Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming

. 2021 Jun ; 35 (3) : 834-845. [epub] 20210121

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid33009673

Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993-2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD ). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming.

Beneficios de las Áreas Protegidas para las Aves Acuáticas No Reproductoras que Están Ajustando su Distribución Debido al Calentamiento Climático Resumen El calentamiento climático está generando cambios en la distribución y en la composición comunitaria de las especies. Muchas de ellas tienen una deuda climática, es decir, los cambios en la distribución se atrasan con respecto a los cambios en las isoclinas térmicas. Dentro de las áreas protegidas (APs), los cambios comunitarios como respuesta al calentamiento climático pueden facilitarse mediante tasas mayores de colonización por especies de climas cálidos, pero también pueden mitigarse al reducir las tasas de extirpación de las especies de climas fríos. Se requiere una evaluación de la importancia relativa de los procesos de colonización-extirpación para orientar las estrategias de conservación que buscan la reducción de la deuda climática y la conservación de las especies. Analizamos las dinámicas de colonización-extirpación que participan en los cambios comunitarios como respuesta al clima dentro y fuera de las APs. Para realizar lo anterior, usamos datos tomados durante 25 años de la presencia de aves acuáticas no reproductoras en el Paleártico occidental (97 especies, 7,071 sitios, 39 países, 1993-2017). Usamos un marco de trabajo del índice de temperatura comunitaria (ITC) basado en las afinidades térmicas de las especies para así investigar la rotación de especies inducida por el incremento en la temperatura. Determinamos si el ajuste térmico en la comunidad estuvo asociado con la colonización por especies de climas cálidos o con la extirpación de especies de climas fríos al modelar el cambio mediante una desviación estándar del ITC (ITCDS ). Con los modelos lineales de efectos mixtos investigamos si las comunidades dentro de las APs tenían una deuda climática más baja y patrones diferentes de cambio comunitario que las comunidades localizadas fuera de las APs. Con la combinación del ITC y deL ITCDS , las comunidades dentro de las APs tuvieron más especies, una mayor colonización, una menor extirpación y una deuda climática más baja (16%) que las comunidades fuera de las APs. Por lo tanto, nuestros resultados sugieren que las APs facilitan dos procesos independientes que moldean las dinámicas comunitarias y mantienen la biodiversidad. Sin embargo, el ajuste comunitario no fue lo suficientemente rápido para mantener el paso de los grandes incrementos en la temperatura de las regiones central y noreste del Paleártico occidental. Nuestros resultados resaltan el potencial que tiene la combinación de las medidas del ITC y del ICTDS para mejorar el entendimiento de los patrones de colonización-extirpación causados por el calentamiento climático.

1 WeBS Office BirdWatch Ireland Wicklow A63 RW83 Ireland

Albaninan Ornithological Society Bulevardi Gjergj Fishta Kulla nr 2 kati 4 hyrja 18 Tirana 1001 Albania

Association Les Amis des Oiseaux 14 Rue Ibn El Heni 2ème étage Bureau N° 4 Ariana 2080 Tunisia

Bird Protection and Study Society of Serbia Vladike Ćirića 24 19 21000 Novi Sad Srbija Makedonska 4 Beograd 11000 Srbija

BirdLife Cyprus P O Box 12026 Nicosia 2340 Cyprus

BirdLife Österreich Museumsplatz 1 10 8 Vienna 1070 Austria

British Trust for Ornithology Thetford IP24 2PU U K

Bulgarian Society for the Protection of Birds PO Box 50 Sofia BG 1111 Bulgaria

Conservation Science Group Department of Zoology University of Cambridge Cambridge CB2 3QZ U K

Cornell Lab of Ornithology Cornell University Ithaca NY 14850 U S A

Croatian Society for Bird and Nature Protection Zagreb 1000 Croatia

Dachverband Deutscher Avifaunisten e 5 Federation of German Avifaunists Münster 48157 Germany

Département Études Aves Natagora Namur 5000 Belgium

Department of Biology Lund University Lund 223 62 Sweden

Department of Biology University of Turku Turku 20500 Finland

Department of Bioscience Aarhus University Rønde 8200 Denmark

Department of Ecology Swedish University of Agricultural Sciences Uppsala 750 07 Sweden

Department of Terrestrial Ecology Norwegian Institute for Nature Research P O Box 5685 Sluppen Trondheim N 7485 Norway

Department of Vertebrate Ecology and Zoology Faculty of Biology University of Gdańsk Wita Stwosza 59 Gdańsk 80 308 Poland

Department of Zoology Estonian University of Life Sciences Tartu 51006 Estonia

Direction générale des Forêts Ben Aknoun Alger 16000 Algérie

Društvo za opazovanje in proučevanje ptic Slovenije Tržaška cesta 2 Ljubljana SI 1000 Slovenia

Faculty of Environmental Sciences Czech University of Life Sciences Praha Suchdol 129 Kamýcká CZ 165 21 Czechia

