Blockage of Store-Operated Ca2+ Influx by Synta66 is Mediated by Direct Inhibition of the Ca2+ Selective Orai1 Pore

. 2020 Oct 06 ; 12 (10) : . [epub] 20201006

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33036292

Grantová podpora
P 27641 Austrian Science Fund FWF - Austria
P 28701 Austrian Science Fund FWF - Austria
P 30567 Austrian Science Fund FWF - Austria
P 32075 Austrian Science Fund FWF - Austria

The Ca2+ sensor STIM1 and the Ca2+ channel Orai1 that form the store-operated Ca2+ (SOC) channel complex are key targets for drug development. Selective SOC inhibitors are currently undergoing clinical evaluation for the treatment of auto-immune and inflammatory responses and are also deemed promising anti-neoplastic agents since SOC channels are linked with enhanced cancer cell progression. Here, we describe an investigation of the site of binding of the selective inhibitor Synta66 to the SOC channel Orai1 using docking and molecular dynamics simulations, and live cell recordings. Synta66 binding was localized to the extracellular site close to the transmembrane (TM)1 and TM3 helices and the extracellular loop segments, which, importantly, are adjacent to the Orai1-selectivity filter. Synta66-sensitivity of the Orai1 pore was, in fact, diminished by both Orai1 mutations affecting Ca2+ selectivity and permeation of Na+ in the absence of Ca2+. Synta66 also efficiently blocked SOC in three glioblastoma cell lines but failed to interfere with cell viability, division and migration. These experiments provide new structural and functional insights into selective drug inhibition of the Orai1 Ca2+ channel by a high-affinity pore blocker.

Zobrazit více v PubMed

Prevarskaya N., Skryma R., Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol. Rev. 2018;98:559–621. doi: 10.1152/physrev.00044.2016. PubMed DOI

Sánchez-Collado J., López J.J., Jardin I., Camello P.J., Falcón D., Regodon S., Salido G.M., Smani T., Rosado J.A., Collado S. Adenylyl Cyclase Type 8 Overexpression Impairs Phosphorylation-Dependent Orai1 Inactivation and Promotes Migration in MDA-MB-231 Breast Cancer Cells. Cancers. 2019;11:1624. doi: 10.3390/cancers11111624. PubMed DOI PMC

Khan H.Y., Mpilla G.B., Sexton R., Viswanadha S., Penmetsa K.V., Aboukameel A., Diab M., Kamgar M., Al-Hallak M.N., Szlaczky M., et al. Calcium Release-Activated Calcium (CRAC) Channel Inhibition Suppresses Pancreatic Ductal Adenocarcinoma Cell Proliferation and Patient-Derived Tumor Growth. Cancers. 2020;12:750. doi: 10.3390/cancers12030750. PubMed DOI PMC

Prakriya M., Lewis R.S. Store-Operated Calcium Channels. Physiol. Rev. 2015;95:1383–1436. doi: 10.1152/physrev.00020.2014. PubMed DOI PMC

Bonhenry D., Schober R., Schmidt T., Waldherr L., Ettrich R.H., Schindl R. Mechanistic insights into the Orai channel by molecular dynamics simulations. Semin. Cell Dev. Biol. 2019;94:50–58. doi: 10.1016/j.semcdb.2019.01.002. PubMed DOI

Schober R., Waldherr L., Schmidt T., Graziani A., Stilianu C., Legat L., Groschner K., Schindl R. STIM1 and Orai1 regulate Ca(2+) microdomains for activation of transcription. Biochim. Biophys. Acta Mol. Cell Res. 2019;1866:1079–1091. doi: 10.1016/j.bbamcr.2018.11.001. PubMed DOI

Luik R.M., Wang B., Prakriya M., Wu M.M., Lewis R.S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature. 2008;454:538–542. doi: 10.1038/nature07065. PubMed DOI PMC

