Glycoprofiling of proteins as prostate cancer biomarkers: A multinational population study
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38498504
PubMed Central
PMC10947713
DOI
10.1371/journal.pone.0300430
PII: PONE-D-23-22079
Knihovny.cz E-zdroje
- MeSH
- časná detekce nádoru MeSH
- glykoproteiny MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádory prostaty * patologie MeSH
- polysacharidy MeSH
- prostata patologie MeSH
- prostatický specifický antigen * MeSH
- ROC křivka MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykoproteiny MeSH
- nádorové biomarkery MeSH
- polysacharidy MeSH
- prostatický specifický antigen * MeSH
The glycoprofiling of two proteins, the free form of the prostate-specific antigen (fPSA) and zinc-α-2-glycoprotein (ZA2G), was assessed to determine their suitability as prostate cancer (PCa) biomarkers. The glycoprofiling of proteins was performed by analysing changes in the glycan composition on fPSA and ZA2G using lectins (proteins that recognise glycans, i.e. complex carbohydrates). The specific glycoprofiling of the proteins was performed using magnetic beads (MBs) modified with horseradish peroxidase (HRP) and antibodies that selectively enriched fPSA or ZA2G from human serum samples. Subsequently, the antibody-captured glycoproteins were incubated on lectin-coated ELISA plates. In addition, a novel glycoprotein standard (GPS) was used to normalise the assay. The glycoprofiling of fPSA and ZA2G was performed in human serum samples obtained from men undergoing a prostate biopsy after an elevated serum PSA, and prostate cancer patients with or without prior therapy. The results are presented in the form of an ROC (Receiver Operating Curve). A DCA (Decision Curve Analysis) to evaluate the clinical performance and net benefit of fPSA glycan-based biomarkers was also performed. While the glycoprofiling of ZA2G showed little promise as a potential PCa biomarker, the glycoprofiling of fPSA would appear to have significant clinical potential. Hence, the GIA (Glycobiopsy ImmunoAssay) test integrates the glycoprofiling of fPSA (i.e. two glycan forms of fPSA). The GIA test could be used for early diagnoses of PCa (AUC = 0.83; n = 559 samples) with a potential for use in therapy-monitoring (AUC = 0.90; n = 176 samples). Moreover, the analysis of a subset of serum samples (n = 215) revealed that the GIA test (AUC = 0.81) outperformed the PHI (Prostate Health Index) test (AUC = 0.69) in discriminating between men with prostate cancer and those with benign serum PSA elevation.
Department of Immunochemistry Diagnostics University Hospital in Pilsen Pilsen Czech Republic
Glycanostics Ltd Bratislava Slovak Republic
Institute of Chemistry Bratislava Slovak Republic
Klinikum Lippe Clinic for Urology Detmold Germany
Zobrazit více v PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49. doi: 10.3322/caac.21660 PubMed DOI
Wright P, Wilding S, Watson E, Downing A, Selby P, Hounsome L, et al.. Key factors associated with social distress after prostate cancer: Results from the United Kingdom Life after Prostate Cancer diagnosis study. Cancer Epidemiol. 2019;60:201–7. doi: 10.1016/j.canep.2019.04.006 PubMed DOI
Houédé N, Rébillard X, Bouvet S, Kabani S, Fabbro-Peray P, Trétarre B, et al.. Impact on quality of life 3 years after diagnosis of prostate cancer patients below 75 at diagnosis: an observational case-control study. BMC Cancer. 2020;20(1):1–12. PubMed PMC
Trujillo B, Wu A, Wetterskog D, Attard G. Blood-based liquid biopsies for prostate cancer: clinical opportunities and challenges. Br J Cancer. 2022;127(8):1394–402. doi: 10.1038/s41416-022-01881-9 PubMed DOI PMC
Heijnsdijk EA, de Carvalho TM, Auvinen A, Zappa M, Nelen V, Kwiatkowski M, et al.. Cost-effectiveness of prostate cancer screening: a simulation study based on ERSPC data. J Natl Cancer Inst. 2015;107(1):366. doi: 10.1093/jnci/dju366 PubMed DOI PMC
Vickers AJ. Redesigning prostate cancer screening strategies to reduce overdiagnosis. Clin Chem. 2019;65(1):39–41. doi: 10.1373/clinchem.2018.287094 PubMed DOI PMC
Campos-Fernández E, Barcelos LS, de Souza AG, Goulart LR, Alonso-Goulart V. Research landscape of liquid biopsies in prostate cancer. Am J Cancer Res. 2019;9(7):1309. PubMed PMC
Bai Y, Zhao H. Liquid biopsy in tumors: opportunities and challenges. Annals Translat Med. 2018;6(Suppl 1):S89. PubMed PMC
Bertok T, Bertokova A, Hroncekova S, Chocholova E, Svecova N, Lorencova L, et al.. Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. Chemosensors. 2021;9(8):205.
