In vivo hippocampal subfield volumes in bipolar disorder-A mega-analysis from The Enhancing Neuro Imaging Genetics through Meta-Analysis Bipolar Disorder Working Group
Language English Country United States Media print-electronic
Document type Journal Article, Meta-Analysis, Multicenter Study, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
106469
CIHR - Canada
HRA-POR-324
Health Research Board - Ireland
U54EB020403
NIH HHS - United States
R01 MH116147
NIMH NIH HHS - United States
T32 AG058507
NIA NIH HHS - United States
5T32MH073526
NIH HHS - United States
R21 MH113871
NIMH NIH HHS - United States
R01AG059874
NIH HHS - United States
Wellcome Trust - United Kingdom
103703
Wellcome Trust - United Kingdom
R01MH116147
NIH HHS - United States
R21MH113871
NIMH NIH HHS - United States
T32AG058507
NIH HHS - United States
R01 AG059874
NIA NIH HHS - United States
104036/Z/14/Z
Wellcome Trust - United Kingdom
P20 GM121312
NIGMS NIH HHS - United States
T32 MH073526
NIMH NIH HHS - United States
P20GM121312
NIGMS NIH HHS - United States
R01MH117601
NIH HHS - United States
142255
CIHR - Canada
U54 EB020403
NIBIB NIH HHS - United States
R01 MH117601
NIMH NIH HHS - United States
PubMed
33073925
PubMed Central
PMC8675404
DOI
10.1002/hbm.25249
Knihovny.cz E-resources
- Keywords
- bipolar disorder subtype, hippocampus, large-scale, lithium, psychosis, structural brain MRI,
- MeSH
- Bipolar Disorder diagnostic imaging drug therapy pathology MeSH
- Genetics MeSH
- Hippocampus diagnostic imaging drug effects pathology MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Neuroimaging * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
The hippocampus consists of anatomically and functionally distinct subfields that may be differentially involved in the pathophysiology of bipolar disorder (BD). Here we, the Enhancing NeuroImaging Genetics through Meta-Analysis Bipolar Disorder workinggroup, study hippocampal subfield volumetry in BD. T1-weighted magnetic resonance imaging scans from 4,698 individuals (BD = 1,472, healthy controls [HC] = 3,226) from 23 sites worldwide were processed with FreeSurfer. We used linear mixed-effects models and mega-analysis to investigate differences in hippocampal subfield volumes between BD and HC, followed by analyses of clinical characteristics and medication use. BD showed significantly smaller volumes of the whole hippocampus (Cohen's d = -0.20), cornu ammonis (CA)1 (d = -0.18), CA2/3 (d = -0.11), CA4 (d = -0.19), molecular layer (d = -0.21), granule cell layer of dentate gyrus (d = -0.21), hippocampal tail (d = -0.10), subiculum (d = -0.15), presubiculum (d = -0.18), and hippocampal amygdala transition area (d = -0.17) compared to HC. Lithium users did not show volume differences compared to HC, while non-users did. Antipsychotics or antiepileptic use was associated with smaller volumes. In this largest study of hippocampal subfields in BD to date, we show widespread reductions in nine of 12 subfields studied. The associations were modulated by medication use and specifically the lack of differences between lithium users and HC supports a possible protective role of lithium in BD.
