Simultaneous Multiple Resonance Frequency imaging (SMURF): Fat-water imaging using multi-band principles

. 2021 Mar ; 85 (3) : 1379-1396. [epub] 20200927

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32981114

Grantová podpora
KLI 679 Austrian Science Fund FWF - Austria

PURPOSE: To develop a fat-water imaging method that allows reliable separation of the two tissues, uses established robust reconstruction methods, and requires only one single-echo acquisition. THEORY AND METHODS: The proposed method uses spectrally selective dual-band excitation in combination with CAIPIRINHA to generate separate images of fat and water simultaneously. Spatially selective excitation without cross-contamination is made possible by the use of spatial-spectral pulses. Fat and water images can either be visualized separately, or the fat images can be corrected for chemical shift displacement and, in gradient echo imaging, for chemical shift-related phase discrepancy, and recombined with water images, generating fat-water images free of chemical shift effects. Gradient echo and turbo spin echo sequences were developed based on this Simultaneous Multiple Resonance Frequency imaging (SMURF) approach and their performance was assessed at 3Tesla in imaging of the knee, breasts, and abdomen. RESULTS: The proposed method generated well-separated fat and water images with minimal unaliasing artefacts or cross-excitation, evidenced by the near absence of water signal attributed to the fat image and vice versa. The separation achieved was similar to or better than that using separate acquisitions with water- and fat-saturation or Dixon methods. The recombined fat-water images provided similar image contrast to conventional images, but the chemical shift effects were eliminated. CONCLUSION: Simultaneous Multiple Resonance Frequency imaging is a robust fat-water imaging technique that offers a solution to imaging of body regions with significant amounts of fat.

Zobrazit více v PubMed

Ren J, Dimitrov I, Sherry AD, Malloy CR. Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res. 2008;49():2055‐2062. PubMed PMC

Simon JH, Szumowski J. Proton (fat/water) chemical shift imaging in medical magnetic resonance imaging. Current status. Invest Radiol. 1992;27:865‐874. PubMed

Bydder GM, Pennock JM, Steiner RE, Khenia S, Payne JA, Young IR. The short TI inversion recovery sequence—an approach to MR imaging of the abdomen. Magn Reson Imaging. 1985;3:251‐254. PubMed

Hauger O, Dumont E, Chateil J‐F, Moinard M, Diard F. Water excitation as an alternative to fat saturation in MR imaging: preliminary results in musculoskeletal imaging. Radiology. 2002;224:657‐663. PubMed

Frahm J, Haase A, Hänicke W, Matthaei D, Bomsdorf H, Helzel T. Chemical shift selective MR imaging using a whole‐body magnet. Radiology. 1985;156:441‐444. PubMed

Wippold FJ. Head and neck imaging: the role of CT and MRI. J Magn Reson Imaging. 2007;25:453‐465. PubMed

Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153:189‐194. PubMed

Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging. 2008;28:543‐558. PubMed

Glover GH, Schneider E. Three‐point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med. 1991;18:371‐383. PubMed

Szumowski J, Coshow WR, Li F, Quinn SF. Phase unwrapping in the three‐point Dixon method for fat suppression MR imaging. Radiology. 1994;192:555‐561. PubMed

Moon‐Ho Song S, Napel S, Pelc NJ, Glover GH. Phase unwrapping of MR phase images using Poisson equation. IEEE Trans Image Process. 1995;4:667‐676. PubMed

Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang Z‐P. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med. 2008;59:571‐580. PubMed PMC

Xiang QS, An L. Water‐fat imaging with direct phase encoding. J Magn Reson Imaging. 1997;7:1002‐1015. PubMed

Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo asymmetry and least‐squares estimation (IDEAL): application with fast spin‐echo imaging. Magn Reson Med. 2005;54:636‐644. PubMed

Yu H, Reeder SB, Shimakawa A, Brittain JH, Pelc NJ. Field map estimation with a region growing scheme for iterative 3‐point water‐fat decomposition. Magn Reson Med. 2005;54:1032‐1039. PubMed

Wang Y, Li D, Haacke EM, Brown JJ. A three‐point Dixon method for water and fat separation using 2D and 3D gradient‐echo techniques. J Magn Reson Imaging. 1998;8:703‐710. PubMed

Lu W, Yu H, Shimakawa A, Alley M, Reeder SB, Hargreaves BA. Water–fat separation with bipolar multiecho sequences. Magn Reson Med. 2008;60:198‐209. PubMed

