BACKGROUND: The hypothalamus (HT) plays a crucial role in regulating eating behaviors. Disruptions in its function have been linked to the development of weight-related disorders. Nevertheless, its characterization remains a challenge. OBJECTIVES: We assessed the structural alterations of individual HT nuclei related to eating behaviors in patients with weight-related disorders, and their association with body mass index (BMI) and severity of eating disorders. METHODS: Forty-four young females with normal weight (HC, n = 21), restrictive anorexia nervosa (AN, n = 13), and living with obesity (OB, n = 10) were explored in vivo using 7-T high-resolution (0.6 mm isotropic voxel) T1 quantitative magnetic resonance imaging (MRI). Volumes and quantitative T1 values of individual HT nuclei were compared after whole-brain normalization using nonparametric tests (corrected for multiple comparisons for groups and regions). We investigated the parameters associated with BMI and eating disorders, such as MRI parameters of HT nuclei, ghrelin and leptin levels, depression, and anxiety using multivariate nonlinear partial least square (NIPALS). RESULTS: Both AN and OB showed higher volumes of HT relative to HC (Zscores: 0.78 ± 1.06; 1.43 ± 1.51). AN showed significantly higher volumes and T1 values of the right paraventricular nucleus (PaVN) (volume Zscore: 1.82 ± 1.45; T1 Zscore: 3.76 ± 4.67), and higher T1 values of the left PaVN (Zscore: 2.25 ± 2.37) and right periventricular nuclei (Zscore: 3.73 ± 4.81). NIPALS models showed that lower BMI in AN was associated with structural alterations of the bilateral PaVN, right anterior commissure, and left fornix (FX). Higher BMI in OB was associated with structural alterations within the right PaVN, bilateral FX, left posterior hypothalamic nucleus, right lateral HT, and right anterior hypothalamic area. Finally, the severity of eating disorders was associated with larger structural alterations within the bilateral PaVN, bilateral arcuate hypothalamic nuclei, right bed nucleus of stria terminalis, left medial preoptic nucleus, and right tubero-mammillary hypothalamic nucleus. CONCLUSIONS: Weight-related disorders are associated with significant micro and macrostructural alterations in HT nuclei involved in eating behaviors.
- MeSH
- Adult MeSH
- Hypothalamus * diagnostic imaging pathology MeSH
- Body Mass Index MeSH
- Leptin blood MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Anorexia Nervosa * diagnostic imaging pathology MeSH
- Adolescent MeSH
- Young Adult MeSH
- Obesity * diagnostic imaging pathology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Cardiometabolic risk factors - including diabetes, hypertension, and obesity - have long been linked with adverse health outcomes such as strokes, but more subtle brain changes in regional brain volumes and cortical thickness associated with these risk factors are less understood. Computer models can now be used to estimate brain age based on structural magnetic resonance imaging data, and subtle brain changes related to cardiometabolic risk factors may manifest as an older-appearing brain in prediction models; thus, we sought to investigate the relationship between cardiometabolic risk factors and machine learning-predicted brain age. METHODS: We performed a systematic search of PubMed and Scopus. We used the brain age gap, which represents the difference between one's predicted and chronological age, as an index of brain structural integrity. We calculated the Cohen d statistic for mean differences in the brain age gap of people with and without diabetes, hypertension, or obesity and performed random effects meta-analyses. RESULTS: We identified 185 studies, of which 14 met inclusion criteria. Among the 3 cardiometabolic risk factors, diabetes had the highest effect size (12 study samples; d = 0.275, 95% confidence interval [CI] 0.198-0.352; n = 47 436), followed by hypertension (10 study samples; d = 0.113, 95% CI 0.063-0.162; n = 45 102) and obesity (5 study samples; d = 0.112, 95% CI 0.037-0.187; n = 15 678). These effects remained significant in sensitivity analyses that included only studies that controlled for confounding effects of the other cardiometabolic risk factors. LIMITATIONS: Our study tested effect sizes of only categorically defined cardiometabolic risk factors and is limited by inconsistencies in diabetes classification, a smaller pooled sample in the obesity analysis, and limited age range reporting. CONCLUSION: Our findings show that each of the cardiometabolic risk factors uniquely contributes to brain structure, as captured by brain age. The effect size for diabetes was more than 2 times greater than the independent effects of hypertension and obesity. We therefore highlight diabetes as a primary target for the prevention of brain structural changes that may lead to cognitive decline and dementia.
