Peroxisome proliferator-activated receptor gamma in white and brown adipocyte regulation and differentiation
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32901494
PubMed Central
PMC8549902
DOI
10.33549/physiolres.934411
PII: 934411
Knihovny.cz E-zdroje
- MeSH
- adipogeneze fyziologie MeSH
- bílá tuková tkáň cytologie metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- hnědá tuková tkáň cytologie metabolismus MeSH
- lidé MeSH
- obezita metabolismus patologie MeSH
- PPAR gama metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- PPAR gama MeSH
In as early as 1997, the World Health Organization officially recognized obesity as a chronic disease. The current epidemic of obesity and overweightness has aroused great interest in the study of adipose tissue formation. The transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) binds to the target gene promoter regulatory sequences, acting as a key factor in regulating the differentiation of preadipocytes in the adipose tissue, and plays an important role in regulating the adipocyte metabolism. A further understanding of the structure and expression characteristics of PPARgamma, in addition to its mechanisms of action in adipocyte differentiation, may be applied to control obesity and prevent obesity-related diseases. In this article, recent studies investigating the effect of regulating PPARgamma on adipocyte differentiation are reviewed. In particular, the structural characteristics, expression patterns, and molecular mechanisms of PPARgamma function in adipocyte differentiation are considered.
Zobrazit více v PubMed
APRILE M, AMBROSIO MR, D’ESPOSITO V, BEGUINOT F, FORMISANO P, COSTA V, CICCODICOLA A. PPARG in human adipogenesis: differential contribution of canonical transcripts and dominant negative isoforms. PPAR Res. 2014;2014:537865. doi: 10.1155/2014/537865. PubMed DOI PMC
ARIAS N, AGUIRRE L, FERNANDEZ-QUINTELA A, GONZÁLEZ M, LASA A, MIRANDA J, MACARULLA MT, PORTILLO MP. MicroRNAs involved in the browning process of adipocytes. J Physiol Biochem. 2016;72:509–521. doi: 10.1007/s13105-015-0459-z. PubMed DOI
BARAK Y, NELSON MC, ONG ES, JONES YZ, RUIZ-LOZANO P, CHIEN KR, KODER A, EVANS RM. PPARγ is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999;4:585–595. doi: 10.1016/s1097-2765(00)80209-9. PubMed DOI
BIRSOY K, CHEN Z, FRIEDMAN J. Transcriptional regulation of adipogenesis by KLF4. Cell Metab. 2008;7:339–347. doi: 10.1016/j.cmet.2008.02.001. PubMed DOI PMC
BOSS O, FARMER SR. Recruitment of brown adipose tissue as a therapy for obesity-associated diseases. Front Endocrinol (Lausanne) 2012;3:14. doi: 10.3389/fendo.2012.00014. PubMed DOI PMC
BOSTROM P, WU J, JEDRYCHOWSKI MP, KORDE A, YE L, LO JC, RASBACH KA, BOSTRÖM EA, CHOI JH, LONG JZ, KAJIMURA S, ZINGARETTI MR, VIND BF, TU H, CINTI S, HØJLUND K, GYGI SP, SPIEGELMAN BM. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–468. doi: 10.1038/nature10777. PubMed DOI PMC
CALL KM, GLASER T, ITO CY, BUCKLER AJ, PELLETIER J, HABER DA, ROSE EA, KRAL A, YEGER H, LEWIS WH, JONES C, HOUSMAN DE. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell. 1990;60:509–520. doi: 10.1016/0092-8674(90)90601-a. PubMed DOI
CHEN Y, SIEGEL F, KIPSCHULL S, HAAS B, FRÖHLICH H, MEISTER G, PFEIFER A. MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun. 2013;4:1769. doi: 10.1038/ncomms2742. PubMed DOI PMC
CHU DT, TAO Y. Human thermogenic adipocytes: a reflection on types of adipocyte, developmental origin, and potential application. J Physiol Biochem. 2017;73:1–4. doi: 10.1007/s13105-016-0536-y. PubMed DOI
COHEN P, LEVY JD, ZHANG Y, FRONTINI A, KOLODIN DP, SVENSSON KJ, LO JC, ZENG X, YE L, KHANDEKAR MJ, WU J, GUNAWARDANA SC, BANKS AS, CAMPOREZ JPG, JURCZAK MJ, KAJIMURA S, PISTON DW, MATHIS D, CINTI S, SHULMAN GI, SEALE P, SPIEGELMAN BM. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156:304–316. doi: 10.1016/j.cell.2013.12.021. PubMed DOI PMC
COUSIN B, CINTI S, MORRONI M, RAIMBATLT S, RICQUIER D, PENICAUD L, CASTEILLA L. Occurrence of brown adipocytes in rat white adipose tissue: Molecular and morphological characterization. J Cell Sci. 1992;103:931–942. PubMed
DAPENG J, LIXING Z. Research progress on adipocyte differentiation and its regulation. Chin J Cell Biol. 2010;32:690–695.
