How microorganisms use hydrophobicity and what does this mean for human needs?
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
25191645
PubMed Central
PMC4137226
DOI
10.3389/fcimb.2014.00112
Knihovny.cz E-resources
- Keywords
- adhesion, bioremediation, cell surface, hydrophobicity, pathogens,
- MeSH
- Adhesiveness MeSH
- Bacteria pathogenicity MeSH
- Bacterial Adhesion * MeSH
- Bacterial Physiological Phenomena * MeSH
- Fungi pathogenicity physiology MeSH
- Hydrophobic and Hydrophilic Interactions * MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Cell surface hydrophobicity (CSH) plays a crucial role in the attachment to, or detachment from the surfaces. The influence of CSH on adhesion of microorganisms to biotic and abiotic surfaces in medicine as well as in bioremediation and fermentation industry has both negative and positive aspects. Hydrophobic microorganisms cause the damage of surfaces by biofilm formation; on the other hand, they can readily accumulate on organic pollutants and decompose them. Hydrophilic microorganisms also play a considerable role in removing organic wastes from the environment because of their high resistance to hydrophobic chemicals. Despite the many studies on the environmental and metabolic factors affecting CSH, the knowledge of this subject is still scanty and is in most cases limited to observing the impact of hydrophobicity on adhesion, aggregation or flocculation. The future of research seems to lie in finding a way to managing the microbial adhesion process, perhaps by steering cell hydrophobicity.
Department of Biotransformation Faculty of Biotechnology University of Wroclaw Wroclaw Poland
Department of Cell Biology Institute of Microbiology Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Abbasnezhad H., Gray M., Foght J. M. (2011). Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons. Appl. Microbiol. Biotechnol. 92, 653–675 10.1007/s00253-011-3589-4 PubMed DOI
Absolom D., Lamberti F., Policova Z., Zingg W., van Oss C., Neumann A. (1983). Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 46, 90–97 PubMed PMC
Adav S., Lee D., Show K., Tay J. (2005). Microstructural optimization of wastewater treatment by aerobic granular sludge, in Aerobic Granular Sludge, eds Bathe S., de Kreuk M. K., McSwain B., Schwarzenbeck N. (London: IWA Publishing; ), 213–219
Adav S., Lee D., Show K., Tay J. (2008). Aerobic granular sludge: recent advances. Biotechnol. Adv. 26, 411–423 10.1016/j.biotechadv.2008.05.002 PubMed DOI
Akama H., Kanemaki M., Yoshimura M., Tsukihara T., Kashiwagi T., Yoneyama H., et al. (2004). Crystal structure of the drug discharge outer membrane protein OprM of Pseudomonas aeruginosa, dual modes of membrane anchoring and occluded cavity end. J. Biol. Chem. 279, 52816–52819 10.1074/jbc.C400445200 PubMed DOI
Aoki W., Kitahara N., Miura N., Morisaka H., Kuroda K., Ueda M. (2012). Profiling of adhesive properties of the agglutinin-like sequence (ALS) protein family, a virulent attribute of Candida albicans. FEMS Imm. Med. Microbiol. 65, 121–124 10.1111/j.1574-695X.2012.00941.x PubMed DOI
Archer N., Mazaitis M., Costerton J., Leid J., Powers M., Shirtliff M. (2011). Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2, 445–459 10.4161/viru.2.5.17724 PubMed DOI PMC
Arciola C., Campoccia D., Speziale P., Montanaro L., Costerton J. (2012). Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33, 5967–5982 10.1016/j.biomaterials.2012.05.031 PubMed DOI
Auger S., Ramarao N., Faille C., Fouet A., Aymerich S., Gohar M. (2009). Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Appl. Environ. Microbiol. 75, 6616–6618 10.1128/AEM.00155-09 PubMed DOI PMC