Brodsky EK, Holmes JH, Yu H, Reeder SB. Generalized k‐space decomposition with chemical shift correction for non‐cartesian water‐fat imaging. Magn Reson Med. 2008;59:1151‐1164. PubMed

Schubert T, Bannas P, Kinner S, et al. Thrombus‐mimicking artifacts in two‐point Dixon MRI: prevalence, appearance, and severity. J Magn Reson Imaging. 2017;45:229‐236. PubMed PMC

Glocker B, Konukoglu E, Lavdas I, et al. Correction of fat‐water swaps in Dixon MRI. MICCAI. 2016;3:536‐543.

Ladefoged CN, Hansen AE, Keller SH, et al. Impact of incorrect tissue classification in Dixon‐based MR‐AC: fat‐water tissue inversion. EJNMMI Phys. 2014;1:1‐9. PubMed PMC

Zhang T, Chen Y, Bao S, et al. Resolving phase ambiguity in dual‐echo Dixon imaging using a projected power method. Magn Reson Med. 2017;77:2066‐2076. PubMed PMC

Müller S. Multifrequency selective rf pulses for multislice MR imaging. Magn Reson Med. 1988;6:364‐371. PubMed

Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped‐controlled aliasing in parallel imaging (blipped‐CAIPI) for simultaneous multi‐slice EPI with reduced g‐factor penalty. Magn Reson Med. 2012;67:1210‐1224. PubMed PMC

Meyer CH, Pauly JM, Macovski A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med. 1990;15:287‐304. PubMed

Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging. Magn Reson Med. 2005;53:684‐691. PubMed

Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202‐1210. PubMed

Pruessmann K, Weiger M, Scheidegger M, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952‐962. PubMed

Bachrata B, Strasser B, Schmid AI, Bogner W, Trattnig S, Robinson SD. Eliminating chemical shift artefact using simultaneous, separate water and fat excitation combined with CAIPIRINHA In: Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Quebec, Canada, 2019. #4005.

Bachrata B, Strasser B, Schmid AI, Bogner W, Trattnig S, Robinson SD. Simultaneous multiple resonance frequency (SMURF) imaging: fat‐water imaging using multi‐band principles In: Proceedings of the 28th Annual Meeting of ISMRM, Virtual Conference, 2020. #515.

Pauly J, Nishimura D, Macovski A. A k‐space analysis of small‐tip‐angle excitation. J Magn Reson. 2011;213:544‐557. PubMed

Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T. Relaxation times and image contrast . Am J Roentgenol. 2004;183:343‐351. PubMed

Shinnar M, Eleff S, Subramanian H, Leigh JS. The synthesis of pulse sequences yielding arbitrary magnetization vectors. Magn Reson Med. 1989;12:74‐80. PubMed

Le Roux P. Exact synthesis of radio frequency waveforms In: Proceedings of the 7th Annual Meeting of SMRM, San Francisco, CA, 1988, p. 1049.

Pauly J, Le Roux P, Nishimura D, Macovski A. Parameter relations for the Shinnar‐Le Roux selective excitation pulse design algorithm. IEEE Trans Med Imaging. 1991;10:53‐65. PubMed

Breuer FA, Kannengiesser SAR, Blaimer M, Seiberlich N, Jakob PM, Griswold MA. General formulation for quantitative G‐factor calculation in GRAPPA reconstructions. Magn Reson Med. 2009;62:739‐746. PubMed

Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630‐638.

Meiboom S, Gill D. Modified spin‐echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688‐691.

Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med. 1995;34:910‐914. PubMed PMC

Yu H, Reeder SB, Shimakawa A, Gold GE, Pelc NJ, Brittain JH. Implementation and noise analysis of chemical shift correction for fast spin Echo Dixon imaging In: Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan, 2004. #2686.

Sodickson DK, Griswold MA, Jakob PM, Edelman RR, Manning WJ. Signal‐to‐noise ratio and signal‐to‐noise efficiency in SMASH imaging. Magn Reson Med. 1999;41:1009‐1022. PubMed

Rofsky NM, Lee VS, Laub G, et al. Abdominal MR imaging with a volumetric interpolated breath‐hold examination. Radiology. 1999;212:876‐884. PubMed

Soher BJ, Semanchuk P, Todd D, Steinberg J, Young K. VeSPA: integrated applications for RF pulse design, spectral simulation and MRS data analysis In: Proceedings of the 19th Annual Meeting of ISMRM, Montreal, Quebec, Canada, 2011. #1410

http://scion.duhs.duke.edu/vespa/. Accessed July 29, 2020.