DIVELLA R, De LUCA R, ABBATE I, NAGLIERI E, DANIELE A. Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J Cancer. 2016;7:2346–2359. doi: 10.7150/jca.16884. PubMed DOI PMC
EL-JACK AK, HAMM JK, PILCH PF, FARMER SR. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARγ and C/EBPα. J Biol Chem. 1999;274:7946–7951. doi: 10.1074/jbc.274.12.7946. PubMed DOI
FITZGIBBONS TP, CZECH MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: Basic mechanisms and clinical associations. Am Heart Assoc. 3:e000582. doi: 10.1161/jaha.113.000582. PubMed DOI PMC
FRONTINI A, VITALI A, PERUGINI J, MURANO I, ROMITI C, RICQUIER D, CINTI S. White-to-brown transdifferentiation of omental adipocytes in patients affected by pheochromocytoma. Biochim Biophys Acta. 2013;1831:950–959. doi: 10.1016/j.bbalip.2013.02.005. PubMed DOI
GEARING M, GOTTLICHER M, TEBOUL M, WIDMARK E, GUSTAFSSON JA. Interaction of the peroxisome-proliferator-activated receptor and retinoid X receptor. Proc Natl Acad Sci U S A. 1993;90:1440–1444. doi: 10.1073/pnas.90.4.1440. PubMed DOI PMC
GERIN I, BOMMER GT, McCOIN CS, SOUSA KM, KRISHNAN V, MacDOUGALD OA. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab. 2010;299:E198–E206. doi: 10.1152/ajpendo.00179.2010. PubMed DOI PMC
GOUDARZI F, MOHAMMADALIPOUR A, KHODADADI I, KARIMI S, MOSTOLI R, BAHABADI M, GOODARZI MT. The role of calcium in differentiation of human adipose derived stem cells to adipocytes. Mol Biotechnol. 2018;60:279–289. doi: 10.1007/s12033-018-0071-x. PubMed DOI
GUO H, INGOLIA NT, WEISSMAN JS, BARTEL DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–840. doi: 10.1038/nature09267. PubMed DOI PMC
HAGBERG CE, FALKEVALL A, WANG X, LARSSON E, HUUSKO J, NILSSON I, Van MEETEREN LA, SAMEN E, LU L, VANWILDEMEERSCH M, KLAR J, GENOVE G, PIETRAS K, STONE-ELANDER S, CLAESSON-WELSH L, YLÄ-HERTTUALA S, LINDAHL P, ERIKSSON U. Vascular endothelial growth factor b controls endothelial fatty acid uptake. Nature. 2010;464:917–921. doi: 10.1038/nature08945. PubMed DOI
HALLENBORG P, PETERSEN RK, KOUSKOUMVEKAKI I, NEWMAN JW, MADSEN L, KRISTIANSEN K. The elusive endogenous adipogenic PPARγ agonists: lining up the suspects. Prog Lipid Res. 2016;61:149–162. doi: 10.1016/j.plipres.2015.11.002. PubMed DOI
HARMS M, SEALE P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252–1263. doi: 10.1038/nm.3361. PubMed DOI
HARMS MJ, ISHIBASHI J, WANG W, LIM HW, GOYAMA S, SATO T, KUROKAWA M, WON KJ, SEALE P. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab. 2016;19:593–604. doi: 10.1016/j.cmet.2014.03.007. PubMed DOI PMC
HARMS MJ, LIM HW, HO Y, SHAPIRA SN1, ISHIBASHI J, RAJAKUMARI S, STEGER DJ, LAZAR MA, WON KJ, SEALE P. PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes Dev. 2015;29:298–307. doi: 10.1101/gad.252734.114. PubMed DOI PMC
HONDARES E, GALLEGO-ESCUREDO JM, FLACHS P, FRONTINI A, CEREIJO R, GODAY A, PERUGINI J, KOPECKY P, GIRALT M, CINTI S, KOPECKY J, VILLARROYA F. Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism. 2014;63:312–317. doi: 10.1016/j.metabol.2013.11.014. PubMed DOI
