• This record comes from PubMed

Can Aspartate Aminotransferase in the Cerebrospinal Fluid Be a Reliable Predictive Parameter?

. 2020 Oct 01 ; 10 (10) : . [epub] 20201001

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA-KZ-2019-1-9 The Internal Grant of the Krajská zdravotní, a.s. in Ústí nad Labem
PROGRES Q40/09 Charles University in Prague, Faculty of Medicine in Hradec Králové
PROGRES Q40/10 Charles University in Prague, Faculty of Medicine in Hradec Králové

Brain ischemia after central nervous system (CNS) bleeding significantly influences the final outcome of patients. Catalytic activities of aspartate aminotransferase (AST) in the cerebrospinal fluid (CSF) to detect brain ischemia were determined in this study. The principal aim of our study was to compare the dynamics of AST in 1956 CSF samples collected from 215 patients within a 3-week period after CNS hemorrhage. We compared concentrations of the AST catalytic activities in the CSF of two patient groups: survivors (Glasgow Outcome Score (GOS) 5-3) and patients in a vegetative state or dead (GOS 2-1). All statistical evaluations were performed using mixed models and the F-test adjusted by Kenward and Roger and the Bonferroni adjustment for multiple tests. The significantly higher catalytic activities of AST in the CSF from patients with the GOS of 2-1 when compared to those who survived (GOS 5-3, p = 0.001) were found immediately after CNS haemorrhage. In the further course of time, the difference even increased (p < 0.001). This study confirmed the key association between early signs of brain damage evidenced as an elevated AST activity and the prediction of the final patient's clinical outcome. The study showed that the level of AST in the CSF could be the relevant diagnostic biomarker of the presence and intensity of brain tissue damage.

See more in PubMed

Hejčl A., Cihlář F., Smolka V., Vachata P., Bartoš R., Procházka J., Cihlář J., Sameš M. Chemical angioplasty with spasmolytics for vasospasm after subarachnoid hemorrhage. Acta Neurochir. 2017;159:713–720. doi: 10.1007/s00701-017-3104-5. PubMed DOI

Miller B.A., Turan N., Chau M., Pradilla G. Inflammation, Vasospasm, and Brain Injury after Subarachnoid Hemorrhage. BioMed. Res. Int. 2014;2014:384342. doi: 10.1155/2014/384342. PubMed DOI PMC

Provencio J.J., Fu X., Siu A., Rasmussen P.A., Hazen S.L., Ransohoff R.M. CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit. Care. 2010;12:244–251. doi: 10.1007/s12028-009-9308-7. PubMed DOI PMC

Sreekrishnan A., Dearborn J.L., Greer D.M., Shi F.-D., Hwang D.Y., Leasure A.C., Zhou S.E., Gilmore E.J., Matouk C.C., Petersen N.H., et al. Intracerebral Hemorrhage Location and Functional Outcomes of Patients: A Systematic Literature Review and Meta-Analysis. Neurocrit. Care. 2016;25:384–391. doi: 10.1007/s12028-016-0276-4. PubMed DOI

Tso M.K., Loch Macdonald R. Acute Microvascular Changes after Subarachnoid Hemorrhage and Transient Global Cerebral Ischemia. Stroke Res. Treatment. 2013;2013:425281. doi: 10.1155/2013/425281. PubMed DOI PMC

Berger R.P., Pierce M.C., Wisniewski S.R., Adelson P.D., Clark R.S., Ruppel R.A., Kochanek P.M. Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics. 2002;109:e31. doi: 10.1542/peds.109.2.e31. PubMed DOI

Bonora S., Zanusso G., Raiteri R., Monaco S., Rossati A., Ferrari S., Boffito M., Audagnotto S., Sinicco A., Rizzuto N., et al. Clearance of 14-3-3 protein from cerebrospinal fluid heralds the resolution of bacterial meningitis. Clin. Inf. Dis. 2003;36:1492–1495. doi: 10.1086/375066. PubMed DOI

Buée L., Bussiére T., Buée-Scherrer V.R., Delacourte A., Hof P.R. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev. 2000;33:95–130. doi: 10.1016/S0165-0173(00)00019-9. PubMed DOI

Hajduková L., Sobek O., Prchalová D., Bílková Z., Koudelková M., Lukášková J., Matuchová I. Biomarkers of Brain Damage: S100B and NSE Concentrations in Cerebrospinal Fluid—A Normative Study. Biomed. Res. Int. 2015;2015:379071. doi: 10.1155/2015/379071. PubMed DOI PMC

