Muscle Hypertrophy and Architectural Changes in Response to Eight-Week Neuromuscular Electrical Stimulation Training in Healthy Older People
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2012N8YJC3_003
PRIN
2007AWZTHH_003
PRIN
PubMed
32911678
PubMed Central
PMC7554879
DOI
10.3390/life10090184
PII: life10090184
Knihovny.cz E-zdroje
- Klíčová slova
- muscle ultrasound, neuromuscular electrical stimulation, sarcopenia,
- Publikační typ
- časopisecké články MeSH
Loss of muscle mass of the lower limbs and of the spine extensors markedly impairs locomotor ability and spine stability in old age. In this study, we investigated whether 8 w of neuromuscular electrical stimulation (NMES) improves size and architecture of the lumbar multifidus (LM) and vastus lateralis (VL) along with locomotor ability in healthy older individuals. Eight volunteers (aged 65 ≥ years) performed NMES 3 times/week. Eight sex- and age-matched individuals served as controls. Functional tests (Timed Up and Go test (TUG) and Five Times Sit-to-Stand Test (FTSST)), VL muscle architecture (muscle thickness (MT), pennation angle (PA), and fiber length (FL)), along with VL cross-sectional area (CSA) and both sides of LM were measured before and after by ultrasound. By the end of the training period, MT and CSA of VL increased by 8.6% and 11.4%, respectively. No significant increases were observed in FL and PA. LM CSA increased by 5.6% (left) and 7.1% (right). Interestingly, all VL architectural parameters significantly decreased in the control group. The combined NMES had a large significant effect on TUG (r = 0.50, p = 0.046). These results extend previous findings on the hypertrophic effects of NMES training, suggesting to be a useful mean for combating age-related sarcopenia.
Faculty of Physical Education and Sport Charles University 16252 Prague Czech Republic
Interuniversitary Institute of Myology 66100 Chieti Italy
SMART Lab Bioengineering and Biomedicine Company Srl 66020 Pescara Italy
Zobrazit více v PubMed
Faulkner J.A., Larkin L.M., Claflin D.R., Brooks S.V. Age-related changes in the structure and function of skeletal muscles. Clin. Exp. Pharmacol. Physiol. 2007;34:1091–1096. doi: 10.1111/j.1440-1681.2007.04752.x. PubMed DOI
Morley J.E. Sarcopenia in the elderly. Fam. Pract. 2012;29:i44–i48. doi: 10.1093/fampra/cmr063. PubMed DOI
Metter E.J., Lynch N., Conwit R., Lindle R., Tobin J., Hurley B. Muscle quality and age: Cross-sectional and longitudinal comparisons. J. Gerontol. A Biol. Sci. Med. Sci. 1999;54:B207–B218. doi: 10.1093/gerona/54.5.B207. PubMed DOI
von Haehling S., Morley J.E., Anker S.D. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J. Cachexia Sarcopenia Muscle. 2010;1:129–133. doi: 10.1007/s13539-010-0014-2. PubMed DOI PMC
Clegg A., Young J., Iliffe S., Rikkert M.O., Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762. doi: 10.1016/S0140-6736(12)62167-9. PubMed DOI PMC
Young A., Stokes M., Crowe M. The size and strength of the quadriceps muscles of old and young men. Clin. Physiol. 1985;5:145–154. doi: 10.1111/j.1475-097x.1985.tb00590.x. PubMed DOI
Overend T.J., Cunningham D.A., Kramer J.F., Lefcoe M.S., Paterson D.H. Knee extensor and knee flexor strength: Cross-sectional area ratios in young and elderly men. J. Gerontol. 1992;47:M204–M210. doi: 10.1093/geronj/47.6.M204. PubMed DOI
Fortin M., Videman T., Gibbons L.E., Battie M.C. Paraspinal muscle morphology and composition: A 15-yr longitudinal magnetic resonance imaging study. Med. Sci. Sports Exerc. 2014;46:893–901. doi: 10.1249/MSS.0000000000000179. PubMed DOI
Lexell J., Taylor C.C., Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 1988;84:275–294. doi: 10.1016/0022-510X(88)90132-3. PubMed DOI
Valentin S., Licka T., Elliott J. Age and side-related morphometric MRI evaluation of trunk muscles in people without back pain. Man. Ther. 2015;20:90–95. doi: 10.1016/j.math.2014.07.007. PubMed DOI PMC
Chen Z.N., Yao X.M., Lv Y., He B.J., Ye J.C., Shao R.X., Jiang H.W. Morphology of the lumbar multifidus muscle in lumbar disc herniation at different durations and at different ages. Exp. Ther. Med. 2018;15:4119–4126. doi: 10.3892/etm.2018.5983. PubMed DOI PMC
Jakobsson F., Borg K., Edstrom L. Fibre-type composition, structure and cytoskeletal protein location of fibres in anterior tibial muscle. Comparison between young adults and physically active aged humans. Acta Neuropathol. 1990;80:459–468. doi: 10.1007/BF00294604. PubMed DOI
Stone M.H., Stone M., Sands W.A. Principles and Practice of Resistance Training. Human Kinetics, Inc.; Champaign, IL, USA: 2007.