HONG G, DAVIS B, KHATOON N, BAKER SF, BROWN J. PPAR gamma-dependent anti-inflammatory action of rosiglitazone in human monocytes: suppression of TNF alpha secretion is not mediated by PTEN regulation. Biochem Biophys Res Commun. 2003;303:782–787. doi: 10.1016/s0006-291x(03)00418-2. PubMed DOI
IIDA S, CHEN W, NAKADAI T, OHKUMA Y, ROEDER RG. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with mediator subunit MED1. Genes Devel. 2015;29:308–321. doi: 10.1101/gad.252809.114. PubMed DOI PMC
ISSEMANN I, GREEN S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645–650. doi: 10.1038/347645a0. PubMed DOI
JIN H, LI D, WANG X, CHEN Y, YAO Y, ZHAO C, LU X, ZHANG S, TOGO J, JI Y, ZHANG L, FENG X, ZHENG Y. VEGFa and VEGFb play balancing roles in adipose differentiation, gene expression, and function. Endocrinol. 2018;159:2036–2049. doi: 10.1210/en.2017-03246. PubMed DOI
KAJIMURA S, SEALE P, KUBOTA K, LUNSFORD E, FRANGIONI JV, GYGI SP, SPIEGELMAN BM. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature. 2009;460:1154–1158. doi: 10.1038/nature08262. PubMed DOI PMC
KAJIMURA S, SEALE P, TOMARU T, ERDJUMENT-BROMAGE H, COOPER MP, RUAS JL, CHIN S, TEMPST P, LAZAR MA, SPIEGELMAN BM. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 2008;22:1397–1409. doi: 10.1101/gad.1666108. PubMed DOI PMC
KAJIMURA S, SPIEGELMAN BM, SEALE P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 2015;22:546–559. doi: 10.1016/j.cmet.2015.09.007. PubMed DOI PMC
KANG Q, SONG WX, LUO Q, TANG N, LUO J, LUO X, CHEN J, BI Y, HE BC, PARK JK, JIANG W, TANG Y, HUANG J, SU Y, ZHU GH, HE Y, YIN H, HU Z, WANG Y, CHEN L, ZUO GW, PAN X, SHEN J, VOKES T, REID RR, HAYDON RC, LUU HH, HE TC. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev. 2009;18:545–559. doi: 10.1089/scd.2008.0130. PubMed DOI PMC
KARAMANLIDIS G, KARAMITRI A, DOCHERTY K, HAZLERIGG DG, LOMAX MA. C/EBPb reprograms white 3T3-L1 preadipocytes to a brown adipocyte pattern of gene expression. J Biol Chem. 2007;282:24660–24669. doi: 10.1074/jbc.m703101200. PubMed DOI
KERSTEN S, DESVERGNE B, WAHLI W. Roles of PPARs in health and disease. Nature. 2000;405:421–424. doi: 10.1038/35013000. PubMed DOI
KIM KH, KIM SH, MIN YK, YANG HM, LEE JB, LEE MS. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One. 2013;8:e63517. doi: 10.1371/journal.pone.0063517. PubMed DOI PMC
KINYUI AL, LEI S. Turning WAT into BAT. a review on regulators controlling the browning of white adipocytes. Biosci Rep. 2013;33:711–719. doi: 10.1042/bsr20130046. PubMed DOI PMC
KVANDOVÁ M, MAJZÚNOVÁ M, DOVINOVÁ I. The role of PPARgamma in cardiovascular diseases. Physiol Res. 2016;65(Suppl 3):S343–S363. doi: 10.33549/physiolres.933439. PubMed DOI
LEE EK, LEE MJ, ABDELMOHSEN K, KIM W, KIM MM, SRIKANTAN S, MARTINDALE JL, HUTCHISON ER, KIM HH, MARASA BS, SELIMYAN R, EGAN JM, SMITH SR, FRIED SK, GOROSPE M. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression. Mol Cell Biol. 2011;31:626–638. doi: 10.1128/mcb.00894-10. PubMed DOI PMC
