Defining diagnostic cutoffs in neurological patients for serum very long chain fatty acids (VLCFA) in genetically confirmed X-Adrenoleukodystrophy
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32934269
PubMed Central
PMC7494896
DOI
10.1038/s41598-020-71248-8
PII: 10.1038/s41598-020-71248-8
Knihovny.cz E-zdroje
- MeSH
- ABC transportéry genetika MeSH
- adrenoleukodystrofie krev diagnóza MeSH
- astrocyty patologie MeSH
- biologické markery krev MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mastné kyseliny krev MeSH
- mutace genetika MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ABC transportéry MeSH
- biologické markery MeSH
- mastné kyseliny MeSH
X-linked Adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene resulting in the accumulation of very long chain fatty acids (VLCFA). X-ALD is the most common peroxisomal disorder with adult patients (male and female) presenting with progressive spastic paraparesis with bladder disturbance, sensory ataxia with impaired vibration sense, and leg pain. 80% of male X-ALD patients have an adrenal failure, while adrenal dysfunction is rare in women with X-ALD. The objective of this study was to define optimal serum VLCFA cutoff values in patients with X-ALD-like phenotypes for the differentiation of genetically confirmed X-ALD and Non-X-ALD individuals. Three groups were included into this study: a) X-ALD cases with confirmed ABCD1 mutations (n = 34) and two Non-X-ALD cohorts: b) Patients with abnormal serum VCLFA levels despite negative testing for ABCD1 mutations (n = 15) resulting from a total of 1,953 VLCFA tests c) Phenotypically matching patients as Non-X-ALD controls (n = 104). Receiver operating curve analysis was used to optimize VLCFA cutoff values, which differentiate patients with genetically confirmed X-ALD and Non-X-ALD individuals. The serum concentration of C26:0 was superior to C24:0 for the detection of X-ALD. The best differentiation of Non-X-ALD and X-ALD individuals was obtained with a cutoff value of < 1.0 for the C24:0/C22:0 ratio resulting in a sensitivity of 97%, a specificity of 94.1% and a positive predictive value (PPV) of 83.8% for true X-ALD. Our findings further suggested a cutoff of < 0.02 for the ratio C26:0/C22:0 leading to a sensitivity of 90.9%, a specificity of 95.0%, and a PPV of 80.6%. Pearson correlation indicated a significant positive association between total blood cholesterol and VLCFA values. Usage of serum VLCFA are economical and established biomarkers suitable for the guidance of genetic testing matching the X-ALD phenotype. We suggest using our new optimized cutoff values, especially the two ratios (C24:0/C22:0 and C26:0/C22:0), in combination with standard lipid profiles.
Center of Rare Diseases University of Tübingen Tübingen Germany
German Center for Diabetes Research Tübingen Germany
German Center of Neurodegenerative Diseases Tübingen Germany
Institute of Medical Genetics and Applied Genomics University of Tübingen Tübingen Germany
Zobrazit více v PubMed
Moser HW, Mahmood A, Raymond GV. X-linked adrenoleukodystrophy. Nat. Clin. Pract. Neurol. 2007;3:140–151. doi: 10.1038/ncpneuro0421. PubMed DOI
Engelen M, et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J. Rare Dis. 2012;7:51. doi: 10.1186/1750-1172-7-51. PubMed DOI PMC
Mosser J, et al. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with Abc transporters. Nature. 1993;361:726–730. doi: 10.1038/361726a0. PubMed DOI
Chaudhry V, Moser HW, Cornblath DR. Nerve conduction studies in adrenomyeloneuropathy. J. Neurol. Neurosurg. Psychiatry. 1996;61:181–185. doi: 10.1136/jnnp.61.2.181. PubMed DOI PMC
Rattay TW, et al. Nerve ultrasound characterizes AMN polyneuropathy as inhomogeneous and focal hypertrophic. Orphanet J. Rare Dis. 2018;13:194. doi: 10.1186/s13023-018-0939-7. PubMed DOI PMC
Chen Y-J, et al. Chinese patients with adrenoleukodystrophy and Zellweger spectrum disorder presenting with hereditary spastic paraplegia. Parkinsonism Related Disord. 2019;65:256–260. doi: 10.1016/j.parkreldis.2019.06.008. PubMed DOI
D'Amore A, et al. Next generation molecular diagnosis of hereditary spastic paraplegias: an italian cross-sectional study. Front. Neurol. 2018 doi: 10.3389/fneur.2018.00981. PubMed DOI PMC