Amsterdam Neuroscience Amsterdam UMC Amsterdam The Netherlands
Black Dog Institute Sydney New South Wales Australia
Cardiff University Brain Research Imaging Centre Cardiff University Cardiff UK
Center for Mind Brain and Behavior Marburg Germany
Department of Adult Mental Health Institute of Clinical Medicine University of Oslo Oslo Norway
Department of Neurology Oslo University Hospital Oslo Norway
Department of Pathophysiology and Transplantation University of Milan Milan Italy
Department of Psychiatric Research Diakonhjemmet Hospital Oslo Norway
Department of Psychiatry Amsterdam UMC Location VUMC Amsterdam The Netherlands
Department of Psychiatry and Psychotherapy Philipps University Marburg Marburg Germany
Department of Psychiatry and Psychotherapy University of Bonn Bonn Germany
Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
Department of Psychiatry Melbourne Medical School The University of Melbourne Melbourne Australia
Department of Psychiatry Radboudumc Nijmegen The Netherlands
Department of Psychiatry Universidade de São Paulo São Paulo Brazil
Department of Psychiatry University of Münster Münster Germany
Department of Psychology University of Oslo Oslo Norway
Division of Psychiatry University of Edinburgh Edinburgh UK
Donders Institute for Brain Cognition and Behavior Radboud University Nijmegen The Netherlands
FIDMAG Germanes Hospitalàries Research Foundation CIBERSAM Barcelona Spain
General Adult Psychiatry Division Valkenberg Hospital Cape Town Western Cape South Africa
Hospital Clinic University of Barcelona IDIBAPS CIBERSAM Barcelona Catalonia Spain
Institut d'Investigacions Biomèdiques August Pi i Sunyer CIBERSAM Barcelona Spain
Institute of Clinical Medicine University of Oslo Oslo Norway
Institute of Clinical Radiology University of Münster Münster Germany
Laureate Institute for Brain Research Tulsa Oklahoma USA
Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
LIM44 Department of Radiology and Oncology University of São Paulo São Paulo Brazil
Max Planck Institute of Psychiatry Munich Germany
Mood Disorders Program Hospital Universitario San Vicente Fundación Medellín Antioquia Colombia
National Institute of Mental Health Klecany Czech Republic
Neuroscience Institute University of Cape Town Cape Town Western Cape South Africa
Neuroscience Research Australia Randwick New South Wales Australia
Oxley College of Health Sciences The University of Tulsa Tulsa Oklahoma USA
PROMENTA Research Center Department of Psychology University of Oslo Oslo Norway
Psychiatry Amsterdam UMC Location AMC Amsterdam The Netherlands
Psychiatry and Clinical Psychobiology Scientific Institute Ospedale San Raffaele Milan Italy
Research Group Instituto de Alta Tecnología Médica Medellín Antioquia Colombia
School of Medical Sciences The University of New South Wales Sydney New South Wales Australia
School of Psychiatry University of New South Wales Sydney New South Wales Australia
School of Psychology Bath University Bath UK
University of New Mexico Albuquerque New Mexico USA
University Vita Salute San Raffaele Milan Italy
West Region Institute of Mental Health Singapore Singapore
Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
See more in PubMed
