Marriage does not relate to major histocompatibility complex: a genetic analysis based on 3691 couples

. 2020 Oct 14 ; 287 (1936) : 20201800. [epub] 20201007

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33023409

Optimization of chances for healthy offspring is thought to be one of the factors driving mate choice and compatibility of the major histocompatibility complex (MHC) is assumed to determine the offspring's fitness. While humans have been claimed to be able to perceive information of MHC compatibility via the olfactory channel, it remains unknown whether humans use such information for mate choice. By investigation of 3691 married couples, we observed that the high polymorphism of MHC leads to a low chance for homozygous offspring. MHC similarity between couples did not differ from chance, we hence observed no MHC effect in married couples. Hormonal contraception at the time of relationship initiation had no significant effect towards enhanced similarity. A low variety of alleles within a postcode area led to a higher likelihood of homozygous offspring. Based on this data, we conclude that there is no pattern of MHC dis-assortative mating in a genetically diverse Western society. We discuss the question of olfactory mate preference, in-group mating bias and the high polymorphism as potential explanations.

Zobrazit více v PubMed

Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. 2001. The major histocompatibility complex and its functions. Immunobiology: the immune system in health and disease, 5th edn New York, NY: Garland Science.

Milinski M. 2006. The major histocompatibility complex, sexual selection, and mate choice. Annu. Rev. Ecol. Evol. Syst. 37, 159–186. (10.1146/annurev.ecolsys.37.091305.110242) DOI

Neefjes J, Jongsma ML, Paul P, Bakke O. 2011. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836. (10.1038/nri3084) PubMed DOI

Wegner KM, Kalbe M, Kurtz J, Reusch TB, Milinski M. 2003. Parasite selection for immunogenetic optimality. Science 301, 1343 (10.1126/science.1088293) PubMed DOI

Leinders-Zufall T, et al. 2004. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306, 1033–1037. (10.1126/science.1102818) PubMed DOI

Leinders-Zufall T, Ishii T, Mombaerts P, Zufall F, Boehm T. 2009. Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat. Neurosci. 12, 1551–1558. (10.1038/nn.2452) PubMed DOI

Milinski M, Croy I, Hummel T, Boehm T. 2013. Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment. Proc. R. Soc. B 280, 20122889 (10.1098/rspb.2012.2889) PubMed DOI PMC

Stowers L, Marton TF. 2005. What is a pheromone? Mammalian pheromones reconsidered. Neuron 46, 699–702. (10.1016/j.neuron.2005.04.032) PubMed DOI

Overath P, Sturm T, Rammensee H-G. 2014. Of volatiles and peptides: in search for MHC-dependent olfactory signals in social communication. Cell. Mol. Life Sci. 71, 2429–2442. (10.1007/s00018-014-1559-6) PubMed DOI PMC

Sturm T, et al. 2013. Mouse urinary peptides provide a molecular basis for genotype discrimination by nasal sensory neurons. Nat. Commun. 4, 1616 (10.1038/ncomms2610) PubMed DOI

Singh PB, Herbert J, Roser B, Arnott L, Tucker DK, Brown RE. 1990. Rearing rats in a germ-free environment eliminates their odors of individuality. J. Chem. Ecol. 16, 1667–1682. (10.1007/BF01014099) PubMed DOI

Wobst B, Zavazava N, Luszyk D, Lange K, Ussat S, Eggert F, Ferstl R, Müller-Ruchholtz W. 1998. Molecular forms of soluble HLA in body fluids: potential determinants of body odor cues. Genetica 104, 275–283. (10.1023/A:1026487421626) PubMed DOI

McClelland EE, Penn DJ, Potts WK. 2003. Major histocompatibility complex heterozygote superiority during coinfection. Infect. Immun. 71, 2079–2086. (10.1128/IAI.71.4.2079-2086.2003) PubMed DOI PMC

Kamiya T, O'dwyer K, Westerdahl H, Senior A, Nakagawa S. 2014. A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol. Ecol. 23, 5151–5163. (10.1111/mec.12934) PubMed DOI

Havlicek J, Roberts SC. 2009. MHC-correlated mate choice in humans: a review. Psychoneuroendocrinology 34, 497–512. (10.1016/j.psyneuen.2008.10.007) PubMed DOI