- MeSH
- Diabetes Mellitus * epidemiology pathology MeSH
- Hypertension * epidemiology pathology MeSH
- Cardiometabolic Risk Factors * MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain * diagnostic imaging pathology MeSH
- Obesity * epidemiology pathology MeSH
- Aging pathology MeSH
- Machine Learning MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Systematic Review MeSH
OBJECTIVE: The clinical diversity of schizophrenia is reflected by structural brain variability. It remains unclear how this variability manifests across different gray and white matter features. In this meta- and mega-analysis, the authors investigated how brain heterogeneity in schizophrenia is distributed across multimodal structural indicators. METHODS: The authors used the ENIGMA dataset of MRI-based brain measures from 22 international sites with up to 6,037 individuals for a given brain measure. Variability and mean values of cortical thickness, cortical surface area, cortical folding index, subcortical volume, and fractional anisotropy were examined in individuals with schizophrenia and healthy control subjects. RESULTS: Individuals with schizophrenia showed greater variability in cortical thickness, cortical surface area, subcortical volume, and fractional anisotropy within the frontotemporal and subcortical network. This increased structural variability was mainly associated with psychopathological symptom domains, and the schizophrenia group frequently displayed lower mean values in the respective structural measures. Unexpectedly, folding patterns were more uniform in individuals with schizophrenia, particularly in the right caudal anterior cingulate region. The mean folding values of the right caudal anterior cingulate region did not differ between the schizophrenia and healthy control groups, and folding patterns in this region were not associated with disease-related parameters. CONCLUSIONS: In patients with schizophrenia, uniform folding patterns in the right caudal anterior cingulate region contrasted with the multimodal variability in the frontotemporal and subcortical network. While variability in the frontotemporal and subcortical network was associated with disease-related diversity, uniform folding may indicate a less flexible interplay between genetic and environmental factors during neurodevelopment.
- MeSH
- Anisotropy MeSH
- White Matter pathology diagnostic imaging MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain * pathology diagnostic imaging MeSH
- Schizophrenia * pathology diagnostic imaging MeSH
- Gray Matter pathology diagnostic imaging MeSH
- Diffusion Tensor Imaging MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
Neuroimaging investigations are fundamental in the diagnosis of patients with epilepsy. The International League Against Epilepsy (ILAE) harmonized neuroimaging of epilepsy structural sequences (HARNESS-MRI) protocol was intended as a generalizable structural MRI protocol. The European Reference Network for Rare and Complex Epilepsies, EpiCARE, includes 50 centers, across 26 countries, with expertise in epilepsy. We investigated adherence to the HARNESS-MRI protocol across EpiCARE. A survey on the clinical use of imaging and postprocessing methods in epilepsy patients was distributed among the centers. A descriptive analysis was performed, and results were compared to existing guidelines, as well as a previous survey in 2016. 79% of centers were adhering to the HARNESS-MRI protocol in all epilepsy patients. All centers were acquiring 3D T1-weighted sequences, 90% were acquiring 3D FLAIR and 87% were acquiring high in-plane 2D coronal T2 MRI sequences in all epilepsy patients. In comparison, in 2016, only 50% of centers were following MRI recommendations at the time. Across European expert epilepsy centers, there has been increased harmonization of MRI sequences since the introduction of the HARNESS-MRI protocol. This standardization supports optimal radiological review at individual centers as well as enabling harmonization of multicenter datasets for research. PLAIN LANGUAGE SUMMARY: Neuroimaging investigations are a fundamental component of epilepsy diagnosis. The International League Against Epilepsy (ILAE) has created guidelines about what MRI images to obtain in all epilepsy patients. In this study, we assessed the adherence of expert European epilepsy centers to these guidelines and found that 79% are acquiring the minimum set of MRI scans in all epilepsy patients. Standardization of MRI imaging serves to improve epilepsy diagnosis across Europe.