Baumgarten T., Sperling S., Seifert J., von Bergen M., Steiniger F., Wick L., et al. (2012a). Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol. 78, 6217–6224 10.1128/AEM.01525-12 PubMed DOI PMC
Baumgarten T., Vazquez J., Bastisch C., Veron W., Feuilloley M., Nietzsche S., et al. (2012b). Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl. Microbiol. Biotechnol. 93, 837–845 10.1007/s00253-011-3442-9 PubMed DOI
Beaussart A., Alsteens D., El-Kirat-Chatel S., Lipke P., Kucharíkova S., Van Dijck P., et al. (2012). Single-molecule imaging and functional analysis of Als adhesins and mannans during Candida albicans morphogenesis. ACS Nano. 6, 10950–10964 10.1021/nn304505s PubMed DOI PMC
Borecká-Melkusová S., Bujdaková H. (2008). Variation of cell surface hydrophobicity and biofilm formation among genotypes of Candida albicans and Candida dubliniensis under antifungal treatment. Can. J. Microbiol. 54, 718–724 10.1139/W08-060 PubMed DOI
Bos R., van der Mei H., Busscher H. (1999). Physico-chemistry of initial microbial adhesive interactions - its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179–230 PubMed
Brauner A., Katouli M., Tullus K., Jacobson S. (1990). Cell surface hydrophobicity, adherence to HeLa cell cultures and haemagglutination pattern of pyelonephritogenic Escherichia coli strains. Epid. Infect. 105, 255–263 10.1017/S0950268800047865 PubMed DOI PMC
Brooks J., Flint S. (2008). Biofilms in the food industry: problems and potential solutions. Int. J. Food Sci. Technol. 43, 2163–2176 10.1111/j.1365-2621.2008.01839.x DOI
Bujdakova H., Didiasova M., Drahovska H., Cernakova L. (2013). Role of cell surface hydrophobicity in Candida albicans biofilm. Central Europ. J. Biol. 8, 259–262 10.2478/s11535-013-0136-y DOI
Busscher H., Weerkamp A., Van der Mei H., Van Pelt A., De Jong H., Arends J. (1984). Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. Environ. Microbiol. 48, 980–983 PubMed PMC
Cerca N., Pier G., Vilanova M., Oliveira R., Azeredo J. (2005). Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res. Microbiol. 156, 506–514 10.1016/j.resmic.2005.01.007 PubMed DOI PMC
Chakarborty S., Mukhejri S., Murkherji S. (2010). Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces. Colloids Surf. B Biointerfaces 78, 102–108 10.1016/j.colsurfb.2010.02.019 PubMed DOI
Cisar J., Kolenbrander P., McIntire F. (1979). Specifcity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect. Immun. 24, 742–752 PubMed PMC
Claessen D., Rink R., de Jong W., Siebring J., de Vreugd P., Boersm F., et al. (2003). A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17, 1714–1726 10.1101/gad.264303 PubMed DOI PMC
Corpe W. (1980). Microbial surface components involved in adsorption of microorganisms onto surfaces, in Adsorption of Microorganisms to Surfaces, eds Bitton G., Marshall K. (New York, NY: John Wiley & Sons; ), 105–44
Dea B., Sampson J., Ades E., Huebner R., Jue D., Johnson S., et al. (2000). Purification and characterization of Streptococcus pneumoniae palmitoylated pneumococcal surface adhesin A expressed in Escherichia coli. Vaccine 18, 1811–1821 10.1016/S0264-410X(99)00481-8 PubMed DOI
Deatherage B., Cookson B. (2012). Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Imm. 80, 1948–1957 10.1128/IAI.06014-11 PubMed DOI PMC
de Carvalho C., da Cruz A., Pons M., Pinheiro H., Cabral J., da Fonseca M., et al. (2004). Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc. Res. Tech. 64, 215–222 10.1002/jemt.20061 PubMed DOI
Doyle R. (2000). Contribution of the hydrophobic effect to microbial infection. Microb. Infect. 2, 391–400 10.1016/S1286-4579(00)00328-2 PubMed DOI
Dranginis A., Rauceo J., Coronado J., Lipke P. (2007). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol. Mol. Biol. Rev. 71, 282–289 10.1128/MMBR.00037-06 PubMed DOI PMC
