WRN modulates translation by influencing nuclear mRNA export in HeLa cancer cells
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
R01 AG034156
NIA NIH HHS - United States
R01AG034156
NIA NIH HHS - United States
PubMed
33054770
PubMed Central
PMC7557079
DOI
10.1186/s12860-020-00315-9
PII: 10.1186/s12860-020-00315-9
Knihovny.cz E-resources
- Keywords
- Cancer, NXF1 export receptor, Senescence, Translation, Werner syndrome protein, mRNA export,
- MeSH
- Cell Nucleus metabolism MeSH
- HeLa Cells MeSH
- RecQ Helicases genetics MeSH
- Werner Syndrome Helicase metabolism MeSH
- Humans MeSH
- RNA, Messenger genetics MeSH
- Metabolic Networks and Pathways physiology MeSH
- Cell Line, Tumor MeSH
- Neoplasms metabolism MeSH
- Oxidation-Reduction MeSH
- RNA Processing, Post-Transcriptional physiology MeSH
- Cell Proliferation physiology MeSH
- RNA-Binding Proteins metabolism MeSH
- RNA Transport physiology MeSH
- Werner Syndrome metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RecQ Helicases MeSH
- Werner Syndrome Helicase MeSH
- RNA, Messenger MeSH
- RNA-Binding Proteins MeSH
- WRN protein, human MeSH Browser
BACKGROUND: The Werner syndrome protein (WRN) belongs to the RecQ family of helicases and its loss of function results in the premature aging disease Werner syndrome (WS). We previously demonstrated that an early cellular change induced by WRN depletion is a posttranscriptional decrease in the levels of enzymes involved in metabolic pathways that control macromolecular synthesis and protect from oxidative stress. This metabolic shift is tolerated by normal cells but causes mitochondria dysfunction and acute oxidative stress in rapidly growing cancer cells, thereby suppressing their proliferation. RESULTS: To identify the mechanism underlying this metabolic shift, we examined global protein synthesis and mRNA nucleocytoplasmic distribution after WRN knockdown. We determined that WRN depletion in HeLa cells attenuates global protein synthesis without affecting the level of key components of the mRNA export machinery. We further observed that WRN depletion affects the nuclear export of mRNAs and demonstrated that WRN interacts with mRNA and the Nuclear RNA Export Factor 1 (NXF1). CONCLUSIONS: Our findings suggest that WRN influences the export of mRNAs from the nucleus through its interaction with the NXF1 export receptor thereby affecting cellular proteostasis. In summary, we identified a new partner and a novel function of WRN, which is especially important for the proliferation of cancer cells.
See more in PubMed
Dyer CA, Sinclair AJ. The premature ageing syndromes: insights into the ageing process. Age Ageing. 1998;27(1):73–80. doi: 10.1093/ageing/27.1.73. PubMed DOI
Epstein CJ, Martin GM, Schultz AL, Motulsky AG. Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 1966;45(3):177–221. doi: 10.1097/00005792-196605000-00001. PubMed DOI
Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, et al. Positional cloning of the Werner's syndrome gene. Science. 1996;272(5259):258–262. doi: 10.1126/science.272.5259.258. PubMed DOI
Matsumoto T, Shimamoto A, Goto M, Furuichi Y. Impaired nuclear localization of defective DNA helicases in Werner's syndrome. Nat Genet. 1997;16(4):335–336. doi: 10.1038/ng0897-335. PubMed DOI
Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, et al. The Werner syndrome protein is a DNA helicase. Nat Genet. 1997;17(1):100–103. doi: 10.1038/ng0997-100. PubMed DOI
Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J. The premature ageing syndrome protein, WRN, is a 3′-->5′ exonuclease. Nat Genet. 1998;20(2):114–116. doi: 10.1038/2410. PubMed DOI PMC
Suzuki N, Shimamoto A, Imamura O, Kuromitsu J, Kitao S, Goto M, et al. DNA helicase activity in Werner's syndrome gene product synthesized in a baculovirus system. Nucleic Acids Res. 1997;25(15):2973–2978. doi: 10.1093/nar/25.15.2973. PubMed DOI PMC
Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9(9):644–654. doi: 10.1038/nrc2682. PubMed DOI
Lauper JM, Krause A, Vaughan TL, Monnat RJ., Jr Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8(4):e59709. doi: 10.1371/journal.pone.0059709. PubMed DOI PMC
Opresko PL, Cheng WH, von Kobbe C, Harrigan JA, Bohr VA. Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis. 2003;24(5):791–802. doi: 10.1093/carcin/bgg034. PubMed DOI
Goto M, Miller RW, Ishikawa Y, Sugano H. Excess of rare cancers in Werner syndrome (adult progeria) Cancer Epidemiol Biomark Prev. 1996;5(4):239–246. PubMed
Tokita M, Kennedy SR, Risques RA, Chun SG, Pritchard C, Oshima J, et al. Werner syndrome through the lens of tissue and tumour genomics. Sci Rep. 2016;6:32038. doi: 10.1038/srep32038. PubMed DOI PMC
Nakamura Y, Shimizu T, Ohigashi Y, Itou N, Ishikawa Y. Meningioma arising in Werner syndrome confirmed by mutation analysis. J Clin Neurosci. 2005;12(4):503–506. doi: 10.1016/j.jocn.2003.12.022. PubMed DOI
Tsuji Y, Kusuzaki K, Kanemitsu K, Matsumoto T, Ishikawa Y, Hirasawa Y. Calcaneal osteosarcoma associated with Werner syndrome. A case report with mutation analysis. J Bone Joint Surg Am. 2000;82(9):1308–1313. doi: 10.2106/00004623-200009000-00011. PubMed DOI
Faragher RG, Kill IR, Hunter JA, Pope FM, Tannock C, Shall S. The gene responsible for Werner syndrome may be a cell division "counting" gene. Proc Natl Acad Sci U S A. 1993;90(24):12030–12034. doi: 10.1073/pnas.90.24.12030. PubMed DOI PMC
Davis T, Wyllie FS, Rokicki MJ, Bagley MC, Kipling D. The role of cellular senescence in Werner syndrome: toward therapeutic intervention in human premature aging. Ann N Y Acad Sci. 2007;1100:455–469. doi: 10.1196/annals.1395.051. PubMed DOI
Szekely AM, Bleichert F, Numann A, Van Komen S, Manasanch E, Ben Nasr A, et al. Werner protein protects nonproliferating cells from oxidative DNA damage. Mol Cell Biol. 2005;25(23):10492–10506. doi: 10.1128/MCB.25.23.10492-10506.2005. PubMed DOI PMC
Von Kobbe C, May A, Grandori C, Bohr VA. Werner syndrome cells escape hydrogen peroxide-induced cell proliferation arrest. FASEB J. 2004;18(15):1970–1972. doi: 10.1096/fj.04-1895fje. PubMed DOI
Agrelo R, Sutz MA, Setien F, Aldunate F, Esteller M, Da Costa V, et al. A novel Werner syndrome mutation: pharmacological treatment by read-through of nonsense mutations and epigenetic therapies. Epigenetics. 2015;10(4):329–341. doi: 10.1080/15592294.2015.1027853. PubMed DOI PMC
Kashino G, Kodama S, Suzuki K, Oshimura M, Watanabe M. Preferential expression of an intact WRN gene in Werner syndrome cell lines in which a normal chromosome 8 has been introduced. Biochem Biophys Res Commun. 2001;289(1):111–115. doi: 10.1006/bbrc.2001.5933. PubMed DOI
Moser R, Toyoshima M, Robinson K, Gurley KE, Howie HL, Davison J, et al. MYC-driven tumorigenesis is inhibited by WRN syndrome gene deficiency. Mol Cancer Res. 2012;10(4):535–545. doi: 10.1158/1541-7786.MCR-11-0508. PubMed DOI PMC