Zhang S.L., Yu Y., Roos J., Kozak J.A., Deerinck T.J., Ellisman M.H., Stauderman K.A., Cahalan M.D. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437:902–905. doi: 10.1038/nature04147. PubMed DOI PMC

Brandman O., Liou J., Park W.S., Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell. 2007;131:1327–1339. doi: 10.1016/j.cell.2007.11.039. PubMed DOI PMC

Enomoto M., Nishikawa T., Back S.-I., Ishiyama N., Zheng L., Stathopulos P.B., Ikura M. Coordination of a Single Calcium Ion in the EF-hand Maintains the Off State of the Stromal Interaction Molecule Luminal Domain. J. Mol. Biol. 2020;432:367–383. doi: 10.1016/j.jmb.2019.10.003. PubMed DOI

Schober R., Bonhenry D., Lunz V., Zhu J., Krizova A., Frischauf I., Fahrner M., Zhang M., Waldherr L., Schmidt T., et al. Sequential activation of STIM1 links Ca(2+) with luminal domain unfolding. Sci. Signal. 2019;12:eaax3194. doi: 10.1126/scisignal.aax3194. PubMed DOI

Sallinger M., Tiffner A., Schmidt T., Bonhenry D., Waldherr L., Frischauf I., Lunz V., Derler I., Schober R., Schindl R. Luminal STIM1 Mutants that Cause Tubular Aggregate Myopathy Promote Autophagic Processes. Int. J. Mol. Sci. 2020;21:4410. doi: 10.3390/ijms21124410. PubMed DOI PMC

Liou J., Fivaz M., Inoue T., Meyer T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl. Acad. Sci. USA. 2007;104:9301. doi: 10.1073/pnas.0702866104. PubMed DOI PMC

Subedi K.P., Ong H.L., Son G.Y., Liu X., Ambudkar I.S. STIM2 Induces Activated Conformation of STIM1 to Control Orai1 Function in ER-PM Junctions. Cell Rep. 2018;23:522–534. doi: 10.1016/j.celrep.2018.03.065. PubMed DOI

Stathopulos P.B., Ikura M. Structure and function of endoplasmic reticulum STIM calcium sensors. Curr. Top. Membr. 2013;71:59–93. PubMed

Muik M., Frischauf I., Derler I., Fahrner M., Bergsmann J., Eder P., Schindl R., Hesch C., Polzinger B., Fritsch R., et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Boil. Chem. 2008;283:8014–8022. doi: 10.1074/jbc.M708898200. PubMed DOI

Park C.Y., Hoover P.J., Mullins F.M., Bachhawat P., Covington E.D., Raunser S., Walz T., Garcia K.C., Dolmetsch R.E., Lewis R.S. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell. 2009;136:876–890. doi: 10.1016/j.cell.2009.02.014. PubMed DOI PMC

Yuan J.P., Zeng W., Dorwart M.R., Choi Y.J., Worley P.F., Muallem S. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat. Cell Biol. 2009;11:337–343. doi: 10.1038/ncb1842. PubMed DOI PMC

Zhou Y., Meraner P., Kwon H.T., Machnes D., Oh-Hora M., Zimmer J., Huang Y., Stura A., Rao A., Hogan P.G. STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat. Struct. Mol. Biol. 2010;17:112–116. doi: 10.1038/nsmb.1724. PubMed DOI PMC

Peinelt C., Vig M., Koomoa D.L., Beck A., Nadler M.J.S., Koblan-Huberson M., Lis A., Fleig A., Penner R., Kinet J.-P. Amplification of CRAC current by STIM1 and CRACM1 (Orai1) Nat. Cell Biol. 2006;8:771–773. doi: 10.1038/ncb1435. PubMed DOI PMC

Prakriya M., Feske S., Gwack Y., Srikanth S., Rao A., Hogan P.G. Orai1 is an essential pore subunit of the CRAC channel. Nature. 2006;443:230–233. doi: 10.1038/nature05122. PubMed DOI