Doucet B.M., Lam A., Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 2012;85:201–215. PubMed PMC
Maffiuletti N.A., Gondin J., Place N., Stevens-Lapsley J., Vivodtzev I., Minetto M.A. Clinical Use of Neuromuscular Electrical Stimulation for Neuromuscular Rehabilitation: What Are We Overlooking? Arch. Phys. Med. Rehabil. 2018;99:806–812. doi: 10.1016/j.apmr.2017.10.028. PubMed DOI
Adams V. Electromyostimulation to fight atrophy and to build muscle: Facts and numbers. J. Cachexia Sarcopenia Muscle. 2018;9:631–634. doi: 10.1002/jcsm.12332. PubMed DOI PMC
Dirks M.L., Wall B.T., Snijders T., Ottenbros C.L., Verdijk L.B., van Loon L.J. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta. Physiol. (Oxf.) 2014;210:628–641. doi: 10.1111/apha.12200. PubMed DOI
Babault N., Cometti G., Bernardin M., Pousson M., Chatard J.C. Effects of electromyostimulation training on muscle strength and power of elite rugby players. J. Strength Cond. Res. 2007;21:431–437. doi: 10.1519/R-19365.1. PubMed DOI
Maffiuletti N.A., Roig M., Karatzanos E., Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: A systematic review. BMC. Med. 2013;11:137. doi: 10.1186/1741-7015-11-137. PubMed DOI PMC
Wall B.T., Dirks M.L., Verdijk L.B., Snijders T., Hansen D., Vranckx P., Burd N.A., Dendale P., van Loon L.J. Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. Am. J. Physiol. Endocrinol. Metab. 2012;303:E614–E623. doi: 10.1152/ajpendo.00138.2012. PubMed DOI
Gondin J., Brocca L., Bellinzona E., D’Antona G., Maffiuletti N.A., Miotti D., Pellegrino M.A., Bottinelli R. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: A functional and proteomic analysis. J. Appl. Physiol. (1985) 2011;110:433–450. doi: 10.1152/japplphysiol.00914.2010. PubMed DOI
Saini A., Faulkner S., Al-Shanti N., Stewart C. Powerful signals for weak muscles. Ageing Res. Rev. 2009;8:251–267. doi: 10.1016/j.arr.2009.02.001. PubMed DOI
Di Filippo E.S., Mancinelli R., Marrone M., Doria C., Verratti V., Toniolo L., Dantas J.L., Fulle S., Pietrangelo T. Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects. J. Appl. Physiol. (1985) 2017;123:501–512. doi: 10.1152/japplphysiol.00855.2016. PubMed DOI
Kern H., Barberi L., Lofler S., Sbardella S., Burggraf S., Fruhmann H., Carraro U., Mosole S., Sarabon N., Vogelauer M., et al. Electrical stimulation counteracts muscle decline in seniors. Front. Aging Neurosci. 2014;6:189. doi: 10.3389/fnagi.2014.00189. PubMed DOI PMC
Veldman M.P., Gondin J., Place N., Maffiuletti N.A. Effects of Neuromuscular Electrical Stimulation Training on Endurance Performance. Front. Physiol. 2016;7:544. doi: 10.3389/fphys.2016.00544. PubMed DOI PMC
Gregory C.M., Bickel C.S. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys. Ther. 2005;85:358–364. doi: 10.1093/ptj/85.4.358. PubMed DOI
Talbot L.A., Gaines J.M., Ling S.M., Metter E.J. A home-based protocol of electrical muscle stimulation for quadriceps muscle strength in older adults with osteoarthritis of the knee. J. Rheumatol. 2003;30:1571–1578. PubMed
Marqueste T., Hug F., Decherchi P., Jammes Y. Changes in neuromuscular function after training by functional electrical stimulation. Muscle Nerve. 2003;28:181–188. doi: 10.1002/mus.10408. PubMed DOI
Maffiuletti N.A. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur. J. Appl. Physiol. 2010;110:223–234. doi: 10.1007/s00421-010-1502-y. PubMed DOI
Allen G.M. Shoulder ultrasound imaging-integrating anatomy, biomechanics and disease processes. Eur. J. Radiol. 2008;68:137–146. doi: 10.1016/j.ejrad.2008.02.024. PubMed DOI
Bianchi S., Marcelis S. Musculoskeletal Diseases: Diagnostic Imaging and Interventional Techniques. Springer; New York, NY, USA: 2005. Musculoskeletal sonography.