Bertokova A, Svecova N, Kozics K, Gabelova A, Vikartovska A, Jane E, et al.. Exosomes from prostate cancer cell lines: Isolation optimisation and characterisation. Biomed Pharmacother. 2022;151:113093. doi: 10.1016/j.biopha.2022.113093 PubMed DOI
Tkac J, Bertok T, Hires M, Jane E, Lorencova L, Kasak P. Glycomics of prostate cancer: Updates. Exp Rev Proteomics. 2019;16(1):65–76. PubMed PMC
Tkac J, Gajdosova V, Hroncekova S, Bertok T, Hires M, Jane E, et al.. Prostate-specific antigen glycoprofiling as diagnostic and prognostic biomarker of prostate cancer. Interface Focus. 2019;9(2):20180077. doi: 10.1098/rsfs.2018.0077 PubMed DOI PMC
Petrosyan A. Onco-Golgi: is fragmentation a gate to cancer progression? Biochem Mol Biol J. 2015;1(1):16. doi: 10.21767/2471-8084.100006 PubMed DOI PMC
Bui S, Mejia I, Díaz B, Wang Y. Adaptation of the Golgi apparatus in cancer cell invasion and metastasis. Front Cell Develop Biol. 2021;9:806482. doi: 10.3389/fcell.2021.806482 PubMed DOI PMC
Zhang X. Alterations of golgi structural proteins and glycosylation defects in cancer. Front Cell Develop Biol. 2021;9:665289. doi: 10.3389/fcell.2021.665289 PubMed DOI PMC
Liu L, Doray B, Kornfeld S. Recycling of Golgi glycosyltransferases requires direct binding to coatomer. Proc Natl Acad Sci USA. 2018;115(36):8984–9. doi: 10.1073/pnas.1810291115 PubMed DOI PMC
Tu L, Banfield DK. Localization of Golgi-resident glycosyltransferases. Cell Mol Life Sci. 2010;67:29–41. doi: 10.1007/s00018-009-0126-z PubMed DOI PMC
Bertok T, Jane E, Bertokova A, Lorencova L, Zvara P, Smolkova B, et al.. Validating fPSA Glycoprofile as a Prostate Cancer Biomarker to Avoid Unnecessary Biopsies and Re-Biopsies. Cancers. 2020;12(10):2988. doi: 10.3390/cancers12102988 PubMed DOI PMC
Bertokova A, Bertok T, Jane E, Hires M, Ďubjaková P, Novotná O, et al.. Detection of N, N-diacetyllactosamine (LacdiNAc) containing free prostate-specific antigen for early stage prostate cancer diagnostics and for identification of castration-resistant prostate cancer patients. Biorg Med Chem. 2021;39:116156. PubMed
Bertok T, Tkac J. Means and methods for glycoprofiling of a protein. US Patent App. 17/041,816; 2021.