Feingold K. (2007). Thematic review series: skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J. Lipid. Res. 48, 2531–2546 10.1194/jlr.R700013-JLR200 PubMed DOI
Feofilova E. (2010). The fungal cell wall: modern concepts of its composition and biological function. Mikrobiologiia 79, 711–720 10.1134/S0026261710060019 PubMed DOI
Ferreira L., Zumbuehl A. (2009). Non-leaching surfaces capable of killing microorganisms on contact. J. Mater. Chem. 19, 7796–7806 10.1039/b905668h DOI
Fortuna J., Martín-Davila P., de la Pedrosa E., Pintado V., Cobo J., Fresco G., et al. (2012). Emerging trends in candidemia: a higher incidence but a similar outcome. J. Infect. 65, 64–70 10.1016/j.jinf.2012.02.011 PubMed DOI
Frirdich E., Whitfield C. (2005). Review: lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. J. Endotoxin Res. 11, 133–144 10.1177/09680519050110030201 PubMed DOI
Fukazawa Y., Kagaya K. (1997). Molecular bases of adhesion of Candida albicans. Med. Mycol. 35, 87–99 10.1080/02681219780000971 PubMed DOI
Giaouris E., Chapot-Chartier M., Briandet R. (2009). Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int. J. Food. Microbiol. 131, 2–9 10.1016/j.ijfoodmicro.2008.09.006 PubMed DOI
Gibbons R., Nygaard M. (1970). Interbacterial aggregation of plaque bacteria. Arch. Oral Biol. 15, 1397–1400 10.1016/0003-9969(70)90031-2 PubMed DOI
Gilbert P., Evans D. J., Evans E., Duguid I. G., Brown M. R. W. (1991). Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J. App. Bacteriol. 71, 72–77 10.1111/j.1365-2672.1991.tb04665.x PubMed DOI
Goulter R., Gentle I., Dykes G. (2009). Issues in determining factors influencing bacterial attachment: a review using the attachment of Escherichia coli to abiotic surfaces as an example. Lett. App. Microbiol. 49, 1–7 10.1111/j.1472-765X.2009.02591.x PubMed DOI
Hazen K. (2004). Relationship between expression of cell surface hydrophobicity protein 1 (CSH1p) and surface hydrophobicity properties of Candida dubliniensis. Curr. Microbiol. 48, 447–451 10.1007/s00284-003-4223-1 PubMed DOI
Hazen K., Hazen B. (1993). Surface hydrophobic and hydrophilic protein alterations in Candida albicans. FEMS Microbiol. Lett. 107, 83–87 10.1111/j.1574-6968.1993.tb06008.x PubMed DOI
Heilmann C. (2011). Adhesion mechanisms of Staphylococci. Adv. Exp. Med. Biol. 715, 105–123 10.1007/978-94-007-0940-9_7 PubMed DOI
Heinrichs D., Yethon J., Whitfield C. (1998). Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enteric. Mol. Microbiol. 30, 221–232 10.1046/j.1365-2958.1998.01063.x PubMed DOI
Heipieper H., Neumann G., Cornelissen S., Meinhardt F. (2007). Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl. Microbiol. Biotechnol. 74, 961–973 10.1007/s00253-006-0833-4 PubMed DOI
Heipieper J., Cornelissen S., Pepi M. (2010). Surface properties and cellular energetics of bacteria in response to the presence of hydrocarbons, in Handbook of Hydrocarbon and Lipid Microbiology, ed Timmis K. N. (Heidelberg, Berlin: Springer; ), 1615–1624 10.1007/978-3-540-77587-4_113 DOI
Higashi J., Wang I., Shlaes D., Anderson J., Marchant R. (1998). Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. J. Biomed. Mater. Res. 39, 341–350 PubMed
Isberg R., Barnes P. (2002). Dancing with the host: flow-dependent bacterial adhesion. Cell. 110, 1–4 10.1016/S0092-8674(02)00821-8 PubMed DOI
Ivanov V., Wang X., Tay S., Tay J. (2006). Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment. Appl. Microbiol. Biotechnol. 70, 374–381 10.1007/s00253-005-0088-5 PubMed DOI
Iwahori K., Tokutomi T., Miyata N., Fujita M. (2001). Formation of stable foam by the cells and culture supernatant of Gordonia (Nocardia) amarae. J. Biosci. Bioeng. 92, 77–79 10.1016/S1389-1723(01)80203-6 PubMed DOI