Opresko PL, Calvo JP, von Kobbe C. Role for the Werner syndrome protein in the promotion of tumor cell growth. Mech Ageing Dev. 2007;128(7–8):423–436. doi: 10.1016/j.mad.2007.05.009. PubMed DOI
Futami K, Ishikawa Y, Goto M, Furuichi Y, Sugimoto M. Role of Werner syndrome gene product helicase in carcinogenesis and in resistance to genotoxins by cancer cells. Cancer Sci. 2008;99(5):843–848. doi: 10.1111/j.1349-7006.2008.00778.x. PubMed DOI PMC
Slupianek A, Poplawski T, Jozwiakowski SK, Cramer K, Pytel D, Stoczynska E, et al. BCR/ABL stimulates WRN to promote survival and genomic instability. Cancer Res. 2011;71(3):842–851. doi: 10.1158/0008-5472.CAN-10-1066. PubMed DOI PMC
Li B, Iglesias-Pedraz JM, Chen LY, Yin F, Cadenas E, Reddy S, et al. Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell. 2014;13(2):367–378. doi: 10.1111/acel.12181. PubMed DOI PMC
Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I. Targeting the translation machinery in cancer. Nat Rev Drug Discov. 2015;14(4):261–278. doi: 10.1038/nrd4505. PubMed DOI
Vaklavas C, Blume SW, Grizzle WE. Translational Dysregulation in Cancer: molecular insights and potential clinical applications in biomarker development. Front Oncol. 2017;7:158. doi: 10.3389/fonc.2017.00158. PubMed DOI PMC
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 2012;26(19):2119–2137. doi: 10.1101/gad.200303.112. PubMed DOI PMC
Hahn S. Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol. 2004;11(5):394–403. doi: 10.1038/nsmb763. PubMed DOI PMC
McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature. 1997;385(6614):357–361. doi: 10.1038/385357a0. PubMed DOI
Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet. 2014;15(3):163–175. doi: 10.1038/nrg3662. PubMed DOI PMC
Bjork P, Wieslander L. Mechanisms of mRNA export. Semin Cell Dev Biol. 2014;32:47–54. doi: 10.1016/j.semcdb.2014.04.027. PubMed DOI
Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol. 2017;18(2):73–89. doi: 10.1038/nrm.2016.147. PubMed DOI
Kabachinski G, Schwartz TU. The nuclear pore complex--structure and function at a glance. J Cell Sci. 2015;128(3):423–429. doi: 10.1242/jcs.083246. PubMed DOI PMC
Lachapelle S, Gagne JP, Garand C, Desbiens M, Coulombe Y, Bohr VA, et al. Proteome-wide identification of WRN-interacting proteins in untreated and nuclease-treated samples. J Proteome Res. 2011;10(3):1216–1227. doi: 10.1021/pr100990s. PubMed DOI PMC
Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 1999;147(7):1431–1442. doi: 10.1083/jcb.147.7.1431. PubMed DOI PMC
Lian XJ, Gallouzi IE. Oxidative stress increases the number of stress granules in senescent cells and triggers a rapid decrease in p21waf1/cip1 translation. J Biol Chem. 2009;284(13):8877–8887. doi: 10.1074/jbc.M806372200. PubMed DOI PMC
Chen L, Liu B. Relationships between stress granules, oxidative stress, and neurodegenerative diseases. Oxidative Med Cell Longev. 2017;2017:1809592. PubMed PMC
Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J, et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell. 2002;13(1):195–210. doi: 10.1091/mbc.01-05-0221. PubMed DOI PMC
Cande C, Vahsen N, Metivier D, Tourriere H, Chebli K, Garrido C, et al. Regulation of cytoplasmic stress granules by apoptosis-inducing factor. J Cell Sci. 2004;117(Pt 19):4461–4468. doi: 10.1242/jcs.01356. PubMed DOI