Aas, M. , Haukvik, U. K. , Djurovic, S. , Tesli, M. , Athanasiu, L. , Bjella, T. , … Melle, I. (2014). Interplay between childhood trauma and BDNF val66met variants on blood BDNF mRNA levels and on hippocampus subfields volumes in schizophrenia spectrum and bipolar disorders. Journal of Psychiatric Research, 59, 14–21. 10.1016/j.jpsychires.2014.08.011 PubMed DOI
Amaral, D. G. , Scharfman, H. E. , & Lavenex, P. (2007). The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163, 3–22. 10.1016/s0079-6123(07)63001-5 PubMed DOI PMC
Balu, D. T. , & Lucki, I. (2009). Adult hippocampal neurogenesis: Regulation, functional implications, and contribution to disease pathology. Neuroscience and Biobehavioral Reviews, 33(3), 232–252. 10.1016/j.neubiorev.2008.08.007 PubMed DOI PMC
Bearden, C. E. , Thompson, P. M. , Dutton, R. A. , Frey, B. N. , Peluso, M. A. , Nicoletti, M. , … Soares, J. C. (2008). Three‐dimensional mapping of hippocampal anatomy in unmedicated and lithium‐treated patients with bipolar disorder. Neuropsychopharmacology, 33(6), 1229–1238. 10.1038/sj.npp.1301507 PubMed DOI PMC
Berk, M. , Dandash, O. , Daglas, R. , Cotton, S. M. , Allott, K. , Fornito, A. , … Yucel, M. (2017). Neuroprotection after a first episode of mania: A randomized controlled maintenance trial comparing the effects of lithium and quetiapine on grey and white matter volume. Translational Psychiatry, 7(1), e1011. 10.1038/tp.2016.281 PubMed DOI PMC
Bodnar, M. , Malla, A. K. , Makowski, C. , Chakravarty, M. M. , Joober, R. , & Lepage, M. (2016). The effect of second‐generation antipsychotics on hippocampal volume in first episode of psychosis: Longitudinal study. BJPsych Open, 2(2), 139–146. 10.1192/bjpo.bp.115.002444 PubMed DOI PMC
Boedhoe, P. S. W. , Heymans, M. W. , Schmaal, L. , Abe, Y. , Alonso, P. , Ameis, S. H. , … Twisk, J. W. R. (2018). An empirical comparison of meta‐ and mega‐analysis with data from the ENIGMA obsessive‐compulsive disorder working group. Frontiers in Neuroinformatics, 12, 102. 10.3389/fninf.2018.00102 PubMed DOI PMC
Boldrini, M. , Hen, R. , Underwood, M. D. , Rosoklija, G. B. , Dwork, A. J. , Mann, J. J. , & Arango, V. (2012). Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biological Psychiatry, 72(7), 562–571. 10.1016/j.biopsych.2012.04.024 PubMed DOI PMC
Brown, E. M. , Pierce, M. E. , Clark, D. C. , Fischl, B. R. , Iglesias, J. E. , Milberg, W. P. , … Salat, D. H. (2020). Test‐retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners. NeuroImage, 210, 116563. 10.1016/j.neuroimage.2020.116563 PubMed DOI
Cao, B. , Passos, I. C. , Mwangi, B. , Amaral‐Silva, H. , Tannous, J. , Wu, M. J. , … Soares, J. C. (2017). Hippocampal subfield volumes in mood disorders. Molecular Psychiatry, 22(9), 1352–1358. 10.1038/mp.2016.262 PubMed DOI PMC
Crum, W. R. , Danckaers, F. , Huysmans, T. , Cotel, M. C. , Natesan, S. , Modo, M. M. , … Vernon, A. C. (2016). Chronic exposure to haloperidol and olanzapine leads to common and divergent shape changes in the rat hippocampus in the absence of grey‐matter volume loss. Psychological Medicine, 46(15), 3081–3093. 10.1017/s0033291716001768 PubMed DOI PMC
Dalton, M. A. , & Maguire, E. A. (2017). The pre/parasubiculum: A hippocampal hub for scene‐based cognition? Current Opinion in Behavioral Sciences, 17, 34–40. 10.1016/j.cobeha.2017.06.001 PubMed DOI PMC
Fanselow, M. S. , & Dong, H. W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7–19. 10.1016/j.neuron.2009.11.031 PubMed DOI PMC