John D., Wann E., Kreikemeyer B., Speziale P., Hook M. (1999). Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol. 18, 211–223 10.1016/S0945-053X(99)00025-6 PubMed DOI
Kaczorek E., Chrzanowski £., Pijanowska A., Olszanowski A. (2008). Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: Rhamnolipids and saponins. Biores. Technol. 99, 4285–4291 10.1016/j.biortech.2007.08.049 PubMed DOI
Kargar M., Wang J., Nain A. S., Behkam B. (2012). Controlling bacterial adhesion to surfaces using topographical cues: a study of the interaction of Pseudomonas aeruginosa with nanofiber-textured surfaces. Soft Matter. 8, 10254–10259 10.1039/c2sm26368h DOI
Knobben B., van der Mei H., van Horn J., Busscher H. (2007). Transfer of bacteria between biomaterials surfaces in the operating room-an experimental study. J. Biomed. Mat. Res. A 80, 790–799 10.1002/jbm.a.30978 PubMed DOI
Kobayashi H., Takami H., Hirayama H., Kobata K., Usami R., Horikoshi K. (1999). Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. J. Bacteriol. 181, 4493–4498 PubMed PMC
Kochkodan V., Tsarenko S., Potapchenko N., Kosinova V., Goncharuk V. (2008). Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination 220, 380–385 10.1016/j.desal.2007.01.042 DOI
Kolenbrander P. (1989). Surface recognition among oral bacteria, multigeneric coaggregations and their mediators. Crit. Rev. Microbiol. 17, 137–159 10.3109/10408418909105746 PubMed DOI
Kolenbrander P., London J. (1992). Ecological significance of coaggregation among oral bacteria, in Advances in Microbial Ecology, Vol. 12, ed Marshall K. (New York, NY: Plenum Press; ), 183–217 10.1007/978-1-4684-7609-5_4 DOI
Kragelund C., Kong Y., van der Waarde J., Thelen K., Eikelboom D., Tandoi V., et al. (2006). Ecophysiology of different filamentous Alphaproteobacteria in industrial wastewater treatment plants. Microbiology 152, 3003–3012 10.1099/mic.0.29249-0 PubMed DOI
Larsen P., Nielsen J., Dueholm M., Wetzel R., Otzen D., Nielsen P. (2007). Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 9, 3077–3090 10.1111/j.1462-2920.2007.01418.x PubMed DOI
Larsen P., Nielsen J., Otzen D., Nielsen P. (2008). Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl. Environ. Microbiol. 74, 1517–1526 10.1128/AEM.02274-07 PubMed DOI PMC
Linden S., Sutton P., Karlsson N., Korolik V., McGuckin M. (2008). Mucins in the mucosal barrier to infection. Muc. Immunol. 1, 183–197 10.1038/mi.2008.5 PubMed DOI PMC
Linder M. (2009). Hydrophobins: Proteins that self-assemble at interfaces. Curr. Opin. Coll. Inter. Sci. 14, 356–363 10.1016/j.cocis.2009.04.001 DOI
Liu X., Sheng G., Yu H. (2009). Physicochemical characteristics of microbial granules. Biotechnol. Adv. 27, 1061–1070 10.1016/j.biotechadv.2009.05.020 PubMed DOI
Liu Y., Yang S., Qin L., Tay J. (2004). A thermodynamic interpretation of cell hydrophobicity in aerobic granulation. Appl. Microb. Biotech. 64, 410–415 10.1007/s00253-003-1462-9 PubMed DOI
Ly M., Aguedo M., Goudot S., Le M., Cayot P., Teixeira J., et al. (2008). Interactions between bacterial surfaces and milk proteins, impact on food emulsions stability. Food Hydrocol. 22, 742–751 10.1016/j.foodhyd.2007.03.001 DOI
Ly M., Naïtali-Bouchez M., Meylheuc T., Bellon-Fontaine M., Le T., Belin J., et al. (2006). Importance of bacterial surface properties to control the stability of emulsions. Int. J. Food Microbiol. 112, 26–34 10.1016/j.ijfoodmicro.2006.05.022 PubMed DOI
Ma P. (2008). Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 60, 184–198 10.1016/j.addr.2007.08.041 PubMed DOI PMC
McGinnis M. (2004). Pathogenesis of indoor fungal diseases. Med. Mycol. 42, 107–117 10.1080/13693780410001661473 PubMed DOI
McNab R., Forbes H., Handley P., Loach D., Tannock G., Jenkinson H. (1999). Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J. Bacteriol. 181, 3087–3095 PubMed PMC