Iglesias-Pedraz JM, Comai L. Measurements of hydrogen peroxide and oxidative DNA damage in a cell model of premature aging. Methods Mol Biol. 2020;2144:245–257. doi: 10.1007/978-1-0716-0592-9_22. PubMed DOI
Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146(5):905–916. doi: 10.1083/jcb.146.5.905. PubMed DOI PMC
de la Cruz J, Karbstein K, Woolford JL., Jr Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem. 2015;84:93–129. doi: 10.1146/annurev-biochem-060614-033917. PubMed DOI PMC
Ciganda M, Williams N. Eukaryotic 5S rRNA biogenesis. Wiley Interdiscip Rev RNA. 2011;2(4):523–533. doi: 10.1002/wrna.74. PubMed DOI PMC
Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. Structure of the human 80S ribosome. Nature. 2015;520(7549):640–645. doi: 10.1038/nature14427. PubMed DOI
Thomson E, Ferreira-Cerca S, Hurt E. Eukaryotic ribosome biogenesis at a glance. J Cell Sci. 2013;126(Pt 21):4815–4821. doi: 10.1242/jcs.111948. PubMed DOI
Shiratori M, Suzuki T, Itoh C, Goto M, Furuichi Y, Matsumoto T. WRN helicase accelerates the transcription of ribosomal RNA as a component of an RNA polymerase I-associated complex. Oncogene. 2002;21(16):2447–2454. doi: 10.1038/sj.onc.1205334. PubMed DOI
Li Z, Zhu Y, Zhai Y. M RC, Bao Y, White TE, et al. Werner complex deficiency in cells disrupts the nuclear pore complex and the distribution of Lamin B1. Biochim Biophys Acta. 2013;1833(12):3338–3345. doi: 10.1016/j.bbamcr.2013.09.003. PubMed DOI
Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J, Bronson R, et al. Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol. 2000;20(9):3286–3291. doi: 10.1128/MCB.20.9.3286-3291.2000. PubMed DOI PMC
Cheng H, Dufu K, Lee CS, Hsu JL, Dias A, Reed R. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell. 2006;127(7):1389–1400. doi: 10.1016/j.cell.2006.10.044. PubMed DOI
Chi B, Wang Q, Wu G, Tan M, Wang L, Shi M, et al. Aly and THO are required for assembly of the human TREX complex and association of TREX components with the spliced mRNA. Nucleic Acids Res. 2013;41(2):1294–1306. doi: 10.1093/nar/gks1188. PubMed DOI PMC
Masuda S, Das R, Cheng H, Hurt E, Dorman N, Reed R. Recruitment of the human TREX complex to mRNA during splicing. Genes Dev. 2005;19(13):1512–1517. doi: 10.1101/gad.1302205. PubMed DOI PMC
Shen J, Zhang L, Zhao R. Biochemical characterization of the ATPase and helicase activity of UAP56, an essential pre-mRNA splicing and mRNA export factor. J Biol Chem. 2007;282(31):22544–22550. doi: 10.1074/jbc.M702304200. PubMed DOI
Strasser K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature. 2002;417(6886):304–308. doi: 10.1038/nature746. PubMed DOI
Viphakone N, Hautbergue GM, Walsh M, Chang CT, Holland A, Folco EG, et al. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat Commun. 2012;3:1006. doi: 10.1038/ncomms2005. PubMed DOI PMC
Heath CG, Viphakone N, Wilson SA. The role of TREX in gene expression and disease. Biochem J. 2016;473(19):2911–2935. doi: 10.1042/BCJ20160010. PubMed DOI PMC
Kapadia F, Pryor A, Chang TH, Johnson LF. Nuclear localization of poly(a)+ mRNA following siRNA reduction of expression of the mammalian RNA helicases UAP56 and URH49. Gene. 2006;384:37–44. doi: 10.1016/j.gene.2006.07.010. PubMed DOI
Wickramasinghe VO, McMurtrie PI, Mills AD, Takei Y, Penrhyn-Lowe S, Amagase Y, et al. mRNA export from mammalian cell nuclei is dependent on GANP. Curr Biol. 2010;20(1):25–31. doi: 10.1016/j.cub.2009.10.078. PubMed DOI PMC
Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden KL. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep. 2012;2(2):207–215. doi: 10.1016/j.celrep.2012.07.007. PubMed DOI PMC
Volpon L, Culjkovic-Kraljacic B, Sohn HS, Blanchet-Cohen A, Osborne MJ, Borden KLB. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery. RNA. 2017;23(6):927–937. doi: 10.1261/rna.060137.116. PubMed DOI PMC
Ahn B, Harrigan JA, Indig FE, Wilson DM, 3rd, Bohr VA. Regulation of WRN helicase activity in human base excision repair. J Biol Chem. 2004;279(51):53465–53474. doi: 10.1074/jbc.M409624200. PubMed DOI
Bohr VA. Rising from the RecQ-age: the role of human RecQ helicases in genome maintenance. Trends Biochem Sci. 2008;33(12):609–620. doi: 10.1016/j.tibs.2008.09.003. PubMed DOI PMC
Chen L, Huang S, Lee L, Davalos A, Schiestl RH, Campisi J, et al. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell. 2003;2(4):191–199. doi: 10.1046/j.1474-9728.2003.00052.x. PubMed DOI
Comai L, Li B. The Werner syndrome protein at the crossroads of DNA repair and apoptosis. Mech Ageing Dev. 2004;125(8):521–528. doi: 10.1016/j.mad.2004.06.004. PubMed DOI
Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J. Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci U S A. 2007;104(7):2205–2210. doi: 10.1073/pnas.0609410104. PubMed DOI PMC
Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J, et al. The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. J Biol Chem. 2007;282(36):26591–26602. doi: 10.1074/jbc.M703343200. PubMed DOI
Harrigan JA, Wilson DM, 3rd, Prasad R, Opresko PL, Beck G, May A, et al. The Werner syndrome protein operates in base excision repair and cooperates with DNA polymerase beta. Nucleic Acids Res. 2006;34(2):745–754. doi: 10.1093/nar/gkj475. PubMed DOI PMC
Kusumoto R, Muftuoglu M, Bohr VA. The role of WRN in DNA repair is affected by post-translational modifications. Mech Ageing Dev. 2007;128(1):50–57. doi: 10.1016/j.mad.2006.11.010. PubMed DOI
Lan L, Nakajima S, Komatsu K, Nussenzweig A, Shimamoto A, Oshima J, et al. Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci. 2005;118(Pt 18):4153–4162. doi: 10.1242/jcs.02544. PubMed DOI
Rossi ML, Ghosh AK, Bohr VA. Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 2010;9(3):331–344. doi: 10.1016/j.dnarep.2009.12.011. PubMed DOI PMC
Shamanna RA, Croteau DL, Lee JH, Bohr VA. Recent Advances in Understanding Werner Syndrome. F1000Res. 2017;6:1779. doi: 10.12688/f1000research.12110.1. PubMed DOI PMC
Moreno-Sanchez R, Gallardo-Perez JC, Rodriguez-Enriquez S, Saavedra E, Marin-Hernandez A. Control of the NADPH supply for oxidative stress handling in cancer cells. Free Radic Biol Med. 2017;112:149–161. doi: 10.1016/j.freeradbiomed.2017.07.018. PubMed DOI
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):e1600200. doi: 10.1126/sciadv.1600200. PubMed DOI PMC
Labbe A, Lafleur VN, Patten DA, Robitaille GA, Garand C, Lamalice L, et al. The Werner syndrome gene product (WRN): a repressor of hypoxia-inducible factor-1 activity. Exp Cell Res. 2012;318(14):1620–1632. doi: 10.1016/j.yexcr.2012.04.010. PubMed DOI
Reichmann D, Voth W, Jakob U. Maintaining a healthy proteome during oxidative stress. Mol Cell. 2018;69(2):203–213. doi: 10.1016/j.molcel.2017.12.021. PubMed DOI PMC
Powers SK, Smuder AJ, Criswell DS. Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxid Redox Signal. 2011;15(9):2519–2528. doi: 10.1089/ars.2011.3973. PubMed DOI PMC