Bis-Brewer DM, Zuchner S. Perspectives on the Genomics of HSP Beyond Mendelian Inheritance. Front. Neurol. 2018;9:958. doi: 10.3389/fneur.2018.00958. PubMed DOI PMC
Moser HW, Mahmood A, Raymond GV. X-linked adrenoleukodystrophy. Nat. Rev. Neurol. 2007;3:140. doi: 10.1038/ncpneuro0421. PubMed DOI
Moser AB, et al. Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls. Ann. Neurol. 1999;45:100–110. doi: 10.1002/1531-8249(199901)45:1<100::AID-ART16>3.0.CO;2-U. PubMed DOI
Lepage G, Roy CC. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986;27:114–120. PubMed
Curtin F, Schulz P. Multiple correlations and Bonferroni’s correction. Biol. Psychiat. 1998;44:775–777. doi: 10.1016/s0006-3223(98)00043-2. PubMed DOI
Morell BK, Teichler J, Budak K, Vollenweider J, Pavlicek V. X-linked adrenoleukodystrophy presenting as Addison’s disease. Case Rep. 2010;2010:bcr1120092419. PubMed PMC
Moser HW, et al. Adrenoleukodystrophy: increased plasma content of saturated very long chain fatty acids. Neurology. 1981;31:1241–1241. doi: 10.1212/Wnl.31.10.1241. PubMed DOI
Wiesinger C, Eichler FS, Berger J. The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. Appl. Clin. Genet. 2015;8:109. doi: 10.2147/TACG.S49590. PubMed DOI PMC
Martinez M, Mougan I, Roig M, Ballabriga A. Blood polyunsaturated fatty acids in patients with peroxisomal disorders. A multicenter study. Lipids. 1994;29:273–280. doi: 10.1007/BF02536332. PubMed DOI
Schüle R, et al. Hereditary spastic paraplegia: Clinicogenetic lessons from 608 patients. Ann. Neurol. 2016;79:646–658. doi: 10.1002/ana.24611. PubMed DOI
Wang Y, et al. X-linked adrenoleukodystrophy: ABCD1 de novo mutations and mosaicism. Mol. Genet. Metab. 2011;104:160–166. doi: 10.1016/j.ymgme.2011.05.016. PubMed DOI
Feigenbaum V, et al. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy. Am. J. Hum. Genet. 1996;58:1135–1144. PubMed PMC
Shukla P, et al. Molecular analysis of ABCD1 gene in Indian patients with X-linked Adrenoleukodystrophy. Clin. Chim. Acta. 2011;412:2289–2295. doi: 10.1016/j.cca.2011.08.026. PubMed DOI
Pereira FdS, et al. Mutations, clinical findings and survival estimates in South American patients with X-linked adrenoleukodystrophy. PLOS ONE. 2012;7:e34195. doi: 10.1371/journal.pone.0034195. PubMed DOI PMC
Moser HW, Moser AE, Trojak JE, Supplee SW. Identification of female carriers of adrenoleukodystrophy. J. Pediatrics. 1983;103:54–59. doi: 10.1016/S0022-3476(83)80775-6. PubMed DOI
Ogino T, Suzuki K. Specificities of human and rat brain enzymes of cholesterol ester metabolism toward very long chain fatty acids: implication for biochemical pathogenesis of adrenoleukodystrophy. J. Neurochem. 1981;36:776–779. doi: 10.1111/j.1471-4159.1981.tb01657.x. PubMed DOI
Jia Z, et al. X-linked adrenoleukodystrophy: role of very long-chain acyl-CoA synthetases. Mol. Genet. Metab. 2004;83:117–127. doi: 10.1016/j.ymgme.2004.06.015. PubMed DOI
Theda C, Moser AB, Powers JM, Moser HW. Phospholipids in X-linked adrenoleukodystrophy white matter: fatty acid abnormalities before the onset of demyelination. J. Neurol. Sci. 1992;110:195–204. doi: 10.1016/0022-510X(92)90028-J. PubMed DOI
Ronghe MD, et al. The importance of testing for adrenoleucodystrophy in males with idiopathic Addison's disease. Arch. Dis. Child. 2002;86:185–189. doi: 10.1136/adc.86.3.185. PubMed DOI PMC
Horn MA, et al. Screening for X-linked adrenoleukodystrophy among adult men with Addison's disease. Clin. Endocrinol. 2013;79:316–320. doi: 10.1111/cen.12159. PubMed DOI
Streck S, Winnefeld K, Maurer I, Volz H-P. Die quantitative Bestimmung ausgewählter langkettiger Fettsäuren und sehr langkettiger Fettsäuren (VLCFA) im Serum. The Quantitative Determination of Selected Long Chain and Very Long Chain Fatty Acids (VLCFA) in Serum. LaboratoriumsMedizin/J. Lab. Med. 2000;24:373–376.
Stellaard F, ten Brink H, Kok R, Van Den Heuvel L, Jakobs C. Stable isotope dilution analysis of very long chain fatty acids in plasma, urine and amniotic fluid by electron capture negative ion mass fragmentography. Clin. Chim. Acta. 1990;192:133–144. doi: 10.1016/0009-8981(90)90077-6. PubMed DOI
Lagerstedt SA, et al. Quantitative determination of plasma c8–c26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol. Genet. Metab. 2001;73:38–45. doi: 10.1006/mgme.2001.3170. PubMed DOI