Validating fPSA Glycoprofile as a Prostate Cancer Biomarker to Avoid Unnecessary Biopsies and Re-Biopsies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV 17-0300
Agentúra na Podporu Výskumu a Vývoja
. 825586
H2020 European Research Council
PubMed
33076457
PubMed Central
PMC7602627
DOI
10.3390/cancers12102988
PII: cancers12102988
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, diagnostics, fPSA, glycans, prognostics, prostate cancer,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: To compare the clinical performance of a new PCa serum biomarker based on fPSA glycoprofiling to fPSA% and PHI. METHODS: Serum samples from men who underwent prostate biopsy due to increased PSA were used. A comparison between two equal groups (with histologically confirmed PCa or benign, non-cancer condition) was used for the clinical validation of a new glycan-based PCa oncomarker. SPSS and R software packages were used for the multiparametric analyses of the receiver operating curve (ROC) and for genetic algorithm metaheuristics. RESULTS: When comparing the non-cancer and PCa cohorts, the combination of four fPSA glycoforms with two clinical parameters (PGI, prostate glycan index (PGI)) showed an area under receiver operating curve (AUC) value of 0.821 (95% CI 0.754-0.890). AUC values were 0.517 for PSA, 0.683 for fPSA%, and 0.737 for PHI. A glycan analysis was also applied to discriminate low-grade tumors (GS = 6) from significant tumors (GS ≥ 7). CONCLUSIONS: Compared to PSA on its own, or fPSA% and the PHI, PGI showed improved discrimination between presence and absence of PCa and in predicting clinically significant PCa. In addition, the use of PGI would help practitioners avoid 63.5% of unnecessary biopsies, while the use of fPSA% and PHI would help avoid 17.5% and 33.3% of biopsies, respectively, while missing four significant tumors (9.5%).
Department of Urology Medical University Innsbruck Anichstrasse 35 A 6020 Innsbruck Austria
Department of Urology Odense University Hospital J B Winsløws Vej 4 5000 Odense C Denmark
Glycanostics Ltd Dubravska cesta 9 845 38 Bratislava Slovakia
Zobrazit více v PubMed
Rawla P. Epidemiology of prostate cancer. World J. Oncol. 2019;10:63. doi: 10.14740/wjon1191. PubMed DOI PMC
Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015;65:87–108. doi: 10.3322/caac.21262. PubMed DOI
Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–E386. doi: 10.1002/ijc.29210. PubMed DOI
Tkac J., Bertok T., Hires M., Jane E., Lorencova L., Kasak P. Glycomics of prostate cancer: Updates. Exp. Rev. Proteom. 2019;16:65–76. doi: 10.1080/14789450.2019.1549993. PubMed DOI PMC
Tkac J., Gajdosova V., Hroncekova S., Bertok T., Hires M., Jane E., Lorencova L., Kasak P. Prostate-specific antigen glycoprofiling as diagnostic and prognostic biomarker of prostate cancer. Interface Focus. 2019;9:20180077. doi: 10.1098/rsfs.2018.0077. PubMed DOI PMC
Kohaar I., Petrovics G., Srivastava S. A rich array of prostate cancer molecular biomarkers: Opportunities and challenges. Int. J. Mol. Sci. 2019;20:1813. doi: 10.3390/ijms20081813. PubMed DOI PMC
Steuber T., Tennstedt P., Macagno A., Athanasiou A., Wittig A., Huber R., Golding B., Schiess R., Gillessen S. Thrombospondin 1 and cathepsin D improve prostate cancer diagnosis by avoiding potentially unnecessary prostate biopsies. BJU Int. 2019;123:826–833. doi: 10.1111/bju.14540. PubMed DOI PMC
Bax C., Taverna G., Eusebio L., Sironi S., Grizzi F., Guazzoni G., Capelli L. Innovative Diagnostic Methods for Early Prostate Cancer Detection through Urine Analysis: A Review. Cancers. 2018;10:123. doi: 10.3390/cancers10040123. PubMed DOI PMC
Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247. PubMed DOI PMC
Murphy K., Murphy B.T., Boyce S., Flynn L., Gilgunn S., O’Rourke C.J., Rooney C., Stockmann H., Walsh A.L., Finn S., et al. Integrating biomarkers across omic platforms: An approach to improve stratification of patients with indolent and aggressive prostate cancer. Mol. Oncol. 2018;12:1513–1525. doi: 10.1002/1878-0261.12348. PubMed DOI PMC
Josic D., Martinovic T., Pavelic K. Glycosylation and metastases. Electrophoresis. 2019;40:140–150. doi: 10.1002/elps.201800238. PubMed DOI
Rodrigues J.G., Balmaña M., Macedo J.A., Poças J., Fernandes Â., de-Freitas-Junior J.C.M., Pinho S.S., Gomes J., Magalhães A., Gomes C., et al. Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell. Immunol. 2018;333:46–57. doi: 10.1016/j.cellimm.2018.03.007. PubMed DOI
Ideo H., Kondo J., Nomura T., Nonomura N., Inoue M., Amano J. Study of glycosylation of prostate-specific antigen secreted by cancer tissue-originated spheroids reveals new candidates for prostate cancer detection. Sci. Rep. 2020;10:2708. doi: 10.1038/s41598-020-59622-y. PubMed DOI PMC
Bertok T., Tkac J. Means and Methods for Glycoprofiling of a Protein. WO2019185515A1. [(accessed on 10 March 2020)];2019 Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2019185515.