Peracaula R, Tabarés G, Royle L, Harvey DJ, Dwek RA, Rudd PM, et al.. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology. 2003;13(6):457–70. doi: 10.1093/glycob/cwg041 PubMed DOI
Pihikova D, Pakanova Z, Nemcovic M, Barath P, Belicky S, Bertok T, et al.. Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics. 2016;16(24):3085–95. doi: 10.1002/pmic.201500463 PubMed DOI PMC
Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst. 2016;141(3):1044–51. doi: 10.1039/c5an02322j PubMed DOI PMC
Tkac J, Bertok T, inventors; PCT/EP2022/072138, https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2023012352&_cid=P22-LDXXGC-67374-1, assignee. Standard for glycoprofiling of proteins. 2023.
Bertok T, Bertokova A, Jane E, Hires M, Aguedo J, Potocarova M, et al.. Identification of whole-serum glycobiomarkers for colorectal carcinoma using reverse-phase lectin microarray. Front Oncol. 2021;11:735338. doi: 10.3389/fonc.2021.735338 PubMed DOI PMC
Kuhn M. Building Predictive Models in R Using the caret Package. Journal of Statistical Software. 2008;28(5):1–26. PubMed
R Core Team: _R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2023. https://www.R-project.org/.
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al.. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):1–8. doi: 10.1186/1471-2105-12-77 PubMed DOI PMC
Zeileis A, Hothorn T. Diagnostic checking in regression relationships. R News 2002, 2(3), 7–10. https://CRAN.R-project.org/doc/Rnews/2002.
Nyalwidhe JO, Betesh LR, Powers TW, Jones EE, White KY, Burch TC, et al.. Increased bisecting N‐acetylglucosamine and decreased branched chain glycans of N‐linked glycoproteins in expressed prostatic secretions associated with prostate cancer progression. Proteom Clin Appl. 2013;7(9–10):677–89. doi: 10.1002/prca.201200134 PubMed DOI PMC
Kohler RS, Anugraham M, López MN, Xiao C, Schoetzau A, Hettich T, et al.. Epigenetic activation of MGAT3 and corresponding bisecting GlcNAc shortens the survival of cancer patients. Oncotarget. 2016;7(32):51674–86. doi: 10.18632/oncotarget.10543 PubMed DOI PMC
Chen Q, Tan Z, Guan F, Ren Y. The essential functions and detection of bisecting GlcNAc in cell biology. Front Chem. 2020;8:511. doi: 10.3389/fchem.2020.00511 PubMed DOI PMC
Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F. Zinc α2-glycoprotein: a multidisciplinary protein. Mol Cancer Res. 2008;6(6):892–906. PubMed
Butler W, Huang J. Glycosylation Changes in Prostate Cancer Progression. Front Oncol. 2021;11:809170. doi: 10.3389/fonc.2021.809170 PubMed DOI PMC
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells. 2022;11(9):1484. doi: 10.3390/cells11091484 PubMed DOI PMC
Narimatsu Y, Joshi HJ, Nason R, Van Coillie J, Karlsson R, Sun L, et al.. An Atlas of Human Glycosylation Pathways Enables Display of the Human Glycome by Gene Engineered Cells. Molecular Cell. 2019;75(2):394–407.e5. doi: 10.1016/j.molcel.2019.05.017 PubMed DOI PMC
Narimatsu Y, Büll C, Chen Y-H, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem. 2021;296:100448. doi: 10.1016/j.jbc.2021.100448 PubMed DOI PMC
Mathew S, Rapsey CM, Wibowo E. Psychosocial Barriers and Enablers for Prostate Cancer Patients in Starting a Relationship. J Sex Marital Ther. 2020;46(8):736–46. doi: 10.1080/0092623X.2020.1808549 PubMed DOI
Klotz LH. PSAdynia and other PSA-related syndromes: a new epidemic—a case history and taxonomy. Urology. 1997;50(6):831–2. Epub 1998/01/14. doi: 10.1016/S0090-4295(97)00490-1 PubMed DOI
Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J. Aberrant sialylation of a prostate-specific antigen: Electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta. 2016;934(-):72–9. doi: 10.1016/j.aca.2016.06.043 PubMed DOI PMC
Paleček E, Tkáč J, Bartosik M, Bertók Ts, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev. 2015;115(5):2045–108. doi: 10.1021/cr500279h PubMed DOI PMC