayreuth Germany

Research Unit Biodiversity Evolution and Ecology of Plants Institute of Plant Science and Microbiology University of Hamburg Hamburg Germany

Spanish National Research Center Global Ecology Unit CREAF CSIC Autonomous University of Barcelona 08193 Bellaterra Catalonia Spain

Terrestrial Ecology Group Department of Ecology Institute for Biodiversity and Global Change Autonomous University of Madrid 28049 Madrid Spain

The James Hutton Institute Craigiebuckler Aberdeen United Kingdom

UK Centre for Ecology and Hydrology Crowmarsh Gifford OX10 8BB Wallingford Oxfordshire United Kingdom

Université Clermont Auvergne INRAE VetAgro Sup UMR Ecosystème Prairial Clermont Ferrand France

University of Liverpool Liverpool United Kingdom

Vegetation Ecology Group Institute of Natural Resource Sciences Zurich University of Applied Sciences 8820 Wädenswil Switzerland

Wadden Sea National Park of Schleswig Holstein 25832 Tönning Germany

Zobrazit více v PubMed

Thibaut L. M., Connolly S. R., Understanding diversity-stability relationships: Towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013). PubMed PMC

Tilman D., Downing J. A., Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).

Isbell F. et al. ., Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018). PubMed PMC

McNaughton S. J., Stability and diversity of ecological communities. Nature 274, 251–253 (1978).

Hautier Y. et al. ., Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015). PubMed

Hautier Y. et al. ., Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014). PubMed

Isbell F. et al. ., Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015). PubMed

Hallett L. M. et al. ., Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 95, 1693–1700 (2014). PubMed

de Mazancourt C. et al. ., Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013). PubMed

Zhang J. et al. ., Effects of grassland management on the community structure, aboveground biomass and stability of a temperate steppe in Inner Mongolia, China. J. Arid Land 8, 422–433 (2016).

Gross K. et al. ., Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014). PubMed

McCann K. S., The diversity-stability debate. Nature 405, 228–233 (2000). PubMed

Blüthgen N. et al. ., Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat. Commun. 7, 10697 (2016). PubMed PMC

Doak D. F. et al. ., The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998). PubMed

Valone T. J., Barber N. A., An empirical evaluation of the insurance hypothesis in diversity-stability models. Ecology 89, 522–531 (2008). PubMed

Lepš J., Májeková M., Vítová A., Doležal J., de Bello F., Stabilizing effects in temporal fluctuations: Management, traits, and species richness in high-diversity communities. Ecology 99, 360–371 (2018). PubMed

Gonzalez A., Loreau M., The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).

Allan E. et al. ., More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl. Acad. Sci. U.S.A. 108, 17034–17039 (2011). PubMed PMC

Loreau M., de Mazancourt C., Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16 (suppl. 1), 106–115 (2013). PubMed

Ives A. R., Gross K., Klug J. L., Stability and variability in competitive communities. Science 286, 542–544 (1999). PubMed

Tilman D., Biodiversity: Population versus ecosystem stability. Ecology 77, 350–363 (1996).

Májeková M., de Bello F., Doležal J., Lepš J., Plant functional traits as determinants of population stability. Ecology 95, 2369–2374 (2014).

Tilman D., Reich P. B., Knops J. M. H., Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006). PubMed

Tredennick A. T., Adler P. B., Adler F. R., The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence. Ecol. Lett. 20, 958–968 (2017). PubMed

Craven D. et al. ., Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018). PubMed

Houlahan J. E. et al. ., Compensatory dynamics are rare in natural ecological communities. Proc. Natl. Acad. Sci. U.S.A. 104, 3273–3277 (2007). PubMed PMC

Lepš J., Variability in population and community biomass in a grassland community affected by environmental productivity and diversity. Oikos 107, 64–71 (2004).

Lepš J., Götzenberger L., Valencia E., de Bello F., Accounting for long‐term directional trends on year‐to‐year synchrony in species fluctuations. Ecography 42, 1728–1741 (2019).

Valencia E. et al. ., Directional trends in species composition over time can lead to a widespread overemphasis of year‐to‐year asynchrony. J. Veg. Sci., 10.1111/jvs.12916 (2020). DOI

Chesson P., Huntly N., The roles of harsh and fluctuating conditions in the dynamics of ecological communities. Am. Nat. 150, 519–553 (1997). PubMed

Sasaki T., Lauenroth W. K., Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia 166, 761–768 (2011). PubMed

Valone T. J., Balaban-Feld J., Impact of exotic invasion on the temporal stability of natural annual plant communities. Oikos 127, 56–62 (2018).

de Bello F. et al. ., Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J. Veg. Sci. 20, 475–486 (2009).

Pistón N. et al. ., Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328 (2019).

Koerner S. E. et al. ., Change in dominance determines herbivore effects on plant biodiversity. Nat. Ecol. Evol. 2, 1925–1932 (2018). PubMed

McArdle B. H., Gaston K. J., The temporal variability of densities: Back to basics. Oikos 74, 165–171 (1995).

Tilman D., Lehman C. L., Bristow C. E., Diversity-stability relationships: Statistical inevitability or ecological consequence? Am. Nat. 151, 277–282 (1998). PubMed

Smith B., Wilson J. B., A consumer’s guide to evenness indices. Oikos 76, 70–82 (1996).

Loreau M., de Mazancourt C., Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008). PubMed

Hallett L. M. et al. ., Codyn: An r package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).

Grace J. B., Structural Equation Modeling and Natural Systems, (Cambridge University Press, Cambridge, United Kingdom, 2006).

Shipley B., Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009). PubMed

Laliberté E., Legendre P., A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010). PubMed

Shipley B., The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013). PubMed

Grace J. B., Bollen K. A., Interpreting the results from multiple regression and structural equation models. Bull. Ecol. Soc. Am. 86, 283–295 (2005).

R Development Core Team , R: A Language and Environment for Statistical Computing, Version 3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2018). https://www.r-project.org/. Accessed 10 December 2018.

Lefcheck J. S., Piecewise S. E. M., Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

Bates D., Mächler M., Bolker B., Walker S., Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).

Valencia E., et al. , Synchrony matters more than species richness in plant community stability at a global scale. Figshare. 10.6084/m9.figshare.7886582.v1. Deposited 18 November 2019. PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.7886582.v1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...