Jain M., Samuels J. Musculoskeletal ultrasound as a diagnostic and prognostic tool in rheumatoid arthritis. Bull. NYU. Hosp. Jt. Dis. 2011;69:215–219. PubMed
Naredo E., Uson J., Jimenez-Palop M., Martinez A., Vicente E., Brito E., Rodriguez A., Cornejo F.J., Castaneda S., Martinez M.J., et al. Ultrasound-detected musculoskeletal urate crystal deposition: Which joints and what findings should be assessed for diagnosing gout? Ann. Rheum. Dis. 2014;73:1522–1528. doi: 10.1136/annrheumdis-2013-203487. PubMed DOI
Nofsinger C., Konin J.G. Diagnostic ultrasound in sports medicine: Current concepts and advances. Sports. Med. Arthrosc. Rev. 2009;17:25–30. doi: 10.1097/JSA.0b013e3181982add. PubMed DOI
Padua L., Liotta G., Di Pasquale A., Granata G., Pazzaglia C., Caliandro P., Martinoli C. Contribution of ultrasound in the assessment of nerve diseases. Eur. J. Neurol. 2012;19:47–54. doi: 10.1111/j.1468-1331.2011.03421.x. PubMed DOI
Pillen S., van Alfen N. Skeletal muscle ultrasound. Neurol. Res. 2011;33:1016–1024. doi: 10.1179/1743132811Y.0000000010. PubMed DOI
D’Amico M., Kinel E., D’Amico G., Roncoletta P. A 3D Spine and Full Skeleton Model for Opto-Electronic Stereo- Photogrammetric Multi-Sensor Biomechanical Analysis in Posture and Gait. In: Bettany-Saltikov J., editor. Innovations in Spinal Deformities and Postural Disorders. IntechOpen Limited; London, UK: 2017. DOI
de Boer M.D., Seynnes O.R., di Prampero P.E., Pisot R., Mekjavic I.B., Biolo G., Narici M.V. Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. Eur. J. Appl. Physiol. 2008;104:401–407. doi: 10.1007/s00421-008-0703-0. PubMed DOI
Narici M.V., Maganaris C.N., Reeves N.D., Capodaglio P. Effect of aging on human muscle architecture. J. Appl. Physiol. (1985) 2003;95:2229–2234. doi: 10.1152/japplphysiol.00433.2003. PubMed DOI
Seynnes O.R., de Boer M., Narici M.V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. (1985) 2007;102:368–373. doi: 10.1152/japplphysiol.00789.2006. PubMed DOI
Altubasi I.M. Ph.D. Thesis. University of Pittsburgh; Pittsburgh, PA, USA: 2012. The Effect of Neuromuscular Electrical Stimulation (NMES) in Inducing Muscle Hypertrophy and Improvement in Muscle Torque within the Quadriceps Muscle of Elderly People.