Hellenic Ornithological Society Themistokleous str 80 Athens 10681 Greece

Institute of Biology University of Latvia Salaspils LV 2169 Latvia

Institute of Wildlife Management and Vertebrate Zoology University of Sopron Bajcsy Zsilinszky u 4 Sopron H 9400 Hungary

Instituto da Conservação da Natureza e das Florestas IP Lisboa 1050 191 Portugal

Istituto Superiore per la Protezione e la Ricerca Ambientale Ozzano dell'Emilia 40064 Italy

Lithuanian Ornithological Society Naugarduko 47 3 Vilnius LT 03208 Lithuania

LPO BirdLife France Fonderies Royales Rochefort Cedex 17300 France

Macedonian Ecological Society Boris Trajkovski st 7 No 9A Skopje 1000 Macedonia

Monitoring and Animal Conservation Department Schmalgausen Institute of Zoology NAS of Ukraine vul B Khmelnytskogo 15 Kyiv 01030 Ukraine

Nase Ptice Ornithological Society Sarajevo BA 71000 Bosnia and Herzegovina

National Academy of Science of Belarus Independence Avenue 66 Minsk 220072 Republic of Belarus

Natural History Museum of Montenegro Trg Vojvode Bećir bega Osmanagića 16 Podgorica 81000 Montenegro

Ornithological Research Center Ondokuz Mayis University Samsun 55139 Turkey

Research Institute for Nature and Forest Brussel 1070 Belgium

Romanian Ornithological Society Bd Hristo Botev nr 3 ap 6 Sector 3 Bucureşti 030231 Romania

Scientific Institute Mohammed 5 University of Rabat Av Ibn Battota Rabat Agdal 10106 Morocco

Sociedad Española de Ornitología Madrid 28053 Spain

SOS BirdLife Slovakia Bratislava 821 08 Slovakia

Sovon Dutch Centre for Field Ornithology Nijmegen 6525 ED The Netherlands

Swiss Ornithological Institute Sempach CH 6204 Switzerland

The Finnish Museum of Natural History University of Helsinki P O Box 17 Helsinki 00100 Finland

Wetlands International Ede 6717 LZ Ede The Netherlands

Zobrazit více v PubMed

Amano T, et al. 2018. Successful conservation of global waterbird populations depends on effective governance. Nature 553:199–202. PubMed

Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH. 2004. Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods. Global Change Biology 10:1618–1626.

Auffret AG, Thomas CD. 2019. Synergistic and antagonistic effects of land use and non‐native species on community responses to climate change. Global Change Biology 25:4303‐4314. PubMed

Austin GE, Rehfisch MM. 2005. Shifting nonbreeding distributions of migratory fauna in relation to climatic change. Global Change Biology 11:31–38.

BirdLife International and Handbook of the Birds of the World . 2018. Bird species distribution maps of the world. Birdlife International, Cambridge, United Kingdom.

Bowler D, Böhning‐Gaese K. 2017. Improving the community‐temperature index as a climate change indicator. PLOS ONE 12:e0184275. 10.1371/journal.pone.0184275. PubMed DOI PMC

Brommer JE. 2008. Extent of recent polewards range margin shifts in Finnish birds depends on their body mass and feeding ecology. Ornis Fennica 85:109–117.

Brook BW, Sodhi NS, Bradshaw CJ. 2008. Synergies among extinction drivers under global change. Trends in Ecology & Evolution 23:453–460. PubMed

Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. PubMed

Delany S. 2010. Guidance on waterbird monitoring methodology: field protocol for waterbird counting. Wetlands International, Wageningen, The Netherlands.

Devictor V, Julliard R, Couvet D, Jiguet F. 2008. Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences 275:2743–2748. PubMed PMC

Devictor V, et al. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change 2:121–124.

Dixon MJR, Loh J, Davidson NC, Beltrame C, Freeman R, Walpole M. 2016. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biological Conservation 193:27–35.

Fox AD, Nielsen RD, Petersen IK. 2019. Climate‐change not only threatens bird populations but also challenges our ability to monitor them. Ibis 161:467–474.

Frost T, et al. 2019. Population estimates of wintering waterbirds in Great Britain. British Birds 112:130–145.

Gaget E, Galewski T, Jiguet F, Guelmami A, Perennou C, Beltrame C, Le Viol I. 2020. Antagonistic effect of natural habitat conversion on community adjustment to climate warming in non‐breeding waterbirds. Conservation Biology 34:966–976. PubMed

Gaget E, Galewski T, Jiguet F, Le Viol I. 2018. Waterbird communities adjust to climate warming according to conservation policy and species protection status. Biological Conservation 227:205–212.

Galewski T, Devictor V. 2016. When common birds became rare: historical records shed light on long‐term responses of bird communities to global change in the largest wetland of France. PLOS ONE 11:e0165542. 10.1371/journal.pone.0165542. PubMed DOI PMC

Gardner RC, Davidson NC. 2011. The Ramsar convention. Pages 189–203 in LePage BA, editor. Wetlands. Springer, Dordrecht.