Ferensztajn‐Rochowiak, E. , & Rybakowski, J. K. (2016). The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacological Reports, 68(2), 224–230. 10.1016/j.pharep.2015.09.005 PubMed DOI
Fjell, A. M. , Westlye, L. T. , Grydeland, H. , Amlien, I. , Espeseth, T. , Reinvang, I. , … Walhovd, K. B. (2013). Critical ages in the life course of the adult brain: Nonlinear subcortical aging. Neurobiology of Aging, 34(10), 2239–2247. 10.1016/j.neurobiolaging.2013.04.006 PubMed DOI PMC
Fusar‐Poli, P. , Smieskova, R. , Kempton, M. J. , Ho, B. C. , Andreasen, N. C. , & Borgwardt, S. (2013). Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta‐analysis of longitudinal MRI studies. Neuroscience and Biobehavioral Reviews, 37(8), 1680–1691. 10.1016/j.neubiorev.2013.06.001 PubMed DOI PMC
Grande, I. , Berk, M. , Birmaher, B. , & Vieta, E. (2016). Bipolar disorder. Lancet, 387(10027), 1561–1572. 10.1016/s0140-6736(15)00241-x PubMed DOI
Harrison, P. J. , Colbourne, L. , & Harrison, C. H. (2020). The neuropathology of bipolar disorder: Systematic review and meta‐analysis. Molecular Psychiatry, 25, 1787–1808. 10.1038/s41380-41018-40213-41383 PubMed DOI PMC
Hartberg, C. B. , Jorgensen, K. N. , Haukvik, U. K. , Westlye, L. T. , Melle, I. , Andreassen, O. A. , & Agartz, I. (2015). Lithium treatment and hippocampal subfields and amygdala volumes in bipolar disorder. Bipolar Disorders, 17(5), 496–506. 10.1111/bdi.12295 PubMed DOI
Haukvik, U. K. , Tamnes, C. K. , Soderman, E. , & Agartz, I. (2018). Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: A systematic review and meta‐analysis. Journal of Psychiatric Research, 104, 217–226. 10.1016/j.jpsychires.2018.08.012 PubMed DOI
Haukvik, U. K. , Westlye, L. T. , Morch‐Johnsen, L. , Jorgensen, K. N. , Lange, E. H. , Dale, A. M. , … Agartz, I. (2015). In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. Biological Psychiatry, 77(6), 581–588. 10.1016/j.biopsych.2014.06.020 PubMed DOI
Hibar, D. P. , Westlye, L. T. , van Erp, T. G. , Rasmussen, J. , Leonardo, C. D. , Faskowitz, J. , … Andreassen, O. A. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(12), 1710–1716. 10.1038/mp.2015.227 PubMed DOI PMC
Iglesias, J. E. , Augustinack, J. C. , Nguyen, K. , Player, C. M. , Player, A. , Wright, M. , … Alzheimer's Disease Neuroimaging Initiative . (2015). A computational atlas of the hippocampal formation using ex vivo, ultra‐high resolution MRI: Application to adaptive segmentation of in vivo MRI. NeuroImage, 115, 117–137. 10.1016/j.neuroimage.2015.04.042 PubMed DOI PMC
Katsuki, A. , Watanabe, K. , Nguyen, L. , Otsuka, Y. , Igata, R. , Ikenouchi, A. , … Yoshimura, R. (2020). Structural changes in Hippocampal Subfields in patients with continuous remission of drug‐naive major depressive disorder. International Journal of Molecular Sciences, 21(9). 10.3390/ijms21093032 PubMed DOI PMC
Konradi, C. , Zimmerman, E. I. , Yang, C. K. , Lohmann, K. M. , Gresch, P. , Pantazopoulos, H. , … Heckers, S. (2011). Hippocampal interneurons in bipolar disorder. Archives of General Psychiatry, 68(4), 340–350. 10.1001/archgenpsychiatry.2010.175 PubMed DOI PMC
Malchow, B. , Strocka, S. , Frank, F. , Bernstein, H. G. , Steiner, J. , Schneider‐Axmann, T. , … Schmitt, A. (2015). Stereological investigation of the posterior hippocampus in affective disorders. Journal of Neural Transmission (Vienna), 122(7), 1019–1033. 10.1007/s00702-014-1316-x PubMed DOI