Tosoian J.J., Alam R., Ball M.W., Carter H.B., Epstein J.I. Managing high-grade prostatic intraepithelial neoplasia (HGPIN) and atypical glands on prostate biopsy. Nat. Rev. Urol. 2018;15:55. doi: 10.1038/nrurol.2017.134. PubMed DOI
Loeb S., Catalona W.J. The Prostate Health Index: A new test for the detection of prostate cancer. Ther. Adv. Urol. 2014;6:74–77. doi: 10.1177/1756287213513488. PubMed DOI PMC
Klocker H., Golding B., Weber S., Steiner E., Tennstedt P., Keller T., Schiess R., Gillessen S., Horninger W., Steuber T. Development and validation of a novel multivariate risk score to guide biopsy decision for the diagnosis of clinically significant prostate cancer. BJUI Compass. 2020;1:15–20. doi: 10.1002/bco2.8. PubMed DOI PMC
Dwek M.V., Jenks A., Leathem A.J.C. A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clin. Chim. Acta. 2010;411:1935–1939. doi: 10.1016/j.cca.2010.08.009. PubMed DOI
Hagiwara K., Tobisawa Y., Kaya T., Kaneko T., Hatakeyama S., Mori K., Hashimoto Y., Koie T., Suda Y., Ohyama C., et al. Wisteria floribunda Agglutinin and Its Reactive-Glycan-Carrying Prostate-Specific Antigen as a Novel Diagnostic and Prognostic Marker of Prostate Cancer. Int. J. Mol. Sci. 2017;18:261. doi: 10.3390/ijms18020261. PubMed DOI PMC
Yoneyama T., Ohyama C., Hatakeyama S., Narita S., Habuchi T., Koie T., Mori K., Hidari K.I.P.J., Yamaguchi M., Suzuki T., et al. Measurement of aberrant glycosylation of prostate specific antigen can improve specificity in early detection of prostate cancer. Biochem. Biophys. Res. Commun. 2014;448:390–396. doi: 10.1016/j.bbrc.2014.04.107. PubMed DOI
Ishikawa T., Yoneyama T., Tobisawa Y., Hatakeyama S., Kurosawa T., Nakamura K., Narita S., Mitsuzuka K., Duivenvoorden W., Pinthus J.H. An automated micro-total immunoassay system for measuring cancer-associated α2, 3-linked sialyl N-glycan-carrying prostate-specific antigen may improve the accuracy of prostate cancer diagnosis. Int. J. Mol. Sci. 2017;18:470. doi: 10.3390/ijms18020470. PubMed DOI PMC
Zijlstra C., Stoorvogel W. Prostasomes as a source of diagnostic biomarkers for prostate cancer. J. Clin. Investig. 2016;126:1144–1151. doi: 10.1172/JCI81128. PubMed DOI PMC
Aigner F., Schäfer G., Steiner E., Jaschke W., Horninger W., Herrmann T.R.W., Nagele U., Halpern E.J., Frauscher F. Value of enhanced transrectal ultrasound targeted biopsy for prostate cancer diagnosis: A retrospective data analysis. World J. Urol. 2012;30:341–346. doi: 10.1007/s00345-011-0809-6. PubMed DOI
Mitterberger M., Horninger W., Aigner F., Pinggera G.M., Rehder P., Steiner E., Wiunig C., Reissigl A., Frauscher F. Contrast-enhanced colour Doppler-targeted vs a 10-core systematic repeat biopsy strategy in patients with previous high-grade prostatic intraepithelial neoplasia. BJU Int. 2010;105:1660–1662. doi: 10.1111/j.1464-410X.2009.08963.x. PubMed DOI
Llop E., Ferrer-Batalle M., Barrabes S., Enrique Guerrero P., Ramirez M., Saldova R., Rudd P.M., Aleixandre R.N., Comet J., de Llorens R., et al. Improvement of Prostate Cancer Diagnosis by Detecting PSA Glycosylation-Specific Changes. Theranostics. 2016;6:1190–1204. doi: 10.7150/thno.15226. PubMed DOI PMC