Frischauf I., Litviňuková M., Schober R., Zayats V., Svobodová B., Bonhenry D., Lunz V., Cappello S., Tociu L., Řeha D., et al. Transmembrane helix connectivity in Orai1 controls two gates for calcium-dependent transcription. Sci. Signal. 2017;10:eaao0358. doi: 10.1126/scisignal.aao0358. PubMed DOI PMC

Feske S., Gwack Y., Prakriya M., Srikanth S., Puppel S.-H., Tanasa B., Hogan P.G., Lewis R.S., Daly M., Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–185. doi: 10.1038/nature04702. PubMed DOI

Toth A.B., Hori K., Novakovic M.M., Bernstein N.G., Lambot L., Prakriya M. CRAC channels regulate astrocyte Ca(2+) signaling and gliotransmitter release to modulate hippocampal GABAergic transmission. Sci. Signal. 2019;12:eaaw5450. doi: 10.1126/scisignal.aaw5450. PubMed DOI PMC

Motiani R.K., Hyzinski-García M.C., Zhang X., Henkel M.M., Abdullaev I.F., Kuo Y.-H., Matrougui K., Mongin A.A., Trebak M. STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. Pflug. Arch. 2013;465:1249–1260. doi: 10.1007/s00424-013-1254-8. PubMed DOI PMC

Monteith G.R., Prevarskaya N., Roberts-Thomson S.J. The calcium-cancer signalling nexus. Nat. Rev. Cancer. 2017;17:367–380. doi: 10.1038/nrc.2017.18. PubMed DOI

Hoth M. CRAC channels, calcium, and cancer in light of the driver and passenger concept. Biochim. Biophys. Acta. 2016;1863:1408–1417. doi: 10.1016/j.bbamcr.2015.12.009. PubMed DOI

Davis M.E. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016;20(Suppl. 5):S2–S8. doi: 10.1188/16.CJON.S1.2-8. PubMed DOI PMC

Shergalis A., Bankhead A., 3rd, Luesakul U., Muangsin N., Neamati N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol. Rev. 2018;70:412–445. doi: 10.1124/pr.117.014944. PubMed DOI PMC

Mrugala M.M. Advances and challenges in the treatment of glioblastoma: A clinician’s perspective. Discov. Med. 2013;15:221–230. PubMed

Liu H., Hughes J.D., Rollins S., Chen B., Perkins E. Calcium entry via ORAI1 regulates glioblastoma cell proliferation and apoptosis. Exp. Mol. Pathol. 2011;91:753–760. doi: 10.1016/j.yexmp.2011.09.005. PubMed DOI

Kovacs G.G., Zsembery A., Anderson S.J., Komlosi P., Gillespie G.Y., Bell P.D., Benos D.J., Fuller C.M. Changes in intracellular Ca2+ and pH in response to thapsigargin in human glioblastoma cells and normal astrocytes. Am. J. Physiol. Cell Physiol. 2005;289:C361–C371. doi: 10.1152/ajpcell.00280.2004. PubMed DOI

Shi Z.-X., Rao W., Wang H., Wang N.-D., Si J.-W., Zhao J., Li J.-C., Wang Z.-R. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry. Biochem. Biophys. Res. Commun. 2015;457:378–384. doi: 10.1016/j.bbrc.2014.12.120. PubMed DOI

Zhu M., Chen L., Zhao P., Zhou H., Zhang C., Yu S., Lin Y., Yang X. Store-operated Ca(2+) entry regulates glioma cell migration and invasion via modulation of Pyk2 phosphorylation. J. Exp. Clin. Cancer Res. 2014;33:98. doi: 10.1186/PREACCEPT-3101393591453932. PubMed DOI PMC

