Synthesis of elements with fractional-order impedance based on homogenous distributed resistive-capacitive structures and genetic algorithm
Status PubMed-not-MEDLINE Jazyk angličtina Země Egypt Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
32922993
PubMed Central
PMC7474240
DOI
10.1016/j.jare.2020.06.021
PII: S2090-1232(20)30130-2
Knihovny.cz E-zdroje
- Klíčová slova
- Circuit synthesis, Distributed resistive-capacitive structure, Fractional-order element, Fractional-order impedance,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The work proposes a synthesis method of capacitive fractional-order impedance element which is composed of homogenous distributed resistive-capacitive (RC) structures (lines). The method employs genetic algorithm and searches for optimal connection schemes and parameters of the partial RC structures. The synthesis algorithm is described in detail including the coding of the properties of the structures for the purpose of the genetic algorithm. The user interface of the design tool is introduced and the input and output parameters of the synthesis are explained. The algorithm was verified by computer simulations and particularly by measurements of element samples fabricated in thick-film technology. The results correspond to the required impedance characteristics, which confirm the validity of the synthesis method.
Zobrazit více v PubMed
Shah Z.M., Kathjoo M.Y., Khanday F.A., Biswas K., Psychalinos C. A survey of single and multi-component Fractional-Order Elements (FOEs) and their applications. Microelectron J. 2019;84:9–25. doi: 10.1016/j.mejo.2018.12.010. DOI
Adhikary A, Khanra M, Sen S, Biswas K. Realization of a carbon nanotube based electrochemical fractor; 2015. https://doi.org/978-1-4799-8391-9/15/$31.00.
Elwakil A. Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst Mag. 2010;10(4):40–50.
Tepljakov A. Fractional-order modeling and control of dynamic systems. Springer International Publishing. ISBN: 978-3-319-52949-3; 2017. https://doi.org/10.1007/978-3-319-52950-9.
Tenreiro-Machado J, Lopes AM, Valério D, Galhano AM. Solved problems in dynamical systems and control. The IET; 2016.
de Oliveira E.C., Machado J.A.T. A review of definitions for fractional derivatives and integral. Math Probl Eng. 2014;238459 doi: 10.1155/2014/238459. DOI
Biswas K., Sen S., Dutta P.K. Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Trans Circ Syst II. 2006;53(9):802–806.
Elshurafa M., Almadhoun N., Salama K., Alshareef H. Microscale electrostatic fractional-order capacitors using reduced graphene oxide percolated polymer composites. Appl Phys Lett. 2013;102(23):232901–232904.
Buscarino A., Caponetto R., Di Pasquale G., Fortuna L., Graziani S., Pollicino A. Carbon Black based capacitive Fractional-order Element towards a new electronic device. AEU-Int J Electr Commun. 2018;84:307–312.
Caponetto R., Graziani S., Pappalardo F.L., Sapuppo F. Experimental characterization of ionic polymer metal composite as a novel fractional-order element. Adv Math Phys. 2013;2013:1–10.
Agambayev A., Patole S., Bagci H., Salama K.N. Tunable fractional-order capacitor using layered ferroelectric polymers. AIP Adv. 2017;7:095202.
Carlson G.E., Halijak C.A. Approximation of fractional-order capacitors (1/s)1/n by a regular Newton process. IEEE Trans Circ Theor. 1964;11:210–213.
Charef A., Sun H.H., Tsao Y.Y., Onaral B. Fractal system as represented by singularity function. IEEE Trans Automat Contr. 1992;37(9):1465–1470.
Matsuda K., Fujii H. H∞ optimized wave-absorbing control: analytical and experimental results. J Guid Contr Dynam. 1993;16(6):1146–1153.
Oustaloup A., Levron F., Mathieu B., Nanot F.M. Frequency-band complex noninteger differenciator: characterization and synthesis. IEEE Trans Circ Syst I: Fundament Theor Appl. 2000;47(1):25–39.
El-Khazali R. On the biquadratic approximation of fractional-order Laplacian operators. Analog Integr Circ Signal Process. 2015;82(3):503–517.
Tsirimokou G. A systematic procedure for deriving RC networks of fractional-order elements emulators using MATLAB. AEU – Int J Electron Commun. 2017;78:7–14. doi: 10.1016/j.aeue.2017.05.003. DOI
Kapoulea S. Design of fractional-order circuits with reduced spread of element values. Master thesis. RN: 1058034, 2018, available online: http://nemertes.lis.upatras.gr/jspui/bitstream/10889/11676/1/MScThesisKapoulea.pdf.
Tsirimokou G., Psychalinos C., Elwakil A.S. Emulation of a constant phase element using Operational Transconductance Amplifiers. Analog Integr Circ Sig Process. 2015;85(3):413–423.
Wyndrum RW Jr. The exact synthesis of distributed RC networks. Tech. Rept. 400-76. New York, N. Y.: Dept. of Elec. Engrg., New York University; May 1963.
O'Shea R. Synthesis using distributed RC networks. IEEE Trans Circuit Theory. 1965;12(4):546–554. doi: 10.1109/TCT.1965.1082508. DOI
Scanlan J., Rhodes J. Realizability and synthesis of a restricted class of distributed RC networks. IEEE Trans Circuit Theory. 1965;12(4):577–585. doi: 10.1109/TCT.1965.1082511. DOI
Koton J, Kubanek D, Ushakov PA, Maksimov K. Synthesis of fractional-order elements using the RC-EDP approach. In: 2017 European conference on circuit theory and design (ECCTD), Catania, Italy; 2017. https://doi.org/10.1109/ecctd.2017.8093314.
Gil’mutdinov A. Kh., Ushakov P.A. Physical implementation of elements with fractal impedance: state of the art and prospects. J Commun Technol Electron. 2017;62(5):441–453. doi: 10.1134/S1064226917050060. DOI
Gilmutdinov AK, Ushakov PA, El-Khazali R. Fractal elements and their applications. Springer. ISBN: 978-3-319-45249-4; 2017. https://doi.org/10.1007/978-3-319-45249-4.
Adhikary A., Choudhary S., Sen S. Optimal design for realizing a grounded fractional order inductor using GIC. IEEE Trans Circuits Syst I Regul Pap. Aug. 2018;65(8):2411–2421. doi: 10.1109/TCSI.2017.2787464. DOI
Handbook of Genetic Algorithms . Nostrand Reinhold; New York: 1991. Edited by Lawrence Davis; p. 385.
Kaiser HR, Castro PS, Nichols AJ. Thin-film distributed parameter circuits. In: Space/aeronautics, R&D technical handbook. Vol. 38; 1962. p. E17–E23.
Gilleo K. Van Nostrand Reinhold; USA: 2016. Polymer thick film: today’s emerging technology for a clean environment tomorrow.
White N. Thick films. In: Kasap S., Capper P., editors. Springer handbook of electronic and photonic materials. Springer; 2017.
Ushakov P, Shadrin A, Kubanek D, Koton J. Passive fractional-order components based on resistive-capacitive circuits with distributed parameters. In: 2016 39th international conference on telecommunications and signal processing (TSP), Vienna; 2016. p. 638–42. https://doi.org/10.1109/TSP.2016.7760960.