LEE HS, KIM J. Constitutive expression of vascular endothelial cell growth factor (VEGF) gene family ligand and receptors on human upper and lower airway epithelial cells. Int Forum Allergy Rhinol. 2014;4:8–14. doi: 10.1002/alr.21244. PubMed DOI
LEE JE, GE K. Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Cell Biosci. 2014;4:29. doi: 10.1186/2045-3701-4-29. PubMed DOI PMC
LEE WS, KIM J. Peroxisome proliferator-activated receptors and the heart: lessons from the past and future directions. PPAR Res. 2015;2015:271983. doi: 10.1155/2015/271983. PubMed DOI PMC
LIU HJ, LIAO HH, YANG Z, TANG QZ. Peroxisome proliferator-activated receptor-γ is critical to cardiac fibrosis. PPAR Res. 2016;2016:2198645. doi: 10.1155/2016/2198645. PubMed DOI PMC
LIU J, WU PH, TARR PT, LINDENBERG KS, ST-PIERRE J, ZHANG CY, MOOTHA VK, JÄGER S, VIANNA CR, REZNICK RM, CUI L, MANIERI M, DONOVAN MX, WU Z, COOPER MP, FAN MC, ROHAS LM, ZAVACKI AM, CINTI S, SHULMAN GI, LOWELL BB, KRAINC D, SPIEGELMAN BM. Defects in adaptive energy metabolism with CNS-Linked hyperactivity in PGC-1α null mice. Cell. 2014;119:121–135. doi: 10.1016/j.cell.2004.09.013. PubMed DOI
LIU W, BI P, SHAN T, YANG X, YIN H, WANG YX, LIU N, RUDNICKI MA, KUANG S. miR-133a regulates adipocyte browning in vivo. PLoS Genet. 2013;9:e1003626. doi: 10.1371/journal.pgen.1003626. PubMed DOI PMC
LU H, GAO Z, ZHAO Z, WENG J, YE J. Transient hypoxia repro-grams differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation. Obes (Lond) 2015;40:121–128. doi: 10.1038/ijo.2015.137. PubMed DOI PMC
MAZZUCOTELLI A, VIGUERIE N, TIRABY C, ANNICOTTE JS, MAIRAL A, KLIMCAKOVA E, LEPIN E, DELMAR P, DEJEAN S, TAVERNIER G, LEFORT C, HIDALGO J, PINEAU T, FAJAS L, CLÉMENT K, LANGIN D. The transcriptional coactivator peroxisome proliferator activated receptor (PPAR) gamma coactivator-1 alpha and the nuclear receptor PPAR alpha control the expression of glycerol kinase and metabolism genes independently of PPAR gamma activation in human white adipocytes. Diabetes. 2007;56:2467–2475. doi: 10.2337/db06-1465. PubMed DOI
MEHLEM A, PALOMBO I, WANG X, HAGBERG CE, ERIKSSON U, FALKEVALL A. Pgc-1alpha coordinates mitochondrial respiratory capacity and muscular fatty acid uptake via regulation of VEGF-b. Diabetes. 2016;65:861–873. doi: 10.2337/db15-1231. PubMed DOI
MORI M, NAKAGAMI H, RODRIGUEZ-ARAUJO G, NIMURA K, KANEDA Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 2012;10:e1001314. doi: 10.1371/journal.pbio.1001314. PubMed DOI PMC
OHNO H, SHINODA K, SPIEGELMAN BM, KAJIMURA S. PPAR gamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012;15:395–404. doi: 10.1016/j.cmet.2012.01.019. PubMed DOI PMC
OKLA M, HA JH, TEMEL RE, CHUNG S. BMP7 drives human adipogenic stem cells into metabolically active beige adipocytes. Lipids. 2015;50:111–120. doi: 10.1007/s11745-014-3981-9. PubMed DOI PMC