Kušnierová P., Zeman D., Hradílek P., Čábal M., Zapletalová O. Neurofilament levels in patients with neurological diseases: A comparison of neurofilament light and heavy chain levels. J. Clin. Lab. Anal. 2019;33:e22948. doi: 10.1002/jcla.22948. PubMed DOI PMC

Park J.W., Suh G.I., Shin H.E. Association between cerebrospinal fluid S100B protein and neuronal damage in patients with central nervous system infections. Yonsei Med. J. 2013;54:567–571. doi: 10.3349/ymj.2013.54.3.567. PubMed DOI PMC

Townend W., Ingebrigsten T. Head injury outcome prediction: A role for protein S100B? Trauma Outcomes. 2006;37:1098–1108. doi: 10.1016/j.injury.2006.07.014. PubMed DOI

Green J.B., Oldewurtel H.A., O’Doherty D.S., Forster F.M. Cerebrospinal Fluid Transaminase and Lactic Dehydrogenase Activities in Neurologic Disease. Arch. Neurol. Psychiatry. 1958;80:148–156. doi: 10.1001/archneurpsyc.1958.02340080018002. PubMed DOI

Laha P.N., Bhargava K.D. CSF and serum GOT levels in CVA. J. Assoc. Physicians India. 1964;12:427–430. PubMed

Lutsar I., Haldre S., Topman M., Talvik T. Enzymatic changes in the cerebrospinal fluid in patients with infections of the central nervous system. Acta Paediatr. 1994;83:1146–1150. doi: 10.1111/j.1651-2227.1994.tb18268.x. PubMed DOI

Parakh N., Gupta H.L., Jain A. Evaluation of enzymes in serum and cerebrospinal fluid in cases of stroke. Neurol. India. 2002;50:518–519. PubMed

Pecháň I. Enzymology of the cerebrospinal fluid. Cesk. Neurol. Neurochir. 1989;52:11–21. PubMed

Riemenschneider M., Buch K., Schmolke M., Kurz A., Guder W.G. Diagnosis of Alzheimer’s disease with cerebrospinal fluid tau protein and aspartate aminotransferase. Lancet. 1997;350:784. doi: 10.1016/S0140-6736(05)62568-8. PubMed DOI

Tapiola T., Lehtovirta M., Pirttilä T., Alafuzoff I., Riekkinen P., Soininen H. Increased aspartate aminotransferase activity in cerebrospinal fluid and Alzheimer’s disease. Lancet. 1998;352:287. doi: 10.1016/S0140-6736(05)60260-7. PubMed DOI

Kelbich P., Procházka J., Sameš M., Hejčl A., Vachata P., Hušková E., Peruthová J., Hanuljaková E., Špička J. Basic principles and specifics of cerebrospinal fluid evaluation in neurosurgical and neurointensive care patients (Part I: Introduction) Klin. Biochem. Metab. 2011;19:223–228.

Karlson P. Kurzes Lehrbuch der Biochemie für Mediziner und Naturwissenschaftler. 10th ed. Georg Thieme Verlag; Stuttgart, Germany: 1977.

Hintze J. NCSS, PASS, and GUESS. NCSS Statistical Software; Kaysville, UT, USA: 2006.

Kenward M.G., Roger J.H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53:983–997. doi: 10.2307/2533558. PubMed DOI

Kelbich P., Koudelková M., Machová H., Tomaškovič M., Vachata P., Kotalíková P., Chmelíková V., Hanuljaková E. Importance of urgent cerebrospinal fluid examination for early diagnosis of central nervous system infections. Klin. Mikrobiol. Inf. Lék. 2007;13:9–20. PubMed

Kelbich P., Hejčl A., Selke Krulichová I., Procházka J., Hanuljaková E., Peruthová J., Koudelková M., Sameš M., Krejsek J. Coefficient of energy balance, a new parameter for basic investigation of the cerebrospinal fluid. Clin. Chem. Lab. Med. 2014;52:1009–1017. doi: 10.1515/cclm-2013-0953. PubMed DOI

Adam P., Táborský L., Sobek O., Hildebrand T., Kelbich P., Průcha M., Hyánek J. Advances in Clinical Chemistry. 1st ed. Academic Press; San Diego, CA, USA: San Francisco, CA, USA: New York, NY, USA: Boston, MA, USA: London, UK: Sydney, Australia: Tokyo, Japan: 2001. Cerebrospinal fluid; pp. 1–62. PubMed

Donato R., Cannon B.R., Sorci G., Riuzzi F., Hsu K., Weber D.J., Geczy C.L. Functions of S100 Proteins. Curr. Mol. Med. 2013;13:24–57. doi: 10.2174/156652413804486214. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...