Muscle Hypertrophy and Architectural Changes in Response to Eight-Week Neuromuscular Electrical Stimulation Training in Healthy Older People

. 2020 Sep 08 ; 10 (9) : . [epub] 20200908

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32911678

Grantová podpora
2012N8YJC3_003 PRIN
2007AWZTHH_003 PRIN

Loss of muscle mass of the lower limbs and of the spine extensors markedly impairs locomotor ability and spine stability in old age. In this study, we investigated whether 8 w of neuromuscular electrical stimulation (NMES) improves size and architecture of the lumbar multifidus (LM) and vastus lateralis (VL) along with locomotor ability in healthy older individuals. Eight volunteers (aged 65 ≥ years) performed NMES 3 times/week. Eight sex- and age-matched individuals served as controls. Functional tests (Timed Up and Go test (TUG) and Five Times Sit-to-Stand Test (FTSST)), VL muscle architecture (muscle thickness (MT), pennation angle (PA), and fiber length (FL)), along with VL cross-sectional area (CSA) and both sides of LM were measured before and after by ultrasound. By the end of the training period, MT and CSA of VL increased by 8.6% and 11.4%, respectively. No significant increases were observed in FL and PA. LM CSA increased by 5.6% (left) and 7.1% (right). Interestingly, all VL architectural parameters significantly decreased in the control group. The combined NMES had a large significant effect on TUG (r = 0.50, p = 0.046). These results extend previous findings on the hypertrophic effects of NMES training, suggesting to be a useful mean for combating age-related sarcopenia.

Zobrazit více v PubMed

Faulkner J.A., Larkin L.M., Claflin D.R., Brooks S.V. Age-related changes in the structure and function of skeletal muscles. Clin. Exp. Pharmacol. Physiol. 2007;34:1091–1096. doi: 10.1111/j.1440-1681.2007.04752.x. PubMed DOI

Morley J.E. Sarcopenia in the elderly. Fam. Pract. 2012;29:i44–i48. doi: 10.1093/fampra/cmr063. PubMed DOI

Metter E.J., Lynch N., Conwit R., Lindle R., Tobin J., Hurley B. Muscle quality and age: Cross-sectional and longitudinal comparisons. J. Gerontol. A Biol. Sci. Med. Sci. 1999;54:B207–B218. doi: 10.1093/gerona/54.5.B207. PubMed DOI

von Haehling S., Morley J.E., Anker S.D. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J. Cachexia Sarcopenia Muscle. 2010;1:129–133. doi: 10.1007/s13539-010-0014-2. PubMed DOI PMC

Clegg A., Young J., Iliffe S., Rikkert M.O., Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762. doi: 10.1016/S0140-6736(12)62167-9. PubMed DOI PMC

Young A., Stokes M., Crowe M. The size and strength of the quadriceps muscles of old and young men. Clin. Physiol. 1985;5:145–154. doi: 10.1111/j.1475-097x.1985.tb00590.x. PubMed DOI

Overend T.J., Cunningham D.A., Kramer J.F., Lefcoe M.S., Paterson D.H. Knee extensor and knee flexor strength: Cross-sectional area ratios in young and elderly men. J. Gerontol. 1992;47:M204–M210. doi: 10.1093/geronj/47.6.M204. PubMed DOI

Fortin M., Videman T., Gibbons L.E., Battie M.C. Paraspinal muscle morphology and composition: A 15-yr longitudinal magnetic resonance imaging study. Med. Sci. Sports Exerc. 2014;46:893–901. doi: 10.1249/MSS.0000000000000179. PubMed DOI

Lexell J., Taylor C.C., Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 1988;84:275–294. doi: 10.1016/0022-510X(88)90132-3. PubMed DOI

Valentin S., Licka T., Elliott J. Age and side-related morphometric MRI evaluation of trunk muscles in people without back pain. Man. Ther. 2015;20:90–95. doi: 10.1016/j.math.2014.07.007. PubMed DOI PMC

Chen Z.N., Yao X.M., Lv Y., He B.J., Ye J.C., Shao R.X., Jiang H.W. Morphology of the lumbar multifidus muscle in lumbar disc herniation at different durations and at different ages. Exp. Ther. Med. 2018;15:4119–4126. doi: 10.3892/etm.2018.5983. PubMed DOI PMC

Jakobsson F., Borg K., Edstrom L. Fibre-type composition, structure and cytoskeletal protein location of fibres in anterior tibial muscle. Comparison between young adults and physically active aged humans. Acta Neuropathol. 1990;80:459–468. doi: 10.1007/BF00294604. PubMed DOI

Stone M.H., Stone M., Sands W.A. Principles and Practice of Resistance Training. Human Kinetics, Inc.; Champaign, IL, USA: 2007.