Langeard A., Bigot L., Chastan N., Gauthier A. Does neuromuscular electrical stimulation training of the lower limb have functional effects on the elderly? A systematic review. Exp. Gerontol. 2017;91:88–98. doi: 10.1016/j.exger.2017.02.070. PubMed DOI
Abe T., Loenneke J.P., Thiebaud R.S. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: A brief review. Ultrasound. 2015;23:166–173. doi: 10.1177/1742271X15587599. PubMed DOI PMC
Cooper C., Fielding R., Visser M., van Loon L.J., Rolland Y., Orwoll E., Reid K., Boonen S., Dere W., Epstein S., et al. Tools in the assessment of sarcopenia. Calcif. Tissue Int. 2013;93:201–210. doi: 10.1007/s00223-013-9757-z. PubMed DOI PMC
Reeves N.D., Maganaris C.N., Narici M.V. Ultrasonographic assessment of human skeletal muscle size. Eur. J. Appl. Physiol. 2004;91:116–118. doi: 10.1007/s00421-003-0961-9. PubMed DOI
Franchi M.V., Longo S., Mallinson J., Quinlan J.I., Taylor T., Greenhaff P.L., Narici M.V. Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy. Scand. J. Med. Sci. Sports. 2018;28:846–853. doi: 10.1111/sms.12961. PubMed DOI PMC
Buckinx F., Landi F., Cesari M., Fielding R.A., Visser M., Engelke K., Maggi S., Dennison E., Al-Daghri N.M., Allepaerts S., et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle. 2018;9:269–278. doi: 10.1002/jcsm.12268. PubMed DOI PMC
Mijnarends D.M., Meijers J.M., Halfens R.J., ter Borg S., Luiking Y.C., Verlaan S., Schoberer D., Cruz Jentoft A.J., van Loon L.J., Schols J.M. Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: A systematic review. J. Am. Med. Dir. Assoc. 2013;14:170–178. doi: 10.1016/j.jamda.2012.10.009. PubMed DOI
Frontera W.R., Meredith C.N., O’Reilly K.P., Knuttgen H.G., Evans W.J. Strength conditioning in older men: Skeletal muscle hypertrophy and improved function. J. Appl. Physiol. (1985) 1988;64:1038–1044. doi: 10.1152/jappl.1988.64.3.1038. PubMed DOI
Charette S.L., McEvoy L., Pyka G., Snow-Harter C., Guido D., Wiswell R.A., Marcus R. Muscle hypertrophy response to resistance training in older women. J. Appl. Physiol. (1985) 1991;70:1912–1916. doi: 10.1152/jappl.1991.70.5.1912. PubMed DOI
Fiatarone M.A., Marks E.C., Ryan N.D., Meredith C.N., Lipsitz L.A., Evans W.J. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990;263:3029–3034. doi: 10.1001/jama.1990.03440220053029. PubMed DOI
Hides J.A., Stokes M.J., Saide M., Jull G.A., Cooper D.H. Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine (Phila Pa 1976) 1994;19:165–172. doi: 10.1097/00007632-199401001-00009. PubMed DOI
Lee S.W., Chan C.K., Lam T.S., Lam C., Lau N.C., Lau R.W., Chan S.T. Relationship between low back pain and lumbar multifidus size at different postures. Spine (Phila Pa 1976) 2006;31:2258–2262. doi: 10.1097/01.brs.0000232807.76033.33. PubMed DOI
Sajer S., Guardiero G.S., Scicchitano B.M. Myokines in Home-Based Functional Electrical Stimulation-Induced Recovery of Skeletal Muscle in Elderly and Permanent Denervation. Eur. J. Transl. Myol. 2018;28:7905. doi: 10.4081/ejtm.2018.7905. PubMed DOI PMC
Coghlan S., Crowe L., McCarthypersson U., Minogue C., Caulfield B. Neuromuscular electrical stimulation training results in enhanced activation of spinal stabilizing muscles during spinal loading and improvements in pain ratings. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011;2011:7622–7625. doi: 10.1109/IEMBS.2011.6091878. PubMed DOI
D’Amico M., Kinel E., Roncoletta P. Normative 3D opto-electronic stereo-photogrammetric posture and spine morphology data in young healthy adult population. PLoS ONE. 2017;12:e0179619. doi: 10.1371/journal.pone.0179619. PubMed DOI PMC
Narici M., Franchi M., Maganaris C. Muscle structural assembly and functional consequences. J. Exp. Biol. 2016;219:276–284. doi: 10.1242/jeb.128017. PubMed DOI
Ema R., Akagi R., Wakahara T., Kawakami Y. Training-induced changes in architecture of human skeletal muscles: Current evidence and unresolved issues. J. Phys. Fit. Sports Med. 2016;5:37–46. doi: 10.7600/jpfsm.5.37. DOI