Wedekind C, Seebeck T, Bettens F, Paepke AJ. 1995. MHC-dependent mate preferences in humans. Proc. R. Soc. Lond. B 260, 245–249. (10.1098/rspb.1995.0087) PubMed DOI

Wedekind C, Füri S. 1997. Body odour preferences in men and women: do they aim for specific MHC combinations or simply heterozygosity? Proc. R. Soc. Lond. B 264, 1471–1479. (10.1098/rspb.1997.0204) PubMed DOI PMC

Jacob S, McClintock MK, Zelano B, Ober C. 2002. Paternally inherited HLA alleles are associated with women's choice of male odor. Nat. Genet. 30, 175–179. (10.1038/ng830) PubMed DOI

Santos PSC, Schinemann JA, Gabardo J, da Graça Bicalho M. 2005. New evidence that the MHC influences odor perception in humans: a study with 58 Southern Brazilian students. Horm. Behav. 47, 384–388. (10.1016/j.yhbeh.2004.11.005) PubMed DOI

Probst F, Fischbacher U, Lobmaier JS, Wirthmüller U, Knoch D. 2017. Men's preferences for women's body odours are not associated with human leucocyte antigen. Proc. R. Soc. B 284, 20171830 (10.1098/rspb.2017.1830) PubMed DOI PMC

Sorokowska A, Pietrowski D, Schäfer L, Kromer J, Schmidt AH, Sauter J, Hummel T, Croy I. 2018. Human leukocyte antigen similarity decreases partners' and strangers’ body odor attractiveness for women not using hormonal contraception. Horm. Behav. 106, 144–149. (10.1016/j.yhbeh.2018.10.007) PubMed DOI

Thornhill R, Gangestad SW, Miller R, Scheyd G, McCollough JK, Franklin M. 2003. Major histocompatibility complex genes, symmetry, and body scent attractiveness in men and women. Behav. Ecol. 14, 668–678. (10.1093/beheco/arg043) DOI

Roberts SC, Gosling LM, Carter V, Petrie M. 2008. MHC-correlated odour preferences in humans and the use of oral contraceptives. Proc. R. Soc. B 275, 2715–2722. (10.1098/rspb.2008.0825) PubMed DOI PMC

Havlíček J, Winternitz J, Roberts SC. 2020. Major histocompatibility complex-associated odour preferences and human mate choice: near and far horizons. Phil. Trans. R. Soc. B 375, 20190260 (10.1098/rstb.2019.0260) PubMed DOI PMC

Kromer J, Hummel T, Pietrowski D, Giani A, Sauter J, Ehninger G, Schmidt AH, Croy I. 2016. Influence of HLA on human partnership and sexual satisfaction. Sci. Rep. 6, 32550 (10.1038/srep32550) PubMed DOI PMC

Garver-Apgar CE, Gangestad SW, Thornhill R, Miller RD, Olp JJ. 2006. Major histocompatibility complex alleles, sexual responsivity, and unfaithfulness in romantic couples. Psychol. Sci. 17, 830–835. (10.1111/j.1467-9280.2006.01789.x) PubMed DOI

Derti A, Cenik C, Kraft P, Roth FP. 2010. Absence of evidence for MHC–dependent mate selection within hapmap populations. PLoS Genet. 6, e1000925 (10.1371/journal.pgen.1000925) PubMed DOI PMC

Hedrick PW, Black FL. 1997. HLA and mate selection: no evidence in South Amerindians. Am. J. Hum. Gen. 61, 505–511. (10.1086/515519) PubMed DOI PMC

Ihara Y, Aoki K, Tokunaga K, Takahashi K, Juji T. 2000. HLA and human mate choice: tests on Japanese couples. Anthropol. Sci. 108, 199–214. (10.1537/ase.108.199) DOI

Jin K, Speed T, Thomson G. 1995. Tests of random mating for a highly polymorphic locus: application to HLA data. Biometrics 51, 1064–1076. (10.2307/2533005) PubMed DOI

Nordlander C, Hammarström L, Lindblom B, Smith CE. 1983. No role of HLA in mate selection. Immunogenetics 18, 429–431. (10.1007/BF00372474) PubMed DOI