Doucet B.M., Lam A., Griffin L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 2012;85:201–215. PubMed PMC

Maffiuletti N.A., Gondin J., Place N., Stevens-Lapsley J., Vivodtzev I., Minetto M.A. Clinical Use of Neuromuscular Electrical Stimulation for Neuromuscular Rehabilitation: What Are We Overlooking? Arch. Phys. Med. Rehabil. 2018;99:806–812. doi: 10.1016/j.apmr.2017.10.028. PubMed DOI

Adams V. Electromyostimulation to fight atrophy and to build muscle: Facts and numbers. J. Cachexia Sarcopenia Muscle. 2018;9:631–634. doi: 10.1002/jcsm.12332. PubMed DOI PMC

Dirks M.L., Wall B.T., Snijders T., Ottenbros C.L., Verdijk L.B., van Loon L.J. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta. Physiol. (Oxf.) 2014;210:628–641. doi: 10.1111/apha.12200. PubMed DOI

Babault N., Cometti G., Bernardin M., Pousson M., Chatard J.C. Effects of electromyostimulation training on muscle strength and power of elite rugby players. J. Strength Cond. Res. 2007;21:431–437. doi: 10.1519/R-19365.1. PubMed DOI

Maffiuletti N.A., Roig M., Karatzanos E., Nanas S. Neuromuscular electrical stimulation for preventing skeletal-muscle weakness and wasting in critically ill patients: A systematic review. BMC. Med. 2013;11:137. doi: 10.1186/1741-7015-11-137. PubMed DOI PMC

Wall B.T., Dirks M.L., Verdijk L.B., Snijders T., Hansen D., Vranckx P., Burd N.A., Dendale P., van Loon L.J. Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. Am. J. Physiol. Endocrinol. Metab. 2012;303:E614–E623. doi: 10.1152/ajpendo.00138.2012. PubMed DOI

Gondin J., Brocca L., Bellinzona E., D’Antona G., Maffiuletti N.A., Miotti D., Pellegrino M.A., Bottinelli R. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: A functional and proteomic analysis. J. Appl. Physiol. (1985) 2011;110:433–450. doi: 10.1152/japplphysiol.00914.2010. PubMed DOI

Saini A., Faulkner S., Al-Shanti N., Stewart C. Powerful signals for weak muscles. Ageing Res. Rev. 2009;8:251–267. doi: 10.1016/j.arr.2009.02.001. PubMed DOI

Di Filippo E.S., Mancinelli R., Marrone M., Doria C., Verratti V., Toniolo L., Dantas J.L., Fulle S., Pietrangelo T. Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects. J. Appl. Physiol. (1985) 2017;123:501–512. doi: 10.1152/japplphysiol.00855.2016. PubMed DOI

Kern H., Barberi L., Lofler S., Sbardella S., Burggraf S., Fruhmann H., Carraro U., Mosole S., Sarabon N., Vogelauer M., et al. Electrical stimulation counteracts muscle decline in seniors. Front. Aging Neurosci. 2014;6:189. doi: 10.3389/fnagi.2014.00189. PubMed DOI PMC

Veldman M.P., Gondin J., Place N., Maffiuletti N.A. Effects of Neuromuscular Electrical Stimulation Training on Endurance Performance. Front. Physiol. 2016;7:544. doi: 10.3389/fphys.2016.00544. PubMed DOI PMC

Gregory C.M., Bickel C.S. Recruitment patterns in human skeletal muscle during electrical stimulation. Phys. Ther. 2005;85:358–364. doi: 10.1093/ptj/85.4.358. PubMed DOI

Talbot L.A., Gaines J.M., Ling S.M., Metter E.J. A home-based protocol of electrical muscle stimulation for quadriceps muscle strength in older adults with osteoarthritis of the knee. J. Rheumatol. 2003;30:1571–1578. PubMed

Marqueste T., Hug F., Decherchi P., Jammes Y. Changes in neuromuscular function after training by functional electrical stimulation. Muscle Nerve. 2003;28:181–188. doi: 10.1002/mus.10408. PubMed DOI

Maffiuletti N.A. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur. J. Appl. Physiol. 2010;110:223–234. doi: 10.1007/s00421-010-1502-y. PubMed DOI

Allen G.M. Shoulder ultrasound imaging-integrating anatomy, biomechanics and disease processes. Eur. J. Radiol. 2008;68:137–146. doi: 10.1016/j.ejrad.2008.02.024. PubMed DOI

Bianchi S., Marcelis S. Musculoskeletal Diseases: Diagnostic Imaging and Interventional Techniques. Springer; New York, NY, USA: 2005. Musculoskeletal sonography.