Gaüzère P, Doulcier G, Devictor V, Kéfi S. 2019. A framework for estimating species‐specific contributions to community indicators. Ecological Indicators 99:74–82.

Gaüzère P, Jiguet F, Devictor V. 2016. Can protected areas mitigate the impacts of climate change on bird's species and communities? Diversity and Distributions 22:625–637.

Gillingham PK, et al. 2015. The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biological Journal of the Linnean Society 115:707–717.

Godet L, Devictor V. 2018. What conservation does. Trends in Ecology & Evolution 33:720–730. PubMed

Guillemain M, Hearn R. 2017. Ready for climate change? Geographic trends in the protection status of critical sites for Western Palearctic ducks. Biodiversity and Conservation 26:2347–2360.

Hiley JR, Bradbury RB, Holling M, Thomas CD. 2013. Protected areas act as establishment centres for species colonizing the UK. Proceedings of the Royal Society B: Biological Sciences 280. 10.1098/rspb.2012.2310. PubMed DOI PMC

Hill JK, Collingham YC, Thomas CD, Blakeley DS, Fox R, Moss D, Huntley B. 2001. Impacts of landscape structure on butterfly range expansion. Ecology Letters 4:313–321.

IPBES (Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services) . 2018a. The IPBES regional assessment report on biodiversity and ecosystem services for Africa. IPBES Secretariat, Bonn, Germany.

IPBES (Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services) . 2018b. Summary for policymakers of the regional assessment report on biodiversity and ecosystem services for Europe and Central Asia of the IPBES. IPBES Secretariat, Bonn, Germany.

Johnston A, et al. 2013. Observed and predicted effects of climate change on species abundance in protected areas. Nature Climate Change 3:1055–1061.

Lawson CR, Bennie JJ, Thomas CD, Hodgson JA, Wilson RJ. 2014. Active management of protected areas enhances metapopulation expansion under climate change. Conservation Letters 7:111–118.

Lehikoinen A, et al. 2013. Rapid climate driven shifts in wintering distributions of three common waterbird species. Global Change Biology 19:2071–2081. PubMed

Lehikoinen P, Santangeli A, Jaatinen K, Rajasärkkä A, Lehikoinen A. 2019. Protected areas act as a buffer against detrimental effects of climate change—evidence from large‐scale, long‐term abundance data. Global Change Biology 25:304–313. PubMed

Maclean IM, et al. 2008. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Global Change Biology 14:2489–2500.

Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, van Bentham K, Bolker B, Brooks MM. 2017. Package ‘glmmTMB’. Available from https://github.com/glmmTMB (accessed September 1 2019).

Monastersky R. 2014. Biodiversity: life—a status report. Nature News 516:158. PubMed

Morice CP, Kennedy JJ, Rayner NA, Jones PD. 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. Journal of Geophysical Research: Atmospheres 117. 10.1029/2011JD017187. DOI

Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. PubMed

Pavón‐Jordán D, et al. 2015. Climate‐driven changes in winter abundance of a migratory waterbird in relation to EU protected areas. Diversity and Distributions 21:571–582.

Pavón‐Jordán D, et al. 2019. Habitat‐and species‐mediated short‐and long‐term distributional changes in waterbird abundance linked to variation in European winter weather. Diversity and Distributions 25:225–239.

Pavón‐Jordán D, et al. 2020. Towards a more robust network of protected areas for migratory birds associated with wetlands across Europe and North Africa under climate change. Biological Conservation 246. 10.1016/j.biocon.2020.108549. DOI

Peach MA, Cohen JB, Frair JL, Zuckerberg B, Sullivan P, Porter WF, Lang C. 2019. Value of protected areas to avian persistence across 20 years of climate and land‐use change. Conservation Biology 33:423–433. PubMed

RC Team . 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing (Version 3.4.3).

Reneerkens J, et al. 2019. Low fitness at low latitudes: wintering in the tropics increases migratory delays and mortality rates in an arctic‐breeding shorebird. Journal of Animal Ecology 89:691–703. PubMed PMC

Santangeli A, Lehikoinen A. 2017. Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Diversity and Distributions 23:308–316.

Schummer ML, Kaminski RM, Raedeke AH, Graber DA. 2010. Weather‐related indices of autumn–winter dabbling duck abundance in middle North America. Journal of Wildlife Management 74:94–101.

Thomas CD, et al. 2012. Protected areas facilitate species’ range expansions. Proceedings of the National Academy of Sciences of the United States of America 109:14063–14068. PubMed PMC

Thomas CD, Lennon JJ. 1999. Birds extend their ranges northwards. Nature 399:213.

Tittensor DP, et al. 2014. A mid‐term analysis of progress toward international biodiversity targets. Science 346:241–244. PubMed

Trouwborst A. 2009. International nature conservation law and the adaptation of biodiversity to climate change: a mismatch? Journal of Environmental Law 21:419–442.

UNEP‐WCMC, IUCN and NGS. 2021. Protected Planet Live Report 2021. UNEP‐WCMC, IUCN and NGS: Cambridge UK; Gland, Switzerland; and Washington, D.C., USA.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...