The Covalent Tethering of Poly(ethylene glycol) to Nylon 6 Surface via N,N'-Disuccinimidyl Carbonate Conjugation: A New Approach in the Fight against Pathogenic Bacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32987744
PubMed Central
PMC7598665
DOI
10.3390/polym12102181
PII: polym12102181
Knihovny.cz E-zdroje
- Klíčová slova
- N,N′-disuccinimidyl carbonate (DSC), conjugation, immobilization, poly(ethylene glycol) (PEG), surface modification,
- Publikační typ
- časopisecké články MeSH
Different forms of unmodified and modified Poly(ethylene glycols) (PEGs) are widely used as antifouling and antibacterial agents for biomedical industries and Nylon 6 is one of the polymers used for biomedical textiles. Our recent study focused on an efficient approach to PEG immobilization on a reduced Nylon 6 surface via N,N'-disuccinimidyl carbonate (DSC) conjugation. The conversion of amide functional groups to secondary amines on the Nylon 6 polymer surface was achieved by the reducing agent borane-tetrahydrofuran (BH3-THF) complex, before binding the PEG. Various techniques, including water contact angle and free surface energy measurements, atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, were used to confirm the desired surface immobilization. Our findings indicated that PEG may be efficiently tethered to the Nylon 6 surface via DSC, having an enormous future potential for antifouling biomedical materials. The bacterial adhesion performances against S. aureus and P. aeruginosa were examined. In vitro cytocompatibility was successfully tested on pure, reduced, and PEG immobilized samples.
Zobrazit více v PubMed
Adlhart C., Verran J., Azevedo N.F., Olmez H., Keinänen-Toivola M.M., Gouveia I., Melo L.F., Crijns F. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018;99:239–249. doi: 10.1016/j.jhin.2018.01.018. PubMed DOI
Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz M.A., Hussain T., Ali M., Rafiq M., Kamil M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018;81:7–11. doi: 10.1016/j.jcma.2017.07.012. PubMed DOI
Goor O.J., Brouns J.E., Dankers P.Y. Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives. Polym. Chem. 2017;8:5228–5238. doi: 10.1039/C7PY00801E. DOI
Krasowska A., Sigler K. How microorganisms use hydrophobicity and what does this mean for human needs? Front. Cell. Infect. Microbiol. 2014;4:112. doi: 10.3389/fcimb.2014.00112. PubMed DOI PMC
Zhang X., Wang L., Levänen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. Rsc Adv. 2013;3:12003–12020. doi: 10.1039/c3ra40497h. DOI
Abedini F., Ahmadi A., Yavari A., Hosseini V., Mousavi S. Comparison of silver nylon wound dressing and silver sulfadiazine in partial burn wound therapy. Int. Wound J. 2013;10:573–578. doi: 10.1111/j.1742-481X.2012.01024.x. PubMed DOI PMC
Chu C.C., Tsai W.C., Yao J.Y., Chiu S.S. Newly made antibacterial braided nylon sutures. I. In vitro qualitative and in vivo preliminary biocompatibility study. J. Biomed. Mater. Res. 1987;21:1281–1300. doi: 10.1002/jbm.820211102. PubMed DOI
Thokala N., Kealey C., Kennedy J., Brady D.B., Farrell J.B. Characterisation of polyamide 11/copper antimicrobial composites for medical device applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;78:1179–1186. doi: 10.1016/j.msec.2017.03.149. PubMed DOI
Zhang X., Brodus D.S., Hollimon V., Hu H. A brief review of recent developments in the designs that prevent bio-fouling on silicon and silicon-based materials. Chem. Cent. J. 2017;11:1. doi: 10.1186/s13065-017-0246-8. PubMed DOI PMC