Maller, J. J. , Broadhouse, K. , Rush, A. J. , Gordon, E. , Koslow, S. , & Grieve, S. M. (2018). Increased hippocampal tail volume predicts depression status and remission to anti‐depressant medications in major depression. Molecular Psychiatry, 23(8), 1737–1744. 10.1038/mp.2017.224 PubMed DOI
Mathew, I. , Gardin, T. M. , Tandon, N. , Eack, S. , Francis, A. N. , Seidman, L. J. , … Keshavan, M. S. (2014). Medial temporal lobe structures and hippocampal subfields in psychotic disorders: Findings from the bipolar‐schizophrenia network on intermediate phenotypes (B‐SNIP) study. JAMA Psychiatry, 71(7), 769–777. 10.1001/jamapsychiatry.2014.453 PubMed DOI
Mertens, J. , Wang, Q. W. , Kim, Y. , Yu, D. X. , Pham, S. , Yang, B. , … Yao, J. (2015). Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 527(7576), 95–99. 10.1038/nature15526 PubMed DOI PMC
Mueller, S. G. , Yushkevich, P. A. , Das, S. , Wang, L. , Van Leemput, K. , Iglesias, J. E. , … Weiner, M. W. (2018). Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2. Neuroimage: Clinical, 17, 1006–1018. 10.1016/j.nicl.2017.12.036 PubMed DOI PMC
Nakagawa, S. , & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews of the Cambridge Philosophical Society, 82(4), 591–605. 10.1111/j.1469-185X.2007.00027.x PubMed DOI
Open Science Collaboration . (2015). PSYCHOLOGY. Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. 10.1126/science.aac4716 PubMed DOI
Paulus, M. P. , & Thompson, W. K. (2019). The challenges and opportunities of small effects: The new Normal in academic psychiatry. JAMA Psychiatry, 76(4), 353–354. 10.1001/jamapsychiatry.2018.4540 PubMed DOI
Phillips, M. L. , & Kupfer, D. J. (2013). Bipolar disorder diagnosis: Challenges and future directions. Lancet, 381(9878), 1663–1671. 10.1016/s0140-6736(13)60989-7 PubMed DOI PMC
Pipitone, J. , Park, M. T. , Winterburn, J. , Lett, T. A. , Lerch, J. P. , Pruessner, J. C. , … Alzheimer's Disease Neuroimaging Initiative . (2014). Multi‐atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. NeuroImage, 101, 494–512. 10.1016/j.neuroimage.2014.04.054 PubMed DOI
Rajkowska, G. , Clarke, G. , Mahajan, G. , Licht, C. M. , Van De Werd, H. J. , Yuan, P. , … Uylings, H. B. (2016). Differential effect of lithium on cell number in the hippocampus and prefrontal cortex in adult mice: A stereological study. Bipolar Disorders, 18(1), 41–51. 10.1111/bdi.12364 PubMed DOI PMC
Schmaal, L. , Veltman, D. J. , van Erp, T. G. , Samann, P. G. , Frodl, T. , Jahanshad, N. , … Hibar, D. P. (2016). Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Molecular Psychiatry, 21(6), 806–812. 10.1038/mp.2015.69 PubMed DOI PMC
Schmitt, A. , Weber, S. , Jatzko, A. , Braus, D. F. , & Henn, F. A. (2004). Hippocampal volume and cell proliferation after acute and chronic clozapine or haloperidol treatment. Journal of Neural Transmission (Vienna), 111(1), 91–100. 10.1007/s00702-003-0070-2 PubMed DOI
Simonetti, A. , Sani, G. , Dacquino, C. , Piras, F. , De Rossi, P. , Caltagirone, C. , … Spalletta, G. (2016). Hippocampal subfield volumes in short‐ and long‐term lithium‐treated patients with bipolar I disorder. Bipolar Disorders, 18(4), 352–362. 10.1111/bdi.12394 PubMed DOI
Simonnet, J. , Nassar, M. , Stella, F. , Cohen, I. , Mathon, B. , Boccara, C. N. , … Fricker, D. (2017). Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum. Nature Communications, 8, 16032. 10.1038/ncomms16032 PubMed DOI PMC