Kuroda K, Oshio K, Mulkern RV, Jolesz FA. Optimization of chemical shift selective suppression of fat. Magn Reson Med. 1998;40:505‐510. PubMed

https://www.mccauslandcenter.sc.edu/crnl/mricro. Accessed July 29, 2020.

Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal‐to‐noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging. 2007;26:375‐385. PubMed

Goerner FL, Clarke GD. Measuring signal‐to‐noise ratio in partially parallel imaging MRI. Med Phys. 2011;38:5049‐5057. PubMed PMC

Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med. 1995;34:65‐73. PubMed

Hernando D, Kellman P, Haldar JP, Liang Z‐P. Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med. 2010;63:79‐90. PubMed PMC

ISMRM Fat‐Water Toolbox . ISMRM fat‐water separation workshop; 2012. http://www.ismrm.org/workshops/FatWater12/. Accessed July 29, 2020.

Reeder SB, Wintersperger BJ, Dietrich O, et al. Practical approaches to the evaluation of signal‐to‐noise ratio performance with parallel imaging: application with cardiac imaging and a 32‐channel cardiac coil. Magn Reson Med. 2005;54:748‐754. PubMed

Yang C, Deng W, Stenger VA. Simple analytical dual‐band spectral‐spatial RF pulses for B1+ and susceptibility artifact reduction in gradient Echo MRI. Magn Reson Med. 2011;65:370‐376. PubMed PMC

Conolly S, Nishimura D, Macovski A. Optimal control solutions to the magnetic resonance selective excitation problem. IEEE Trans Med Imaging. 1986;5:106‐115. PubMed

Shang H, Larson PEZ, Kerr A, et al. Multiband RF pulses with improved performance via convex optimization. J Magn Reson. 2016;262:81‐90. PubMed PMC

Bachrata B, Strasser B, Schmid AI, Bogner W, Trattnig S, Robinson SD. Eliminating chemical shift and relaxation effects in QSM using SMURF imaging In: Proceedings of the 28th Annual Meeting of ISMRM, Virtual Conference, 2020. #154.

Bachrata B, Korinek R, Strasser B, et al. Fat quantification using simultaneous, separate water and fat excitation combined with CAIPIRINHA In: Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Quebec, Canada, 2019. #4006.

Hu HH, Nayak KS. Change in the proton T1 of fat and water in mixture. Magn Reson Med. 2010;63:494. PubMed PMC

Gilman AJ, Qayyum A, Nystrom M, Noworolski SM. Liver fat and water MR T2 values at 3T: dependence upon steatosis level In: Proceedings of the 19th Annual Meeting of ISMRM, Montreal, Quebec, Canada, 2011. #734.

Schlaeger S, Weidlich D, Klupp E, et al. Decreased water T2 in fatty infiltrated skeletal muscles of patients with neuromuscular diseases. NMR Biomed. 2019;32:e4111.10.1002/nbm.4111. PubMed DOI

Schmid AI, Meyerspeer M, Robinson SD, et al. Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using 31P gradient‐Echo MRI at 7 Tesla. Magn Reson Med. 2016;75:2324‐2331. PubMed

Reed GD, Larson PEZ, Morze CV, et al. A method for simultaneous echo planar imaging of hyperpolarized 13C pyruvate and 13C lactate. J Magn Reson. 2012;217:41‐47. PubMed PMC

von Morze C, Reed G, Shin P, et al. Multi‐band frequency encoding method for metabolic imaging with hyperpolarized [1‐13C]pyruvate. J Magn Reson. 2011;211:109‐113. PubMed PMC

Larson PEZ, Kerr AB, Chen AP, et al. Multiband excitation pulses for hyperpolarized 13C dynamic chemical shift imaging. J Magn Reson. 2008;194:121‐127. PubMed PMC

Bachrata, B . SMURF (raw MRI data). Harvard Dataverse, V3. 2020. 10.7910/DVN/XNMCYI. DOI

Bachrata, B . SMURF (MRI images). Harvard Dataverse, V2. 2020. 10.7910/DVN/TMPDCR. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...