Jain M., Samuels J. Musculoskeletal ultrasound as a diagnostic and prognostic tool in rheumatoid arthritis. Bull. NYU. Hosp. Jt. Dis. 2011;69:215–219. PubMed

Naredo E., Uson J., Jimenez-Palop M., Martinez A., Vicente E., Brito E., Rodriguez A., Cornejo F.J., Castaneda S., Martinez M.J., et al. Ultrasound-detected musculoskeletal urate crystal deposition: Which joints and what findings should be assessed for diagnosing gout? Ann. Rheum. Dis. 2014;73:1522–1528. doi: 10.1136/annrheumdis-2013-203487. PubMed DOI

Nofsinger C., Konin J.G. Diagnostic ultrasound in sports medicine: Current concepts and advances. Sports. Med. Arthrosc. Rev. 2009;17:25–30. doi: 10.1097/JSA.0b013e3181982add. PubMed DOI

Padua L., Liotta G., Di Pasquale A., Granata G., Pazzaglia C., Caliandro P., Martinoli C. Contribution of ultrasound in the assessment of nerve diseases. Eur. J. Neurol. 2012;19:47–54. doi: 10.1111/j.1468-1331.2011.03421.x. PubMed DOI

Pillen S., van Alfen N. Skeletal muscle ultrasound. Neurol. Res. 2011;33:1016–1024. doi: 10.1179/1743132811Y.0000000010. PubMed DOI

D’Amico M., Kinel E., D’Amico G., Roncoletta P. A 3D Spine and Full Skeleton Model for Opto-Electronic Stereo- Photogrammetric Multi-Sensor Biomechanical Analysis in Posture and Gait. In: Bettany-Saltikov J., editor. Innovations in Spinal Deformities and Postural Disorders. IntechOpen Limited; London, UK: 2017. DOI

de Boer M.D., Seynnes O.R., di Prampero P.E., Pisot R., Mekjavic I.B., Biolo G., Narici M.V. Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles. Eur. J. Appl. Physiol. 2008;104:401–407. doi: 10.1007/s00421-008-0703-0. PubMed DOI

Narici M.V., Maganaris C.N., Reeves N.D., Capodaglio P. Effect of aging on human muscle architecture. J. Appl. Physiol. (1985) 2003;95:2229–2234. doi: 10.1152/japplphysiol.00433.2003. PubMed DOI

Seynnes O.R., de Boer M., Narici M.V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. (1985) 2007;102:368–373. doi: 10.1152/japplphysiol.00789.2006. PubMed DOI

Altubasi I.M. Ph.D. Thesis. University of Pittsburgh; Pittsburgh, PA, USA: 2012. The Effect of Neuromuscular Electrical Stimulation (NMES) in Inducing Muscle Hypertrophy and Improvement in Muscle Torque within the Quadriceps Muscle of Elderly People.

Langeard A., Bigot L., Chastan N., Gauthier A. Does neuromuscular electrical stimulation training of the lower limb have functional effects on the elderly? A systematic review. Exp. Gerontol. 2017;91:88–98. doi: 10.1016/j.exger.2017.02.070. PubMed DOI

Abe T., Loenneke J.P., Thiebaud R.S. Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: A brief review. Ultrasound. 2015;23:166–173. doi: 10.1177/1742271X15587599. PubMed DOI PMC

Cooper C., Fielding R., Visser M., van Loon L.J., Rolland Y., Orwoll E., Reid K., Boonen S., Dere W., Epstein S., et al. Tools in the assessment of sarcopenia. Calcif. Tissue Int. 2013;93:201–210. doi: 10.1007/s00223-013-9757-z. PubMed DOI PMC

Reeves N.D., Maganaris C.N., Narici M.V. Ultrasonographic assessment of human skeletal muscle size. Eur. J. Appl. Physiol. 2004;91:116–118. doi: 10.1007/s00421-003-0961-9. PubMed DOI