Derler I., Fritsch R., Schindl R., Romanin C. CRAC inhibitors: Identification and potential. Expert Opin. Drug Discov. 2008;3:787–800. doi: 10.1517/17460441.3.7.787. PubMed DOI

Takezawa R., Cheng H., Beck A., Ishikawa J., Launay P., Kubota H., Kinet J.-P., Fleig A., Yamada T., Penner R. A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol. Pharmacol. 2006;69:1413–1420. doi: 10.1124/mol.105.021154. PubMed DOI

Schindl R., Bergsmann J., Frischauf I., Derler I., Fahrner M., Muik M., Fritsch R., Groschner K., Romanin C. 2-aminoethoxydiphenyl borate alters selectivity of Orai3 channels by increasing their pore size. J. Boil. Chem. 2008;283:20261–20267. doi: 10.1074/jbc.M803101200. PubMed DOI

Lis A., Peinelt C., Beck A., Parvez S., Monteilh-Zoller M., Fleig A., Penner R. CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr. Biol. 2007;17:794–800. doi: 10.1016/j.cub.2007.03.065. PubMed DOI PMC

Kappel S., Kilch T., Baur R., Lochner M., Peinelt C. The Number and Position of Orai3 Units within Heteromeric Store-Operated Ca(2+) Channels Alter the Pharmacology of ICRAC. Int. J. Mol. Sci. 2020;21:2458. doi: 10.3390/ijms21072458. PubMed DOI PMC

Derler I., Schindl R., Fritsch R., Heftberger P., Riedl M.C., Begg M., House D., Romanin C. The action of selective CRAC channel blockers is affected by the Orai pore geometry. Cell Calcium. 2013;53:139–151. doi: 10.1016/j.ceca.2012.11.005. PubMed DOI PMC

Tian C., Du L., Zhou Y., Li M. Store-operated CRAC channel inhibitors: Opportunities and challenges. Future Med. Chem. 2016;8:817–832. doi: 10.4155/fmc-2016-0024. PubMed DOI PMC

Jairaman A., Prakriya M. Molecular pharmacology of store-operated CRAC channels. Channels. 2013;7:402–414. doi: 10.4161/chan.25292. PubMed DOI PMC

Chen G., Panicker S., Lau K.-Y., Apparsundaram S., Patel V.A., Chen S.-L., Soto R., Jung J.K., Ravindran P., Okuhara D., et al. Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions. Mol. Immunol. 2013;54:355–367. doi: 10.1016/j.molimm.2012.12.011. PubMed DOI

Stauderman K.A. CRAC channels as targets for drug discovery and development. Cell Calcium. 2018;74:147–159. doi: 10.1016/j.ceca.2018.07.005. PubMed DOI

Di Sabatino A., Rovedatti L., Kaur R., Spencer J., Wilde J., Scott L., Corazza G., Lee K., Gunthorpe M., McLean P., et al. Targeting gut T cell Ca2+ release-activated Ca2+ channels inhibits T cell cytokine production and T-box transcription factor T-bet in inflammatory bowel disease. J. Immunol. 2009;183:3454–3462. doi: 10.4049/jimmunol.0802887. PubMed DOI

Ng S.W., di Capite J., Singaravelu K., Parekh A.B. Sustained activation of the tyrosine kinase Syk by antigen in mast cells requires local Ca2+ influx through Ca2+ release-activated Ca2+ channels. J. Biol. Chem. 2008;283:31348–31355. doi: 10.1074/jbc.M804942200. PubMed DOI

Yeromin A.V., Zhang S.L., Jiang W., Yu Y., Safrina O., Cahalan M.D. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature. 2006;443:226–229. doi: 10.1038/nature05108. PubMed DOI PMC

Vig M., Beck A., Billingsley J.M., Lis A., Parvez S., Peinelt C., Koomoa D.L., Soboloff J., Gill D.L., Fleig A., et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 2006;16:2073–2079. doi: 10.1016/j.cub.2006.08.085. PubMed DOI PMC