Megharaj M., Ramakrishnan B., Venkateswa K., Sethunathan N., Naidu R. (2011). Bioremediation approaches for organic pollutants: a critical perspective. Environ. Int. 37, 1362–1375 10.1016/j.envint.2011.06.003 PubMed DOI
Menno L., Knetsch W., Koole L. (2011). New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3, 340–366 10.3390/polym3010340 DOI
Minerdi D., Bossi S., Gullino M., Garibaldi A. (2009). Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Env. Microbiol. 11, 844–854 10.1111/j.1462-2920.2008.01805.x PubMed DOI
Morath S. (2005). Structure/function relationships of lipoteichoic acids. Innate Immunity 11, 348–356 10.1179/096805105X67328 PubMed DOI
Murzyn A., Krasowska A., Augustyniak D., Majkowska-Skrobek G., Łukaszewicz M., Dziadkowiec D. (2010). The effect of Saccharomyces boulardii on Candida albicans –infected human intestinal cell lines Caco-2 and Intestin 407. FEMS Microbiol. Lett. 310, 17–23 10.1111/j.1574-6968.2010.02037.x PubMed DOI
Netea M., Brown G., Kullberg B., Gow N. (2008). An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6, 67–78 10.1038/nrmicro1815 PubMed DOI
Nielsen J., Mikkelsen L., Nielsen P. (2001). In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Sci. Technol. 43, 97–103 PubMed
Obuekwe C., Al-Jadi Z. K., Al-Saleh E. (2009). Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int. Biodeter. Biodeg. 63, 273–279 10.1016/j.ibiod.2008.10.004 DOI
Palmer J., Flint S., Brooks J. (2007). Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 34, 577–588 10.1007/s10295-007-0234-4 PubMed DOI
Pieckova E. (2012). Adverse health effects of indoor moulds. Arh. Hig. Rada. Toksikol. 63, 545–549 10.2478/10004-1254-63-2012-2221 PubMed DOI
Pizarro-Cerda J., Cossart P. (2006). Bacterial adhesion and entry into host cells. Cell 124, 715–727 10.1016/j.cell.2006.02.012 PubMed DOI
Prigent-Combaret C., Prensier G., Le Thi T., Vidal O., Lejeune P., Dorel C. (2000). Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ. Microbiol. 2, 450–464 10.1046/j.1462-2920.2000.00128.x PubMed DOI
Rauceo J., Gaur N., Lee K. G., Edwards J., Klotz S., Lipke P. (2004). Global cell surface conformational shift mediated by a Candida albicans adhesin. Infect. Immun. 72, 4948–4955 10.1128/IAI.72.9.4948-4955.2004 PubMed DOI PMC
Rodrigues D., Elimelech M. (2009). Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation. Biofouling J. Bioadhes. Biofilm Res. 25, 401–411 10.1080/08927010902833443 PubMed DOI
Rosenberg M., Kjelleberg S. (1986). Hydrophobic interactions in bacterial adhesion. Adv. Microb. Ecol. 9, 353–393 10.1007/978-1-4757-0611-6_8 DOI
Rutter P., Vincent B. (1980). The adhesion of microorganisms to surfaces, physico-chemical aspects, in Microbial Adhesion to Surfaces, eds Berkeley R., Lynch J., Melling J., Rutter P., Vincent B. (London: Ellis Horwood; ), 79–91
Sanglard D., Coste A., Ferrari S. (2009). Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res. 9, 1029–1050 10.1111/j.1567-1364.2009.00578.x PubMed DOI
Schwarz-Linek U., Werner J., Pickford A., Gurusiddappa S., Kim J., Pilka E., et al. (2003). Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423, 177–181 10.1038/nature01589 PubMed DOI
Sidhu M., Olsen I. (1997). S-layers of Bacillus species. Microbiology 143, 1039–1052 10.1099/00221287-143-4-1039 PubMed DOI
Silverman J., Clos J., de'Oliveira C., Shirvani O., Fang Y., Wang C., et al. (2010). An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J. Cell Sci. 123, 842–852 10.1242/jcs.056465 PubMed DOI
Sinde E., Carballo J. (2000). Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluor-ethylenethe influence of free energy and the effect of commercial sanitizers. Food Microbiol. 17, 439–447 10.1006/fmic.2000.0339 DOI