Franchi M.V., Atherton P.J., Reeves N.D., Fluck M., Williams J., Mitchell W.K., Selby A., Beltran Valls R.M., Narici M.V. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. (Oxf.) 2014;210:642–654. doi: 10.1111/apha.12225. PubMed DOI
Reeves N.D., Maganaris C.N., Longo S., Narici M.V. Differential adaptations to eccentric versus conventional resistance training in older humans. Exp. Physiol. 2009;94:825–833. doi: 10.1113/expphysiol.2009.046599. PubMed DOI
Raj I.S., Bird S.R., Westfold B.A., Shield A.J. Effects of eccentrically biased versus conventional weight training in older adults. Med. Sci. Sports Exerc. 2012;44:1167–1176. doi: 10.1249/MSS.0b013e3182442ecd. PubMed DOI
Scanlon T.C., Fragala M.S., Stout J.R., Emerson N.S., Beyer K.S., Oliveira L.P., Hoffman J.R. Muscle architecture and strength: Adaptations to short-term resistance training in older adults. Muscle Nerve. 2014;49:584–592. doi: 10.1002/mus.23969. PubMed DOI
Noorkoiv M., Nosaka K., Blazevich A.J. Neuromuscular adaptations associated with knee joint angle-specific force change. Med. Sci. Sports Exerc. 2014;46:1525–1537. doi: 10.1249/MSS.0000000000000269. PubMed DOI
Steffl M., Bohannon R.W., Sontakova L., Tufano J.J., Shiells K., Holmerova I. Relationship between sarcopenia and physical activity in older people: A systematic review and meta-analysis. Clin. Interv. Aging. 2017;12:835–845. doi: 10.2147/CIA.S132940. PubMed DOI PMC
Kalyani R.R., Corriere M., Ferrucci L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2:819–829. doi: 10.1016/S2213-8587(14)70034-8. PubMed DOI PMC
Stokes M., Hides J., Elliott J., Kiesel K., Hodges P. Rehabilitative ultrasound imaging of the posterior paraspinal muscles. J. Orthop. Sports Phys. Ther. 2007;37:581–595. doi: 10.2519/jospt.2007.2599. PubMed DOI
Bohannon R.W. Reference values for the timed up and go test: A descriptive meta-analysis. J. Geriatr. Phys. Ther. 2006;29:64–68. doi: 10.1519/00139143-200608000-00004. PubMed DOI
Bohannon R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Ski. 2006;103:215–222. doi: 10.2466/pms.103.1.215-222. PubMed DOI
Bickel C.S., Slade J.M., Haddad F., Adams G.R., Dudley G.A. Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J. Appl. Physiol. (1985) 2003;94:2255–2262. doi: 10.1152/japplphysiol.00014.2003. PubMed DOI
Strasser E.M., Stattner S., Karner J., Klimpfinger M., Freynhofer M., Zaller V., Graf A., Wessner B., Bachl N., Roth E., et al. Neuromuscular electrical stimulation reduces skeletal muscle protein degradation and stimulates insulin-like growth factors in an age- and current-dependent manner: A randomized, controlled clinical trial in major abdominal surgical patients. Ann. Surg. 2009;249:738–743. doi: 10.1097/SLA.0b013e3181a38e71. PubMed DOI
Barber L., Scicchitano B.M., Musaro A. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors. Eur. J. Transl. Myol. 2015;25:231–236. doi: 10.4081/ejtm.2015.5227. PubMed DOI PMC
Matheny R.W., Jr., Nindl B.C., Adamo M.L. Minireview: Mechano-growth factor: A putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology. 2010;151:865–875. doi: 10.1210/en.2009-1217. PubMed DOI PMC
Mancinelli R., Toniolo L., Di Filippo E.S., Doria C., Marrone M., Maroni C.R., Verratti V., Bondi D., Maccatrozzo L., Pietrangelo T., et al. Neuromuscular Electrical Stimulation Induces Skeletal Muscle Fiber Remodeling and Specific Gene Expression Profile in Healthy Elderly. Front. Physiol. 2019;10:1459. doi: 10.3389/fphys.2019.01459. PubMed DOI PMC
Paillard T. Muscle plasticity of aged subjects in response to electrical stimulation training and inversion and/or limitation of the sarcopenic process. Ageing Res. Rev. 2018;46:1–13. doi: 10.1016/j.arr.2018.05.002. PubMed DOI