PELLEGRINELLI V, CAROBBIO S, VIDAL-PUIG A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59:1075–1088. doi: 10.1007/s00125-016-3933-4. PubMed DOI PMC
PENG Z, BAN K, WAWROSE RA, GOVER AG, KOZAR RA. Protection by enteral glutamine is mediated by intestinal epithelial cell peroxisome proliferator-activated receptor-γ during intestinal ischemia/reperfusion. Shock. 2015;43:327–333. doi: 10.1097/shk.0000000000000297. PubMed DOI PMC
PETERS JM, LEE SS, LI W, WARD JM, GAVRILOVA O, EVERETT C, REITMAN ML, HUDSON LD, GONZALEZ FJ. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta) Mol Cell Biol. 2000;20:5119–5128. doi: 10.1128/mcb.20.14.5119-5128.2000. PubMed DOI PMC
PETROVIC N, WALDEN TB, SHABALINA IG, TIMMONS JA, CANNON B, NEDERGAARD J. Chronic peroxisome proliferator-activated receptor gamma (PPAR gamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285:7153–7164. doi: 10.1074/jbc.m109.053942. PubMed DOI PMC
PUIGSERVER P, WU Z, PARK CW, GRAVES R, WRIGHT M, SPIEGELMAN BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829–839. doi: 10.1016/s0092-8674(00)81410-5. PubMed DOI
QIAN S, HUANG H, TANG Q. Brown and beige fat: the metabolic function, induction, and therapeutic potential. Front Med. 2015;9:162–172. doi: 10.1007/s11684-015-0382-2. PubMed DOI
ROSEN ED, MacDOUGALD OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7:885–896. doi: 10.1038/nrm2066. PubMed DOI
ROSEN ED, SPIEGELMAN BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006;444:847–853. doi: 10.1038/nature05483. PubMed DOI PMC
SANCHEZ-GURMACHES J, HUNG CM, SPARKS CA, TANG Y, LI H, GUERTIN DA. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 2012;16:348–362. doi: 10.1016/j.cmet.2012.08.003. PubMed DOI PMC
SATO N, KOZAR RA, ZOU L, WEATHERALL JM, ATTUWAYBI B, MOORE-OLUFEMI SD, WEISBRODT NW, MOORE FA. Peroxisome proliferator-activated receptor gamma mediates protection against cyelooxygenase2-induced gut dysfunctionin in a rodent model of mesenteric ischemia/reperfusion. Shock. 2005;24:462–469. doi: 10.1097/01.shk.0000183483.76972.ae. PubMed DOI
SCHULZ TJ, HUANG TL, TRAN TT, ZHANG H, TOWNSEND KL, SHADRACH JL, CERLETTI M, McDOUGALL LE, GIORGADZE N, TCHKONIA T, SCHRIER D. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A. 2011;108:143–148. doi: 10.1073/pnas.1010929108. PubMed DOI PMC
SEALE P, BJORK B, YANG W, KAJIMURA S, CHIN S, KUANG S, SCIME A, DEVARAKONDA S, CONROE HM, ERDJUMENT-BROMAGE H, TEMPST P. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454:961–967. doi: 10.1038/nature07182. PubMed DOI PMC
SEALE P, KAJIMURA S, YANG W, CHIN S, ROHAS LM, ULDRY M, TAVERNIER G, LANGIN D, SPIEGELMAN BM. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 2007;6:38–54. doi: 10.1016/j.cmet.2007.06.001. PubMed DOI PMC
SHINGO K, PATRICK S, TAKUYA T, HEDIYE EB, MARCUS PC, JORGE LR, SHERRY C, PAUL T, MITCHELL AL, BRUCE MS. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 2008;22:1397–1409. doi: 10.1101/gad.1666108. PubMed DOI PMC