Singleton D., Fidel P., Jr., Wozniak K., Hazen K. (2005). Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells. FEMS Microbiol. Lett. 244, 373–377 10.1016/j.femsle.2005.02.010 PubMed DOI
Srinivasan R., Swain G. (2007). Managing the use of copper-based antifouling paints. Environ. Manag. 39, 23–441 10.1007/s00267-005-0030-8 PubMed DOI
Stevik T. K., Aa K., Ausland G., Hanssen J. (2004). Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 38, 1355–1367 10.1016/j.watres.2003.12.024 PubMed DOI
Tabak M., Scher K., Hartog E., Romling U., Matthews K., Chikindas M., et al. (2007). Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol. Lett. 267, 200–206 10.1111/j.1574-6968.2006.00547.x PubMed DOI
Tadros T. (1980). Particle-surface adhesion, in Microbial Adhesion to Surfaces, eds Berkeley R., Lynch J., Melling J., Rutter P., Vincent B. (London: Ellis Horwood; ), 93–113
Thormann E., Simonsen A., Hansen P., Mouritsen O. (2008). Interactions between a polystyrene particle and hydrophilic and hydrophobic surfaces in aqueous solutions. Langmuir 24, 7278–7284 10.1021/la8005162 PubMed DOI
Tokuda H., Matsuyama S. (2004). Sorting of lipoproteins to the outer membrane in E. coli, Biochim. Biophys. Acta 1693, 5–13 10.1016/j.bbamcr.2004.02.005 PubMed DOI
Ton-That H., Schneewind O. (2004). Assembly of pili in Gram-positive bacteria. Trends Microbiol. 12, 228–234 10.1016/j.tim.2004.03.004 PubMed DOI
Torres S., Pandey A., Castro G. (2011). Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotech. Adv. 29, 442–452 10.1016/j.biotechadv.2011.04.002 PubMed DOI
Van Loosdrecht M., Lyklema J., Norde W., Schroa G., Zehnder A. (1987). Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. 53, 1898–1901 PubMed PMC
Van Loosdrecht M., Norde W., Zehnder A. (1990). Physical chemical description of bacterial adhesion. J. Biomater. Appl. 5, 91–106 10.1177/088532829000500202 PubMed DOI
Vergara-Fernández A., Van Haaren B., Revah S. (2006). Phase partition of gaseous hexane and surface hydrophobicity of Fusarium solani when grown in liquid and solid media with hexanol and hexane. Biotech. Lett. 28, 2011–2017 10.1007/s10529-006-9186-4 PubMed DOI
Wick L., de Munain A., Springael D., Harms H. (2002). Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl. Microbiol. Biotechnol. 58, 378–385 10.1007/s00253-001-0898-z PubMed DOI
Wu C., Peng Y., Wang R., Zhou Y. (2012). Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor. Chemosphere 86, 767–773 10.1016/j.chemosphere.2011.11.002 PubMed DOI
Xia G., Kohler T., Peschel A. (2010). The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int. J. Med. Microbiol. 300, 148–154 10.1016/j.ijmm.2009.10.001 PubMed DOI
Yamashita S., Satoi M., Iwasa Y., Honda K., Sameshima Y., Omasa T., et al. (2007). Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cell catalyst in anhydrous organic solvents. Appl. Microbiol. Biotechnol. 74, 761–767 10.1007/s00253-006-0729-3 PubMed DOI
Yazdankhah S., Scheie A., Høiby E., Lunestad B., Heir E., Fotland T., et al. (2006). Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Res. 12, 83–89 10.1089/mdr.2006.12.83 PubMed DOI
Zähringer U., Knirel Y., Lindner B., Helbig J., Sonesson A., Marre R., et al. (1995). The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog. Clin. Biol. Res. 392, 113–139 PubMed
Zhao Q., Liu Y. (2006). Modification of stainless steel surfaces by electroless Ni-P and small amount of PTFE to minimize bacterial adhesion. J. Food Eng. 72, 266–272 10.1016/j.jfoodeng.2004.12.006 DOI
Zmantar T., Bettaie F., Chaieb K., Ezzili B., Mora-Ponsonnet L., Othmane A., et al. (2011). Atomic force microscopy and hydrodynamic characterization of the adhesion of Staphylococcus aureus to hydrophilic and hydrophobic substrata at different pH values. World J. Microbiol. Biotechnol. 27, 887–896 10.1007/s11274-010-0531-3 DOI