Ozcelik B., Ho K.K.K., Glattauer V., Willcox M., Kumar N., Thissen H. Poly(ethylene glycol)-based coatings combining low-biofouling and quorum-sensing inhibiting properties to reduce bacterial colonization. ASC Biomater. Sci. Eng. 2017;3:78–87. doi: 10.1021/acsbiomaterials.6b00579. PubMed DOI
Jeon S.I., Lee J.H., Andrade J.D., De Gennes P. Protein Surface Interactions in the Presence of Polyethylene Oxide. J. Colloid Interface Sci. 1991;142:149–158. doi: 10.1016/0021-9797(91)90043-8. DOI
Zhang T.-D., Zhang X., Deng X. Applications of protein-resistant polymer and hydrogel coatings on biosensors and biomaterials. Ann. Biotechnol. 2018;2:1–7. doi: 10.33582/2637-4927/1006. DOI
Sarita Research on polyethylene glycol, crosslinked polyethylene glycol & polyethylene glycol chitosan conjugate coating for biomedical application. Int. J. Recent Technol. Eng. 2019;8:2921–2925. doi: 10.35940/ijrte.B1370.0982S1119. DOI
Francolini I., Silvestro I., Di Lisio V., Martinelli A., Piozzi A. Synthesis, characterization, and bacterial fouling-resistance properties of polyethylene glycol-grafted polyurethane elastomers. Int. J. Mol. Sci. 2019;20:1011. doi: 10.3390/ijms20041001. PubMed DOI PMC
Lowe S., O’Brien-Simpson N.M., Connal L.A. Antibiofouling polymer interfaces: Poly(ethylene glycol) and other promising candidates. Polym. Chem. 2015;6:198–212. doi: 10.1039/C4PY01356E. DOI
Damodaran V.B., Murthy S.N. Bio-inspired strategies for designing antifouling biomaterials. Biomater. Res. 2016;20:1–11. doi: 10.1186/s40824-016-0064-4. PubMed DOI PMC
Peng L., Chang L., Liu X., Lin J., Liu H., Han B., Wang S. Antibacterial Property of a Polyethylene Glycol-Grafted Dental Material. ACS Appl. Mater. Interfaces. 2017;9:17688–17692. doi: 10.1021/acsami.7b05284. PubMed DOI
Francolini I., Vuotto C., Piozzi A., Donelli G. Antifouling and antimicrobial biomaterials: An overview. Apmis. 2017;125:392–417. doi: 10.1111/apm.12675. PubMed DOI
Branch D.W., Wheeler B.C., Brewer G.J., Leckband D.E. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials. 2001;22:1035–1047. doi: 10.1016/S0142-9612(00)00343-4. PubMed DOI
Swar S., Máková V., Horáková J., Kejzlar P., Parma P., Stibor I. A comparative study between chemically modified and copper nanoparticle immobilized Nylon 6 films to explore their efficiency in fighting against two types of pathogenic bacteria. Eur. Polym. J. 2020;122:109392. doi: 10.1016/j.eurpolymj.2019.109392. DOI
Garrigou A., Laurent C., Berthet A., Colosio C., Jas N., Daubas-Letourneux V., Jackson Filho J.M., Jouzel J.N., Samuel O., Baldi I., et al. Critical review of the role of PPE in the prevention of risks related to agricultural pesticide use. Saf. Sci. 2020;123:104527. doi: 10.1016/j.ssci.2019.104527. DOI
Irzmańska E., Brochocka A. Modified polymer materials for use in selected personal protective equipment products. Autex Res. J. 2017;17:35–47. doi: 10.1515/aut-2015-0040. DOI
Dong B., Jiang H., Manolache S., Wong A.C.L., Denes F.S. Plasma-mediated grafting of poly (ethylene glycol) on polyamide and polyester surfaces and evaluation of antifouling ability of modified substrates. Langmuir. 2007;23:7306–7313. doi: 10.1021/la0633280. PubMed DOI
Wulf K., Teske M., Löbler M., Luderer F., Schmitz K.P., Sternberg K. Surface functionalization of poly (ε-caprolactone) improves its biocompatibility as scaffold material for bioartificial vessel prostheses. J. Biomed. Mater. Res.-Part. B Appl. Biomater. 2011;98:89–100. doi: 10.1002/jbm.b.31836. PubMed DOI
Yang M., Tsang E.M.W., Wang Y.A., Peng X., Yu H.Z. Bioreactive surfaces prepared via the self-assembly of dendron thiols and subsequent dendrimer bridging reactions. Langmuir. 2005;21:1858–1865. doi: 10.1021/la047459h. PubMed DOI
Hermanson G.T. Bioconjugate Techniques. Elsevier; Amsterdam, The Netherlands: 2008.