Franchi M.V., Longo S., Mallinson J., Quinlan J.I., Taylor T., Greenhaff P.L., Narici M.V. Muscle thickness correlates to muscle cross-sectional area in the assessment of strength training-induced hypertrophy. Scand. J. Med. Sci. Sports. 2018;28:846–853. doi: 10.1111/sms.12961. PubMed DOI PMC

Buckinx F., Landi F., Cesari M., Fielding R.A., Visser M., Engelke K., Maggi S., Dennison E., Al-Daghri N.M., Allepaerts S., et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle. 2018;9:269–278. doi: 10.1002/jcsm.12268. PubMed DOI PMC

Mijnarends D.M., Meijers J.M., Halfens R.J., ter Borg S., Luiking Y.C., Verlaan S., Schoberer D., Cruz Jentoft A.J., van Loon L.J., Schols J.M. Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: A systematic review. J. Am. Med. Dir. Assoc. 2013;14:170–178. doi: 10.1016/j.jamda.2012.10.009. PubMed DOI

Frontera W.R., Meredith C.N., O’Reilly K.P., Knuttgen H.G., Evans W.J. Strength conditioning in older men: Skeletal muscle hypertrophy and improved function. J. Appl. Physiol. (1985) 1988;64:1038–1044. doi: 10.1152/jappl.1988.64.3.1038. PubMed DOI

Charette S.L., McEvoy L., Pyka G., Snow-Harter C., Guido D., Wiswell R.A., Marcus R. Muscle hypertrophy response to resistance training in older women. J. Appl. Physiol. (1985) 1991;70:1912–1916. doi: 10.1152/jappl.1991.70.5.1912. PubMed DOI

Fiatarone M.A., Marks E.C., Ryan N.D., Meredith C.N., Lipsitz L.A., Evans W.J. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990;263:3029–3034. doi: 10.1001/jama.1990.03440220053029. PubMed DOI

Hides J.A., Stokes M.J., Saide M., Jull G.A., Cooper D.H. Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine (Phila Pa 1976) 1994;19:165–172. doi: 10.1097/00007632-199401001-00009. PubMed DOI

Lee S.W., Chan C.K., Lam T.S., Lam C., Lau N.C., Lau R.W., Chan S.T. Relationship between low back pain and lumbar multifidus size at different postures. Spine (Phila Pa 1976) 2006;31:2258–2262. doi: 10.1097/01.brs.0000232807.76033.33. PubMed DOI

Sajer S., Guardiero G.S., Scicchitano B.M. Myokines in Home-Based Functional Electrical Stimulation-Induced Recovery of Skeletal Muscle in Elderly and Permanent Denervation. Eur. J. Transl. Myol. 2018;28:7905. doi: 10.4081/ejtm.2018.7905. PubMed DOI PMC

Coghlan S., Crowe L., McCarthypersson U., Minogue C., Caulfield B. Neuromuscular electrical stimulation training results in enhanced activation of spinal stabilizing muscles during spinal loading and improvements in pain ratings. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011;2011:7622–7625. doi: 10.1109/IEMBS.2011.6091878. PubMed DOI

D’Amico M., Kinel E., Roncoletta P. Normative 3D opto-electronic stereo-photogrammetric posture and spine morphology data in young healthy adult population. PLoS ONE. 2017;12:e0179619. doi: 10.1371/journal.pone.0179619. PubMed DOI PMC

Narici M., Franchi M., Maganaris C. Muscle structural assembly and functional consequences. J. Exp. Biol. 2016;219:276–284. doi: 10.1242/jeb.128017. PubMed DOI

Ema R., Akagi R., Wakahara T., Kawakami Y. Training-induced changes in architecture of human skeletal muscles: Current evidence and unresolved issues. J. Phys. Fit. Sports Med. 2016;5:37–46. doi: 10.7600/jpfsm.5.37. DOI

Franchi M.V., Atherton P.J., Reeves N.D., Fluck M., Williams J., Mitchell W.K., Selby A., Beltran Valls R.M., Narici M.V. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. (Oxf.) 2014;210:642–654. doi: 10.1111/apha.12225. PubMed DOI

Reeves N.D., Maganaris C.N., Longo S., Narici M.V. Differential adaptations to eccentric versus conventional resistance training in older humans. Exp. Physiol. 2009;94:825–833. doi: 10.1113/expphysiol.2009.046599. PubMed DOI