Pollack MS, Wysocki CJ, Beauchamp GK, Braun D, Callaway C, Dupont B. 1982. Absence of HLA association or linkage for variations in sensitivity to the odor of androstenone. Immunogenetics 15, 579–589. (10.1007/BF00347052) PubMed DOI

Sans M, Alvarez I, Callegari-Jacques S, Salzano F. 1994. Genetic similarity and mate selection in Uruguay. J. Biosoc. Sci. 26, 285–289. (10.1017/S0021932000021374) PubMed DOI

Ober C, Weitkamp LR, Cox N, Dytch H, Kostyu D, Elias S. 1997. HLA and mate choice in humans. Am. J. Hum. Gen. 61, 497–504. (10.1086/515511) PubMed DOI PMC

Chaix R, Cao C, Donnelly P. 2008. Is mate choice in humans MHC-dependent? PLoS Genet. 4, e1000184 (10.1371/journal.pgen.1000184) PubMed DOI PMC

Dandine-Roulland C, Laurent R, Dall'Ara I, Toupance B, Chaix R. 2019. Genomic evidence for MHC disassortative mating in humans. Proc. R. Soc. B 286, 20182664 (10.1098/rspb.2018.2664) PubMed DOI PMC

Israeli M, Kristt D, Nardi Y, Klein T. 2014. Genetic considerations in human sex-mate selection: partners share human leukocyte antigen but not short-tandem-repeat identity markers. Am. J. Reprod. Immunol. 71, 467–471. (10.1111/aji.12213) PubMed DOI

Rosenberg LT, Cooperman D, Payn R. 1983. HLA and mate selection. Immunogenetics 17, 89–93. (10.1007/BF00364292) PubMed DOI

Khankhanian P, Gourraud P-A, Caillier SJ, Santaniello A, Hauser SL, Baranzini SE, Oksenberg JR. 2010. Genetic variation in the odorant receptors family 13 and the MHC loci influence mate selection in a multiple sclerosis dataset. BMC Genomics 11, 626 (10.1186/1471-2164-11-626) PubMed DOI PMC

Winternitz J, Abbate J, Huchard E, Havlíček J, Garamszegi L. 2017. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis. Mol. Ecol. 26, 668–688. (10.1111/mec.13920) PubMed DOI

Statista. 2018. Statistisches Bundesamt: Familie, Lebensformen und Kinder: Statista GmbH; See https://de.statista.com/statistik/daten/studie/1329/umfrage/heiratsalter-lediger-frauen/.

Lange V, et al. 2014. Cost-efficient high-throughput HLA typing by HiSeq amplicon sequencing. BMC Genomics 15, 1–11. PubMed PMC

Schöfl G, Lang K, Quenzel P, Böhme I, Sauter J, Hofmann JA, Pingel J, Schmidt AH, Lang V. 2017. 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned. BMC Genomics 18, 1–16. PubMed PMC

Schmidt AH, Baier D, Solloch UV, Stahr A, Cereb N, Wassmuth R, Ehninger G, Rutt C. 2009. Estimation of high-resolution HLA-A,-B,-C,-DRB1 allele and haplotype frequencies based on 8862 German stem cell donors and implications for strategic donor registry planning. Hum. Immunol. 70, 895–902. (10.1016/j.humimm.2009.08.006) PubMed DOI

Sauter J, Solloch UV, Giani AS, Hofmann JA, Schmidt AH. 2016. Simulation shows that HLA-matched stem cell donors can remain unidentified in donor searches. Sci. Rep. 6, 21149 (10.1038/srep21149) PubMed DOI PMC

Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SG. 2012. The imgt/hla database. Nucleic Acids Res. 41(D1), D1222–D1227. (10.1093/nar/gks949) PubMed DOI PMC

Damotte V, et al. 2019. Multiple measures reveal the value of both race and geographic ancestry for self-identification. bioRxiv. 2019:701698.

Faul F, Erdfelder E, Buchner A, Lang A-G. 2009. Statistical power analyses using G* Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160. (10.3758/BRM.41.4.1149) PubMed DOI

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5142710

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...