Endt K., Goepfert J., Omlin A., Athanasiou A., Tennstedt P., Guenther A., Rainisio M., Engeler D.S., Steuber T., Gillessen S., et al. Development and clinical testing of individual immunoassays for the quantification of serum glycoproteins to diagnose prostate cancer. PLoS ONE. 2017;12:e0181557. doi: 10.1371/journal.pone.0181557. PubMed DOI PMC
Team R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna. [(accessed on 3 June 2017)]; Available online: www.R-project.org.
Carpenter J., Bithell J. Bootstrap confidence intervals: When, which, what? A practical guide for medical statisticians. Stat. Med. 2000;19:1141–1164. doi: 10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F. PubMed DOI
Bertok T., Lorencova L., Hroncekova S., Gajdosova V., Jane E., Hires M., Kasak P., Kaman O., Sokol R., Bella V., et al. Advanced impedimetric biosensor configuration and assay protocol for glycoprofiling of a prostate oncomarker using Au nanoshells with a magnetic core. Biosens. Bioelectron. 2019;131:24–29. doi: 10.1016/j.bios.2019.01.052. PubMed DOI PMC
Bertok T., Lorencova L., Hroncekova S., Gajdosova V., Jane E., Hires M., Kasak P., Kaman O., Sokol R., Bella V., et al. Synthesis and characterization of Au nanoshells with a magnetic core and betaine derivatives. MethodsX. 2019;6:1999–2012. doi: 10.1016/j.mex.2019.08.017. PubMed DOI PMC
Pihikova D., Pakanová Z., Nemcovic M., Barath P., Belicky S., Bertok T., Kasak P., Mucha J., Tkáč J. Front cover: Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics. 2016;16:3085–3095. doi: 10.1002/pmic.201500463. PubMed DOI PMC
Chocholova E., Bertok T., Jane E., Lorencova L., Holazová A., Belicka L., Belicky S., Mislovičová D., Vikartovská A., Imrich R., et al. Glycomics meets artificial intelligence—Potential of glycan analysis for identification of seropositive and seronegative rheumatoid arthritis patients revealed. Clin. Chim. Acta. 2018;481:49–55. doi: 10.1016/j.cca.2018.02.031. PubMed DOI
Chocholova E., Bertok T., Lorencova L., Holazova A., Farkas P., Vikartovska A., Bella V., Velicova D., Kasak P., Eckstein A.A., et al. Advanced antifouling zwitterionic layer based impedimetric HER2 biosensing in human serum: Glycoprofiling as a novel approach for breast cancer diagnostics. Sens. Actuators B Chem. 2018;272:626–633. doi: 10.1016/j.snb.2018.07.029. DOI
Scrucca L. GA: A Package for Genetic Algorithms inR. J. Stat. Softw. 2013;53:1–37. doi: 10.18637/jss.v053.i04. DOI
James G., Witten D., Hastie T., Tibshirani R. An Introduction to Statistical Learning: With Applications in R. Springer Science and Business Media LLC; New York, NY, USA: 2013.
Johnson P., Vandewater L., Wilson W., Maruff P., Savage G., Graham P., Macaulay L.S., Ellis K.A., Szoeke C., Martins R.N., et al. Genetic algorithm with logistic regression for prediction of progression to Alzheimer’s disease. BMC Bioinform. 2014;15:S11. doi: 10.1186/1471-2105-15-S16-S11. PubMed DOI PMC