Squire, L. R. , & Wixted, J. T. (2011). The cognitive neuroscience of human memory since H.M. Annual Review of Neuroscience, 34, 259–288. 10.1146/annurev-neuro-061010-113720 PubMed DOI PMC
Stern, S. , Santos, R. , Marchetto, M. C. , Mendes, A. P. D. , Rouleau, G. A. , Biesmans, S. , … Gage, F. H. (2018). Neurons derived from patients with bipolar disorder divide into intrinsically different sub‐populations of neurons, predicting the patients' responsiveness to lithium. Molecular Psychiatry, 23(6), 1453–1465. 10.1038/mp.2016.260 PubMed DOI PMC
Tamminga, C. A. , Stan, A. D. , & Wagner, A. D. (2010). The hippocampal formation in schizophrenia. The American Journal of Psychiatry, 167(10), 1178–1193. 10.1176/appi.ajp.2010.09081187 PubMed DOI
Teicher, M. H. , Anderson, C. M. , & Polcari, A. (2012). Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proceedings of the National Academy of Sciences of the United States of America, 109(9), E563–E572. 10.1073/pnas.1115396109 PubMed DOI PMC
Thompson, P. M. , Ching, C. R. K. , Dennis, E. L. , Salminen, L. E. , Turner, J. A. , Van Erp, T. G. M. , & Jahanshad, N. (2020). Big data initiatives in psychiatry: Global Neuroimaging studies. In Kubicki M. & Shenton M. E. (Eds.), Neuroimaging in Schizophrenia (pp. 411–426). Cham: Springer International Publishing.
van Erp, T. G. , Hibar, D. P. , Rasmussen, J. M. , Glahn, D. C. , Pearlson, G. D. , Andreassen, O. A. , … Turner, J. A. (2016). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry, 21(4), 547–553. 10.1038/mp.2015.63 PubMed DOI PMC
Van Leemput, K. , Bakkour, A. , Benner, T. , Wiggins, G. , Wald, L. L. , Augustinack, J. , … Fischl, B. (2009). Automated segmentation of hippocampal subfields from ultra‐high resolution in vivo MRI. Hippocampus, 19(6), 549–557. 10.1002/hipo.20615 PubMed DOI PMC
Wang, A. Y. , Lohmann, K. M. , Yang, C. K. , Zimmerman, E. I. , Pantazopoulos, H. , Herring, N. , … Konradi, C. (2011). Bipolar disorder type 1 and schizophrenia are accompanied by decreased density of parvalbumin‐ and somatostatin‐positive interneurons in the parahippocampal region. Acta Neuropathologica, 122(5), 615–626. 10.1007/s00401-011-0881-4 PubMed DOI PMC
Westlye, L. T. , Alnaes, D. , van der Meer, D. , Kaufmann, T. , & Andreassen, O. A. (2019). Population‐based mapping of polygenic risk for schizophrenia on the human brain: New opportunities to capture the dimensional aspects of severe mental disorders. Biological Psychiatry, 86(7), 499–501. 10.1016/j.biopsych.2019.08.001 PubMed DOI
Yushkevich, P. A. , Amaral, R. S. , Augustinack, J. C. , Bender, A. R. , Bernstein, J. D. , Boccardi, M. , … Hippocampal Subfields, G. (2015). Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. NeuroImage, 111, 526–541. 10.1016/j.neuroimage.2015.01.004 PubMed DOI PMC
Yushkevich, P. A. , Wang, H. , Pluta, J. , Das, S. R. , Craige, C. , Avants, B. B. , … Mueller, S. (2010). Nearly automatic segmentation of hippocampal subfields in in vivo focal T2‐weighted MRI. NeuroImage, 53(4), 1208–1224. 10.1016/j.neuroimage.2010.06.040 PubMed DOI PMC
Zanni, G. , Michno, W. , Di Martino, E. , Tjarnlund‐Wolf, A. , Pettersson, J. , Mason, C. E. , … Hanrieder, J. (2017). Lithium accumulates in neurogenic brain regions as revealed by high resolution ion imaging. Scientific Reports, 7, 40726. 10.1038/srep40726 PubMed DOI PMC