Raj I.S., Bird S.R., Westfold B.A., Shield A.J. Effects of eccentrically biased versus conventional weight training in older adults. Med. Sci. Sports Exerc. 2012;44:1167–1176. doi: 10.1249/MSS.0b013e3182442ecd. PubMed DOI

Scanlon T.C., Fragala M.S., Stout J.R., Emerson N.S., Beyer K.S., Oliveira L.P., Hoffman J.R. Muscle architecture and strength: Adaptations to short-term resistance training in older adults. Muscle Nerve. 2014;49:584–592. doi: 10.1002/mus.23969. PubMed DOI

Noorkoiv M., Nosaka K., Blazevich A.J. Neuromuscular adaptations associated with knee joint angle-specific force change. Med. Sci. Sports Exerc. 2014;46:1525–1537. doi: 10.1249/MSS.0000000000000269. PubMed DOI

Steffl M., Bohannon R.W., Sontakova L., Tufano J.J., Shiells K., Holmerova I. Relationship between sarcopenia and physical activity in older people: A systematic review and meta-analysis. Clin. Interv. Aging. 2017;12:835–845. doi: 10.2147/CIA.S132940. PubMed DOI PMC

Kalyani R.R., Corriere M., Ferrucci L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014;2:819–829. doi: 10.1016/S2213-8587(14)70034-8. PubMed DOI PMC

Stokes M., Hides J., Elliott J., Kiesel K., Hodges P. Rehabilitative ultrasound imaging of the posterior paraspinal muscles. J. Orthop. Sports Phys. Ther. 2007;37:581–595. doi: 10.2519/jospt.2007.2599. PubMed DOI

Bohannon R.W. Reference values for the timed up and go test: A descriptive meta-analysis. J. Geriatr. Phys. Ther. 2006;29:64–68. doi: 10.1519/00139143-200608000-00004. PubMed DOI

Bohannon R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Ski. 2006;103:215–222. doi: 10.2466/pms.103.1.215-222. PubMed DOI

Bickel C.S., Slade J.M., Haddad F., Adams G.R., Dudley G.A. Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J. Appl. Physiol. (1985) 2003;94:2255–2262. doi: 10.1152/japplphysiol.00014.2003. PubMed DOI

Strasser E.M., Stattner S., Karner J., Klimpfinger M., Freynhofer M., Zaller V., Graf A., Wessner B., Bachl N., Roth E., et al. Neuromuscular electrical stimulation reduces skeletal muscle protein degradation and stimulates insulin-like growth factors in an age- and current-dependent manner: A randomized, controlled clinical trial in major abdominal surgical patients. Ann. Surg. 2009;249:738–743. doi: 10.1097/SLA.0b013e3181a38e71. PubMed DOI

Barber L., Scicchitano B.M., Musaro A. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors. Eur. J. Transl. Myol. 2015;25:231–236. doi: 10.4081/ejtm.2015.5227. PubMed DOI PMC

Matheny R.W., Jr., Nindl B.C., Adamo M.L. Minireview: Mechano-growth factor: A putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology. 2010;151:865–875. doi: 10.1210/en.2009-1217. PubMed DOI PMC

Mancinelli R., Toniolo L., Di Filippo E.S., Doria C., Marrone M., Maroni C.R., Verratti V., Bondi D., Maccatrozzo L., Pietrangelo T., et al. Neuromuscular Electrical Stimulation Induces Skeletal Muscle Fiber Remodeling and Specific Gene Expression Profile in Healthy Elderly. Front. Physiol. 2019;10:1459. doi: 10.3389/fphys.2019.01459. PubMed DOI PMC

Paillard T. Muscle plasticity of aged subjects in response to electrical stimulation training and inversion and/or limitation of the sarcopenic process. Ageing Res. Rev. 2018;46:1–13. doi: 10.1016/j.arr.2018.05.002. PubMed DOI

Kemmler W., Weissenfels A., Teschler M., Willert S., Bebenek M., Shojaa M., Kohl M., Freiberger E., Sieber C., von Stengel S. Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: The randomized controlled FranSO study. Clin. Interv. Aging. 2017;12:1503–1513. doi: 10.2147/CIA.S137987. PubMed DOI PMC

Sullivan L.M., Weinberg J., Keaney J.F., Jr. Common Statistical Pitfalls in Basic Science Research. J. Am. Heart Assoc. 2016;5:e004142. doi: 10.1161/JAHA.116.004142. PubMed DOI PMC