- MeSH
- Guideline Adherence MeSH
- Epilepsy * diagnostic imaging MeSH
- Humans MeSH
- Magnetic Resonance Imaging * standards methods MeSH
- Brain * diagnostic imaging MeSH
- Neuroimaging * standards methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Geographicals
- Europe MeSH
INTRODUCTION: Deep brain stimulation (DBS) of the internal globus pallidus (GPi) is a well-established, effective treatment for dystonia. Substantial variability of therapeutic success has been the one of the drivers of an ongoing debate about proper stimulation site and settings, with several indications of the notional sweet spot pointing to the lower GPi or even subpallidal area. METHODS: The presented patient-blinded, random-order study with cross-sectional verification against healthy controls enrolled 17 GPi DBS idiopathic, cervical or generalised dystonia patients to compare the effect of the stimulation in the upper and lower GPi area, with the focus on sensorimotor network connectivity and local activity measured using functional magnetic resonance. RESULTS: Stimulation brought both these parameters to levels closer to the state detected in healthy controls. This effect was much more pronounced during the stimulation in the lower GPi area or beneath it than in slightly higher positions, with stimulation-related changes detected by both metrics of interest in the sensorimotor cortex, striatum, thalamus and cerebellum. CONCLUSIONS: All in all, this study not only replicated the results of previous studies on GPi DBS as a modality restoring sensorimotor network connectivity and local activity in dystonia towards the levels in healthy population, but also showed that lower GPi area or even subpallidal structures, be it white matter or even small, but essential nodes in the zona incerta as nucleus basalis of Meynert, are important regions to consider when programming DBS in dystonia patients.
- MeSH
- Adult MeSH
- Dystonic Disorders therapy physiopathology diagnostic imaging MeSH
- Dystonia therapy physiopathology diagnostic imaging MeSH
- Globus Pallidus * diagnostic imaging physiopathology MeSH
- Deep Brain Stimulation * methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging * methods MeSH
- Cross-Sectional Studies MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
Ageing is a complex phenomenon affecting a wide range of coexisting biological processes. The homogeneity of the studied population is an essential parameter for valid interpretations of outcomes. The presented study capitalises on the MRI data available in the Human Connectome Project-Aging (HCP-A) and, within individuals over 55 years of age who passed the HCP-A section criteria, compares a subgroup of 37 apparently neurocognitively healthy individuals selected based on stringent criteria with 37 age and sex-matched individuals still representative of typical ageing but who did not pass the stringent definition of neurocognitively healthy. Specifically, structural scans, diffusion weighted imaging and T1w/T2w ratio were utilised. Furthermore, data of 26 HCP-A participants older than 90 years as notional 'super-agers' were analysed. The relationship of age and several microstructural MRI metrics (T1w/T2w ratio, mean diffusivity, intracellular volume fraction and free water volume fraction) differed significantly between typical and healthy ageing cohort in areas highly relevant for ageing such as hippocampus, prefrontal and temporal cortex and cerebellum. However, the trajectories of the healthy ageing population did not show substantially better overlap with the findings in people older than 90 than those of the typical population. Therefore, caution must be exercised in the choice of adequate study group characteristics relevant for respective ageing-related hypotheses. Contrary to typical ageing group, the healthy ageing cohort may show generally stable levels of several MRI metrics of interest.
- MeSH
- Cognition * physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain diagnostic imaging MeSH
- Gray Matter * diagnostic imaging MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Aging * physiology MeSH
- Healthy Aging physiology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
BACKGROUND: The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS: We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS: We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS: Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.
- MeSH
- Adult MeSH
- Body Mass Index * MeSH
- Connectome * methods MeSH
- Humans MeSH
- Magnetic Resonance Imaging * methods MeSH
- Young Adult MeSH
- Cerebellum * diagnostic imaging physiology MeSH
- Nerve Net diagnostic imaging physiology MeSH
- Obesity diagnostic imaging MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Cerebellar atrophy is a characteristic sign of late-onset Tay-Sachs disease (LOTS). Other structural neuroimaging abnormalities are inconsistently reported. Our study aimed to perform a detailed whole-brain analysis and quantitatively characterize morphometric changes in LOTS patients. Fourteen patients (8 M/6F) with LOTS from three centers were included in this retrospective study. For morphometric brain analyses, we used deformation-based morphometry, voxel-based morphometry, surface-based morphometry, and spatially unbiased cerebellar atlas template. The quantitative whole-brain morphometric analysis confirmed the finding of profound pontocerebellar atrophy with most affected cerebellar lobules V and VI in LOTS patients. Additionally, the atrophy of structures mainly involved in motor control, including bilateral ventral and lateral thalamic nuclei, primary motor and sensory cortex, supplementary motor area, and white matter regions containing corticospinal tract, was present. The atrophy of the right amygdala, hippocampus, and regions of occipital, parietal and temporal white matter was also observed in LOTS patients in contrast with controls (p < 0.05, FWE corrected). Patients with dysarthria and those initially presenting with ataxia had more severe cerebellar atrophy. Our results show predominant impairment of cerebellar regions responsible for speech and hand motor function in LOTS patients. Widespread morphological changes of motor cortical and subcortical regions and tracts in white matter indicate abnormalities in central motor circuits likely coresponsible for impaired speech and motor function.