Kemmler W., Weissenfels A., Teschler M., Willert S., Bebenek M., Shojaa M., Kohl M., Freiberger E., Sieber C., von Stengel S. Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: The randomized controlled FranSO study. Clin. Interv. Aging. 2017;12:1503–1513. doi: 10.2147/CIA.S137987. PubMed DOI PMC
Sullivan L.M., Weinberg J., Keaney J.F., Jr. Common Statistical Pitfalls in Basic Science Research. J. Am. Heart Assoc. 2016;5:e004142. doi: 10.1161/JAHA.116.004142. PubMed DOI PMC
Yan F., Robert M., Li Y. Statistical methods and common problems in medical or biomedical science research. Int. J. Physiol. Pathophysiol. Pharmacol. 2017;9:157–163. PubMed PMC
Marmon A.R., Snyder-Mackler L. Quantifying Neuromuscular Electrical Stimulation Dosage after Knee Arthroplasty. J. Life. Sci. (Lib.) 2011;5:581–583. PubMed PMC
Ando R., Taniguchi K., Saito A., Fujimiya M., Katayose M., Akima H. Validity of fascicle length estimation in the vastus lateralis and vastus intermedius using ultrasonography. J. Electromyogr. Kinesiol. 2014;24:214–220. doi: 10.1016/j.jelekin.2014.01.003. PubMed DOI
Kurihara T., Oda T., Chino K., Kanehisa H., Fukunaga T., Kawakami Y. Use of Three-Dimensional Ultrasonography for the Analysis of the Fascicle Length of Human Gastrocnemius Muscle during Contractions. Int. J. Sport. Stud. Hlth. 2005;3:226–234. doi: 10.5432/ijshs.3.226. DOI
Kawakami Y., Abe T., Fukunaga T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J. Appl. Physiol. (1985) 1993;74:2740–2744. doi: 10.1152/jappl.1993.74.6.2740. PubMed DOI
Reeves N.D., Narici M.V., Maganaris C.N. In vivo human muscle structure and function: Adaptations to resistance training in old age. Exp. Physiol. 2004;89:675–689. doi: 10.1113/expphysiol.2004.027797. PubMed DOI
World Medical A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053. PubMed DOI
Tanaka H., Monahan K.D., Seals D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001;37:153–156. doi: 10.1016/S0735-1097(00)01054-8. PubMed DOI
Baek S.O., Ahn S.H., Jones R., Cho H.K., Jung G.S., Cho Y.W., Tak H.J. Activations of deep lumbar stabilizing muscles by transcutaneous neuromuscular electrical stimulation of lumbar paraspinal regions. Ann. Rehabil. Med. 2014;38:506–513. doi: 10.5535/arm.2014.38.4.506. PubMed DOI PMC
Kim S.Y., Kim J.H., Jung G.S., Baek S.O., Jones R., Ahn S.H. The effects of transcutaneous neuromuscular electrical stimulation on the activation of deep lumbar stabilizing muscles of patients with lumbar degenerative kyphosis. J. Phys. Ther. Sci. 2016;28:399–406. doi: 10.1589/jpts.28.399. PubMed DOI PMC
Glaviano N.R., Saliba S. Can the Use of Neuromuscular Electrical Stimulation Be Improved to Optimize Quadriceps Strengthening? Sports Health. 2016;8:79–85. doi: 10.1177/1941738115618174. PubMed DOI PMC
Roselyn C. Ortho 2: Iliac crest, L4-5 interspace, & Spinous process of YouTube. [(accessed on 15 May 2004)]; Available online: https://www.youtube.com/watch?v=HAMg0P-mu5s.
Wallmann H.W., Evans N.S., Day C., Neelly K.R. Interrater reliability of the Five-Times-Sit-to-Stand Test. Home Health Care Manag. Pract. 2013;25:13–17. doi: 10.1177/1084822312453047. DOI
Podsiadlo D., Richardson S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991;39:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x. PubMed DOI
Ticinesi A., Narici M.V., Lauretani F., Nouvenne A., Colizzi E., Mantovani M., Corsonello A., Landi F., Meschi T., Maggio M. Assessing sarcopenia with vastus lateralis muscle ultrasound: An operative protocol. Aging Clin. Exp. Res. 2018;30:1437–1443. doi: 10.1007/s40520-018-0958-1. PubMed DOI
Stokes M., Rankin G., Newham D.J. Ultrasound imaging of lumbar multifidus muscle: Normal reference ranges for measurements and practical guidance on the technique. Man. Ther. 2005;10:116–126. doi: 10.1016/j.math.2004.08.013. PubMed DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Long-Term Effect of Exercise on Irisin Blood Levels-Systematic Review and Meta-Analysis