Sharma A, Singh K, Almasan A. Histone H2AX phosphorylation: a marker for DNA damage. Methods Mol Biol. 2012;920:613–626. doi: 10.1007/978-1-61779-998-3_40. PubMed DOI
Toyooka T, Ishihama M, Ibuki Y. Phosphorylation of histone H2AX is a powerful tool for detecting chemical photogenotoxicity. J Invest Dermatol. 2011;131(6):1313–1321. doi: 10.1038/jid.2011.28. PubMed DOI
de Las H-RA, Perucho L, Paciucci R, Vilardell J, ME LL. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev. 2014;33(1):115–141. PubMed
Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–1945. doi: 10.1101/gad.1212704. PubMed DOI
Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999;274(48):34493–34498. doi: 10.1074/jbc.274.48.34493. PubMed DOI
Borden KL, Culjkovic-Kraljacic B. Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk Lymphoma. 2010;51(10):1805–1815. doi: 10.3109/10428194.2010.496506. PubMed DOI PMC
Culjkovic-Kraljacic B, Fernando TM, Marullo R, Calvo-Vidal N, Verma A, Yang S, et al. Combinatorial targeting of nuclear export and translation of RNA inhibits aggressive B-cell lymphomas. Blood. 2016;127(7):858–868. doi: 10.1182/blood-2015-05-645069. PubMed DOI PMC
Dominguez-Sanchez MS, Saez C, Japon MA, Aguilera A, Luna R. Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers. BMC Cancer. 2011;11:77. doi: 10.1186/1471-2407-11-77. PubMed DOI PMC
Guo S, Hakimi MA, Baillat D, Chen X, Farber MJ, Klein-Szanto AJ, et al. Linking transcriptional elongation and messenger RNA export to metastatic breast cancers. Cancer Res. 2005;65(8):3011–3016. doi: 10.1158/0008-5472.CAN-04-3624. PubMed DOI
Saito Y, Kasamatsu A, Yamamoto A, Shimizu T, Yokoe H, Sakamoto Y, et al. ALY as a potential contributor to metastasis in human oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2013;139(4):585–594. doi: 10.1007/s00432-012-1361-5. PubMed DOI PMC
Siddiqui N, Borden KL. mRNA export and cancer. Wiley Interdiscip Rev RNA. 2012;3(1):13–25. doi: 10.1002/wrna.101. PubMed DOI
Okamura M, Inose H, Masuda S. RNA export through the NPC in eukaryotes. Genes (Basel) 2015;6(1):124–149. doi: 10.3390/genes6010124. PubMed DOI PMC
Coyle JH, Bor YC, Rekosh D, Hammarskjold ML. The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. RNA. 2011;17(7):1344–1356. doi: 10.1261/rna.2616111. PubMed DOI PMC
Soheilypour M, Mofrad MR. Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs. Sci Rep. 2016;6:35380. doi: 10.1038/srep35380. PubMed DOI PMC
Kaur S, White TE, DiGuilio AL, Glavy JS. The discovery of a Werner helicase interacting protein (WHIP) association with the nuclear pore complex. Cell Cycle. 2010;9(15):3106–3111. doi: 10.4161/cc.9.15.12524. PubMed DOI
von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X, Brosh RM, Jr, et al. Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins. J Biol Chem. 2002;277(24):22035–22044. doi: 10.1074/jbc.M200914200. PubMed DOI
Gama-Carvalho M, Carmo-Fonseca M. The rules and roles of nucleocytoplasmic shuttling proteins. FEBS Lett. 2001;498(2–3):157–163. doi: 10.1016/S0014-5793(01)02487-5. PubMed DOI
Aggarwal M, Sommers JA, Shoemaker RH, Brosh RM., Jr Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc Natl Acad Sci U S A. 2011;108(4):1525–1530. doi: 10.1073/pnas.1006423108. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Lee S, Lee DK. What is the proper way to apply the multiple comparison test? Korean J Anesthesiol. 2018;71(5):353–360. doi: 10.4097/kja.d.18.00242. PubMed DOI PMC