Yeung P.S., Yamashita M., Ing C.E., Pomes R., Freymann D.M., Prakriya M. Mapping the functional anatomy of Orai1 transmembrane domains for CRAC channel gating. Proc. Natl. Acad. Sci. USA. 2018;115:E5193–E5202. doi: 10.1073/pnas.1718373115. PubMed DOI PMC

Dong H., Fiorin G., Carnevale V., Treptow W., Klein M.L. Pore waters regulate ion permeation in a calcium release-activated calcium channel. Proc. Natl. Acad. Sci. USA. 2013;110:17332–17337. doi: 10.1073/pnas.1316969110. PubMed DOI PMC

Dörr K., Kilch T., Kappel S., AlAnsary D., Schwär G., Niemeyer B.A., Peinelt C. Cell type-specific glycosylation of Orai1 modulates store-operated Ca2+ entry. Sci. Signal. 2016;9:ra25. doi: 10.1126/scisignal.aaa9913. PubMed DOI

Wen L., Voronina S., Javed M.A., Awais M., Szatmary P., Latawiec D., Chvanov M., Collier D., Huang W., Barrett J., et al. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models. Gastroenterology. 2015;149:481–492. doi: 10.1053/j.gastro.2015.04.015. PubMed DOI PMC

Yang S., Zhang J.J., Huang X.Y. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 2009;15:124–134. doi: 10.1016/j.ccr.2008.12.019. PubMed DOI

Chen Y.-F., Chiu W.-T., Lin P.-Y., Huang H.-J., Chou C.-Y., Chang H.-C., Tang M.J., Shen M.-R., Chen Y.-F., Chen Y.-T. Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc. Natl. Acad. Sci. USA. 2011;108:15225–15230. doi: 10.1073/pnas.1103315108. PubMed DOI PMC

Franzius D., Hoth M., Penner R. Non-specific effects of calcium entry antagonists in mast cells. Pflug. Arch. 1994;428:433–438. doi: 10.1007/BF00374562. PubMed DOI

Zakharov S.I., Smani T., Dobrydneva Y., Monje F., Fichandler C., Blackmore P.F., Bolotina V.M. Diethylstilbestrol is a potent inhibitor of store-operated channels and capacitative Ca(2+) influx. Mol. Pharmacol. 2004;66:702–707. PubMed

Liu Z., Wei Y., Zhang L., Yee P.P., Johnson M., Zhang X., Gulley M., Atkinson J.M., Trebak M., Wang H.-G., et al. Induction of store-operated calcium entry (SOCE) suppresses glioblastoma growth by inhibiting the Hippo pathway transcriptional coactivators YAP/TAZ. Oncogene. 2019;38:120–139. doi: 10.1038/s41388-018-0425-7. PubMed DOI PMC

DeHaven W.I., Smyth J.T., Boyles R.R., Bird G.S., Putney J.W., Jr. Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J. Biol. Chem. 2008;283:19265–19273. doi: 10.1074/jbc.M801535200. PubMed DOI PMC

Peinelt C., Lis A., Beck A., Fleig A., Penner R. 2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J. Physiol. 2008;586:3061–3073. doi: 10.1113/jphysiol.2008.151365. PubMed DOI PMC

Tamarina N.A., Kuznetsov A., Philipson L.H. Reversible translocation of EYFP-tagged STIM1 is coupled to calcium influx in insulin secreting beta-cells. Cell Calcium. 2008;44:533–544. doi: 10.1016/j.ceca.2008.03.007. PubMed DOI

Zhang X., Xin P., Yoast R.E., Emrich S.M., Johnson M.T., Pathak T., Benson J.C., Azimi I., Gill D.L., Monteith G.R., et al. Distinct pharmacological profiles of ORAI1, ORAI2, and ORAI3 channels. Cell Calcium. 2020;91:102281. doi: 10.1016/j.ceca.2020.102281. PubMed DOI PMC