STANFORD KI, MIDDELBEEK RJ, TOWNSEND KL, AN D, NYGAARD EB, HITCHCOX KM, MARKAN KR, NAKANO K, HIRSHMAN MF, TSENG YH, GOODYEAR LJ. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013;123:215–223. doi: 10.1172/jci62308. PubMed DOI PMC
SUN L, TRAJKOVSKI M. MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. Metabolism. 2014;63:272–282. doi: 10.1016/j.metabol.2013.10.004. PubMed DOI
TONG Q, HOTAMISLIGIL GS. Molecular mechanisms of adipocyte differentiation. Rev Endocr Metab Disord. 2001;2:349–355. doi: 10.1023/a:1011863414321. PubMed DOI
TOWNSEND KL, LYNES M, COBURN J, PRITCHARD E, KWON YM, HUANG T, KAPLAN DL, TSENG YH. Silk-mediated sustained delivery of bone morphogenetic protein 7 (BMP7) to subcutaneous white adipose depot leads to browning and reversal of obesity. Diabetes. 2014;63:A64–A64.
VEIKKOLA T, KARKKAINEN M, CLAESSON-WELSH L, ALITALO K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 2000;60:203–212. PubMed
VELLA S, CONALDI PG, FLORIO T, PAGANO A. PPAR gamma in neuroblastoma: the translational perspectives of hypoglycemic drugs. PPAR Res. 2016;2016:1–10. doi: 10.1155/2016/3038164. PubMed DOI PMC
VENIANT MM, SIVITS G, HELMERING J, KOMOROWSKI R, LEE J, FAN W, MOYER C, LLOYD DJ. Pharmacologic effects of FGF21 are independent of the “Browning” of white adipose tissue. Cell Metab. 2015;21:731–738. doi: 10.1016/j.cmet.2015.04.019. PubMed DOI
VERNOCHET C, PERES SB, DAVIS KE, McDONALD ME, QIANG L, WANG H, FARMER SR. C/EBPα and the corepressors CtBP1 and CtBP2 regulate repression of select visceral white adipose genes during induction of the brown phenotype in white adipocytes by peroxisome proliferator-activated receptor γ agonists. Mol Cell Biol. 2009;29:4714–4728. doi: 10.1128/mcb.01899-08. PubMed DOI PMC
VICTOR NA, WANDERI EW, GAMBOA J, ZHAO X, ARONOWSKI J, DEININGER K, LUST WD, LANDRETH GE, SUNDARARAJAN S. Altered PPARγ expression and activation after Transient focal ischemia in rats. Eur J Neurosci. 2006;24:1653–1663. doi: 10.1111/j.1460-9568.2006.05037.x. PubMed DOI
WALDEN TB, HANSEN IR, TIMMONS JA, CANNON B, NEDERGAARD J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab. 2012;302:E19–E31. doi: 10.1152/ajpendo.00249.2011. PubMed DOI
WANG R, LIAN X, ZHANG L, WANG ZK, SIVASAKTHIVEL S, LIU PF, CAI JH, ZHU WL. Adaptive thermogenesis of the liver in tree shrew (Tupaia belangeri) during cold acclimation. Anim Biol. 2011;61:385–401. doi: 10.1163/157075511x596873. DOI
ZHANG H, GUAN M, TOWNSEND KL, HUANG TL, AN D, YAN X, XUE R, SCHULZ TJ, WINNAY J, MORI M, HIRSHMAN MF. MicroRNA-455 regulates brown adipogenesis via a novel HIF1anAMPK-PGC1 signaling network. EMBO Rep. 2015;16:1378–1393. doi: 10.15252/embr.201540837. PubMed DOI PMC
ZHANG Y, LI H. Three important transcription factors related to lipogenesis and adipogenesis in mammal. J Northeast Agric Univ. 2010;17:62–75.
Current progress in the therapeutic options for mitochondrial disorders