Meschaninova M.I., Novopashina D.S., Semikolenova O.A., Silnikov V.N., Venyaminova A.G. Novel convenient approach to the solid-phase synthesis of oligonucleotide conjugates. Molecules. 2019;24:4266. doi: 10.3390/molecules24234266. PubMed DOI PMC
Ghosh A.K., Doung T.T., McKee S.P., Thompson W.J. N, N‘-dissuccinimidyl carbonate: A useful reagent for alkoxycarbonylation of amines. Tetrahedron Lett. 1992;33:2781–2784. doi: 10.1016/S0040-4039(00)78856-3. PubMed DOI PMC
Diamanti S., Arifuzzaman S., Elsen A., Genzer J., Vaia R.A. Reactive patterning via post-functionalization of polymer brushes utilizing disuccinimidyl carbonate activation to couple primary amines. Polymer. 2008;49:3770–3779. doi: 10.1016/j.polymer.2008.06.020. DOI
Gonçalves I., Abreu A.S., Matamá T., Ribeiro A., Gomes A.C., Silva C., Cavaco-Paulo A. Enzymatic synthesis of poly(catechin)-antibiotic conjugates: An antimicrobial approach for indwelling catheters. Appl. Microbiol. Biotechnol. 2015;99:637–651. doi: 10.1007/s00253-014-6128-2. PubMed DOI
Lee B.S., Chi Y.S., Lee K.B., Kim Y.G., Choi I.S. Functionalization of poly(oligo(ethylene glycol) methacrylate) films on gold and Si/SiO2 for immobilization of proteins and cells: SPR and QCM studies. Biomacromolecules. 2007;8:3922–3929. doi: 10.1021/bm7009043. PubMed DOI
Cai L.L., Liu P., Li X., Huang X., Ye Y.Q., Chen F.Y., Yuan H., Hu F.Q., Du Y.Z. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells. Int. J. Nanomed. 2011;6:3499–3508. PubMed PMC
Chen H., Zhang Y., Li D., Hu X., Wang L., McClung W.G., Brash J.L. Surfaces having dual fibrinolytic and protein resistant properties by immobilization of lysine on polyurethane through a PEG spacer. J. Biomed. Mater. Research. Part. A. 2009;90:940–946. doi: 10.1002/jbm.a.32152. PubMed DOI
Swar S., Zajícová V., Müllerová J., Šubrtová P., Horáková J., Dolenský B., Řezanka M., Stibor I. Effective poly(ethylene glycol) methyl ether grafting technique onto Nylon 6 surface to achieve resistance against pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa. J. Mater. Sci. 2018;53:14104–14120. doi: 10.1007/s10853-018-2636-2. DOI
Jia X., Herrera-Alonso M., McCarthy T.J. Nylon surface modification. Part 1. Targeting the amide groups for selective introduction of reactive functionalities. Polymer. 2006;14:4916–4924. doi: 10.1016/j.polymer.2006.05.038. DOI
Liu Z., Qi L., An X., Liu C., Hu Y. Surface Engineering of Thin Film Composite Polyamide Membranes with Silver Nanoparticles through Layer-by-Layer Interfacial Polymerization for Antibacterial Properties. ACS Appl. Mater. Interfaces. 2017;9:40987–40997. doi: 10.1021/acsami.7b12314. PubMed DOI
Sileika T.S., Kim H.D., Maniak P., Messersmith P.B. Antibacterial performance of polydopaminemodified polymer surfaces containing passive and active components. ACS Appl. Mater. Interfaces. 2011;3:4602–4610. doi: 10.1021/am200978h. PubMed DOI
Arima Y., Iwata H. Effect of wettability and surface functional groups on protein adsorption and celladhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074–3082. doi: 10.1016/j.biomaterials.2007.03.013. PubMed DOI
Vaillard V.A., Menegon M., Neuman N.I., Vaillard S.E. mPEG–NHS carbonates: Effect of alkyl spacerson the reactivity: Kinetic and mechanistic insights. Appl. Polym. Sci. 2019;136:47028. doi: 10.1002/app.47028. DOI
Romero-Vargas Castrillón S., Lu X., Shaffer D.L., Elimelech M. Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control. J. Membr. Sci. 2014;450:331–339. doi: 10.1016/j.memsci.2013.09.028. DOI
Hsieh Y.-L., Timm D.A. Relationship of substratum wettability measurements and initial Staphylococcus aureau adhesion to films and fabrics. J. Colloid Interface Sci. 1988;123:275–286. doi: 10.1016/0021-9797(88)90244-5. DOI
Pei J., Hall H., Spencer N.D. The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide. Biomaterials. 2011;32:8968–8978. doi: 10.1016/j.biomaterials.2011.08.034. PubMed DOI