Frischauf I., Zayats V., Deix M., Hochreiter A., Jardin I., Muik M., Lackner B., Svobodova B., Pammer T., Litvinukova M., et al. A calcium-accumulating region, CAR, in the channel Orai1 enhances Ca(2+) permeation and SOCE-induced gene transcription. Sci. Signal. 2015;8:ra131. doi: 10.1126/scisignal.aab1901. PubMed DOI PMC

Dubois C., Abeele F.V., Lehenkyi V., Gkika D., Guarmit B., Lepage G., Slomianny C., Borowiec A.S., Bidaux G., Benahmed M., et al. Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell. 2014;26:19–32. doi: 10.1016/j.ccr.2014.04.025. PubMed DOI

Bhuvaneshwari S., Sankaranarayanan K. Identification of potential CRAC channel inhibitors: Pharmacophore mapping, 3D-QSAR modelling, and molecular docking approach. SAR QSAR Environ. Res. 2019;30:81–108. doi: 10.1080/1062936X.2019.1566172. PubMed DOI

Schrödinger Release 2017-1: Canvas. Schrödinger, LLC; New York, NY, USA: 2017.

Banks J.L., Beard H.S., Cao Y., Cho A.E., Damm W., Farid R., Felts A.K., Halgren T.A., Mainz D.T., Maple J.R., et al. Integrated Modeling Program, Applied Chemical Theory (IMPACT) J. Comput. Chem. 2005;26:1752–1780. doi: 10.1002/jcc.20292. PubMed DOI PMC

Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicić J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI

Tribello G.A., Bonomi M., Branduardi D., Camilloni C., Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014;185:604–613. doi: 10.1016/j.cpc.2013.09.018. DOI

Huang J., MacKerell A.D., Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013;34:2135–2145. doi: 10.1002/jcc.23354. PubMed DOI PMC

Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias D.J., Mondragon-Ramirez C., Vorobyov I., Mackerell A.D., Jr., Pastor R.W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Kohagen M., Mason P.E., Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B. 2016;120:1454–1460. doi: 10.1021/acs.jpcb.5b05221. PubMed DOI

Jo S., Kim T., Iyer V.G., Im W. Software news and updates-CHARNIM-GUI: A web-based grraphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Lee J., Patel D.S., Stahle J., Park S.J., Kern N.R., Kim S., Lee J., Cheng X., Valvano M.A., Holst O., et al. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J. Chem. Theory Comput. 2019;15:775–786. doi: 10.1021/acs.jctc.8b01066. PubMed DOI

Gutiérrez I.S., Lin F.-Y., Vanommeslaeghe K., Lemkul J.A., Armacost K.A., Brooks C.L., Mackerell A.D., Jr. Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand-protein interactions. Bioorganic Med. Chem. 2016;24:4812–4825. doi: 10.1016/j.bmc.2016.06.034. PubMed DOI PMC

Vanommeslaeghe K., MacKerell A.D. Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing. J. Chem. Inf. Model. 2012;52:3144–3154. doi: 10.1021/ci300363c. PubMed DOI PMC

Abraham M., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Nose S. A Molecular-Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI

Hoover W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI

Hoover P.J., Lewis R.S. Stoichiometric requirements for trapping and gating of Ca2+ release-activated Ca2+ (CRAC) channels by stromal interaction molecule 1 (STIM1) Proc. Natl. Acad. Sci. USA. 2011;108:13299–13304. doi: 10.1073/pnas.1101664108. PubMed DOI PMC

Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Nose S., Klein M.L. Constant Pressure Molecular-Dynamics for Molecular-Systems. Mol. Phys. 1983;50:1055–1076. doi: 10.1080/00268978300102851. DOI

Darden T., York D., Pedersen L. Particle Mesh Ewald—An N.Log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Hess B. P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008;4:116–122. doi: 10.1021/ct700200b. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...