- MeSH
- Atrophy pathology MeSH
- White Matter * diagnostic imaging MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain pathology MeSH
- Retrospective Studies MeSH
- Tay-Sachs Disease * pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Focal cortical dysplasia (FCD) represents the most common cause of drug-resistant epilepsy in adult and pediatric surgical series. However, genetic factors contributing to severe phenotypes of FCD remain unknown. We present a patient with an exceptionally rapid development of drug-resistant epilepsy evolving in super-refractory status epilepticus. We performed multiple clinical (serial EEG, MRI), biochemical (metabolic and immunological screening), genetic (WES from blood- and brain-derived DNA), and histopathological investigations. The patient presented 1 month after an uncomplicated varicella infection. MRI was negative, as well as other biochemical and immunological examinations. Whole-exome sequencing of blood-derived DNA detected a heterozygous paternally inherited variant NM_006267.4(RANBP2):c.5233A>G p.(Ile1745Val) (Chr2[GRCh37]:g.109382228A>G), a gene associated with a susceptibility to infection-induced acute necrotizing encephalopathy. No combination of anti-seizure medication led to a sustained seizure freedom and the patient warranted induction of propofol anesthesia with high-dose intravenous midazolam and continuous respiratory support that however failed to abort seizure activity. Brain biopsy revealed FCD type IIa; this finding led to the indication of an emergency right-sided hemispherotomy that rendered the patient temporarily seizure-free. Postsurgically, he remains on antiseizure medication and experiences rare nondisabling seizures. This report highlights a uniquely severe clinical course of FCD putatively modified by the RANBP2 variant. PLAIN LANGUAGE SUMMARY: We report a case summary of a patient who came to our attention for epilepsy that could not be controlled with medication. His clinical course progressed rapidly to life-threatening status epilepticus with other unusual neurological findings. Therefore, we decided to surgically remove a piece of brain tissue in order to clarify the diagnosis that showed features of a structural brain abnormality associated with severe epilepsy, the focal cortical dysplasia. Later, a genetic variant in a gene associated with another condition, was found, and we hypothesize that this genetic variant could have contributed to this severe clinical course of our patient.
- MeSH
- Child MeSH
- DNA MeSH
- Epilepsy * complications MeSH
- Focal Cortical Dysplasia * MeSH
- Nuclear Pore Complex Proteins * MeSH
- Humans MeSH
- Midazolam MeSH
- Molecular Chaperones * MeSH
- Brain Diseases * MeSH
- Child, Preschool MeSH
- Disease Progression MeSH
- Drug Resistant Epilepsy * genetics surgery MeSH
- Status Epilepticus * genetics surgery MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Child, Preschool MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
BACKGROUND: The research on possible cerebral involvement in Crohn's disease (CD) has been largely marginalized and failed to capitalize on recent developments in magnetic resonance imaging (MRI). OBJECTIVE: This cross-sectional pilot study searches for eventual macrostructural and microstructural brain affection in CD in remission and early after the disease onset. METHODS: 14 paediatric CD patients and 14 healthy controls underwent structural, diffusion weighted imaging and quantitative relaxation metrics acquisition, both conventional free precession and adiabatic rotating frame transverse and longitudinal relaxation time constants as markers of myelination, iron content and cellular loss. RESULTS: While no inter-group differences in cortical thickness and relaxation metrics were found, lower mean diffusivity and higher intracellular volume fraction were detected in CD patients over vast cortical regions essential for the regulation of the autonomous nervous system, sensorimotor processing, cognition and behavior, pointing to wide-spread cytotoxic oedema in the absence of demyelination, iron deposition or atrophy. CONCLUSION: Although still requiring further validation in longitudinal projects enrolling larger numbers of subjects, this study provides an indication of wide-spread cortical oedema in CD patients very early after the disease onset and sets possible directions for further research.
- Publication type
- Journal Article MeSH