Yan F., Robert M., Li Y. Statistical methods and common problems in medical or biomedical science research. Int. J. Physiol. Pathophysiol. Pharmacol. 2017;9:157–163. PubMed PMC

Marmon A.R., Snyder-Mackler L. Quantifying Neuromuscular Electrical Stimulation Dosage after Knee Arthroplasty. J. Life. Sci. (Lib.) 2011;5:581–583. PubMed PMC

Ando R., Taniguchi K., Saito A., Fujimiya M., Katayose M., Akima H. Validity of fascicle length estimation in the vastus lateralis and vastus intermedius using ultrasonography. J. Electromyogr. Kinesiol. 2014;24:214–220. doi: 10.1016/j.jelekin.2014.01.003. PubMed DOI

Kurihara T., Oda T., Chino K., Kanehisa H., Fukunaga T., Kawakami Y. Use of Three-Dimensional Ultrasonography for the Analysis of the Fascicle Length of Human Gastrocnemius Muscle during Contractions. Int. J. Sport. Stud. Hlth. 2005;3:226–234. doi: 10.5432/ijshs.3.226. DOI

Kawakami Y., Abe T., Fukunaga T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J. Appl. Physiol. (1985) 1993;74:2740–2744. doi: 10.1152/jappl.1993.74.6.2740. PubMed DOI

Reeves N.D., Narici M.V., Maganaris C.N. In vivo human muscle structure and function: Adaptations to resistance training in old age. Exp. Physiol. 2004;89:675–689. doi: 10.1113/expphysiol.2004.027797. PubMed DOI

World Medical A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. doi: 10.1001/jama.2013.281053. PubMed DOI

Tanaka H., Monahan K.D., Seals D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001;37:153–156. doi: 10.1016/S0735-1097(00)01054-8. PubMed DOI

Baek S.O., Ahn S.H., Jones R., Cho H.K., Jung G.S., Cho Y.W., Tak H.J. Activations of deep lumbar stabilizing muscles by transcutaneous neuromuscular electrical stimulation of lumbar paraspinal regions. Ann. Rehabil. Med. 2014;38:506–513. doi: 10.5535/arm.2014.38.4.506. PubMed DOI PMC

Kim S.Y., Kim J.H., Jung G.S., Baek S.O., Jones R., Ahn S.H. The effects of transcutaneous neuromuscular electrical stimulation on the activation of deep lumbar stabilizing muscles of patients with lumbar degenerative kyphosis. J. Phys. Ther. Sci. 2016;28:399–406. doi: 10.1589/jpts.28.399. PubMed DOI PMC

Glaviano N.R., Saliba S. Can the Use of Neuromuscular Electrical Stimulation Be Improved to Optimize Quadriceps Strengthening? Sports Health. 2016;8:79–85. doi: 10.1177/1941738115618174. PubMed DOI PMC

Roselyn C. Ortho 2: Iliac crest, L4-5 interspace, & Spinous process of YouTube. [(accessed on 15 May 2004)]; Available online: https://www.youtube.com/watch?v=HAMg0P-mu5s.

Wallmann H.W., Evans N.S., Day C., Neelly K.R. Interrater reliability of the Five-Times-Sit-to-Stand Test. Home Health Care Manag. Pract. 2013;25:13–17. doi: 10.1177/1084822312453047. DOI

Podsiadlo D., Richardson S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991;39:142–148. doi: 10.1111/j.1532-5415.1991.tb01616.x. PubMed DOI

Ticinesi A., Narici M.V., Lauretani F., Nouvenne A., Colizzi E., Mantovani M., Corsonello A., Landi F., Meschi T., Maggio M. Assessing sarcopenia with vastus lateralis muscle ultrasound: An operative protocol. Aging Clin. Exp. Res. 2018;30:1437–1443. doi: 10.1007/s40520-018-0958-1. PubMed DOI

Stokes M., Rankin G., Newham D.J. Ultrasound imaging of lumbar multifidus muscle: Normal reference ranges for measurements and practical guidance on the technique. Man. Ther. 2005;10:116–126. doi: 10.1016/j.math.2004.08.013. PubMed DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Long-Term Effect of Exercise on Irisin Blood Levels-Systematic Review and Meta-Analysis

. 2021 Oct 25 ; 9 (11) : . [epub] 20211025

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...