Twin Domain Structure in Magnetically Doped Bi2Se3 Topological Insulator
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GA19-13659S
Grantová Agentura České Republiky
PubMed
33086493
PubMed Central
PMC7603154
DOI
10.3390/nano10102059
PII: nano10102059
Knihovny.cz E-resources
- Keywords
- ab initio, defects, magnetic doping, topological insulators,
- Publication type
- Journal Article MeSH
Twin domains are naturally present in the topological insulator Bi2Se3 and strongly affect its properties. While studies of their behavior in an otherwise ideal Bi2Se3 structure exist, little is known about their possible interaction with other defects. Extra information is needed, especially for the case of an artificial perturbation of topological insulator states by magnetic doping, which has attracted a lot of attention recently. Employing ab initio calculations based on a layered Green's function formalism, we study the interaction between twin planes in Bi2Se3. We show the influence of various magnetic and nonmagnetic chemical defects on the twin plane formation energy and discuss the related modification of their distribution. Furthermore, we examine the change of the dopants' magnetic properties at sites in the vicinity of a twin plane, and the dopants' preference to occupy such sites. Our results suggest that twin planes repel each other at least over a vertical distance of 3-4 nm. However, in the presence of magnetic Mn or Fe defects, a close twin plane placement is preferred. Furthermore, calculated twin plane formation energies indicate that in this situation their formation becomes suppressed. Finally, we discuss the influence of twin planes on the surface band gap.
Institute of Solid State and Materials Physics Technical University of Dresden 01062 Dresden Germany
See more in PubMed
Bansil A., Lin H., Das T. Colloquium: Topological band theory. Rev. Mod. Phys. 2016;88:021004. doi: 10.1103/RevModPhys.88.021004. DOI
Xia Y., Qian D., Hsieh D., Wray L., Pal A., Lin H., Bansil A., Grauer D., Hor Y.S., Cava R.J., et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009;5:398–402. doi: 10.1038/nphys1274. DOI
Qi X.L., Zhang S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011;83:1057–1110. doi: 10.1103/RevModPhys.83.1057. DOI
Hsieh D., Xia Y., Qian D., Wray L., Meier F., Dil J.H., Osterwalder J., Patthey L., Fedorov A.V., Lin H., et al. Observation of Time-Reversal-Protected Single-Dirac-Cone Topological-Insulator States in Bi2Te3 and Sb2Te3. Phys. Rev. Lett. 2009;103:146401. doi: 10.1103/PhysRevLett.103.146401. PubMed DOI
Hasan M.Z., Kane C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010;82:3045–3067. doi: 10.1103/RevModPhys.82.3045. DOI
Zhang Y., He K., Chang C.Z., Song C.L., Wang L.L., Chen X., Jia J.F., Fang Z., Dai X., Shan W.Y., et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010;6:584–588. doi: 10.1038/nphys1689. DOI
Cayssol J. Introduction to Dirac materials and topological insulators. C. R. Phys. 2013;14:760–778. doi: 10.1016/j.crhy.2013.09.012. DOI
Zhang H., Liu C.X., Qi X.L., Dai X., Fang Z., Zhang S.C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009;5:438–442. doi: 10.1038/nphys1270. DOI
Freitas R.R.Q., de Brito Mota F., Rivelino R., de Castilho C.M.C., Kakanakova-Georgieva A., Gueorguiev G.K. Tuning band inversion symmetry of buckled III-Bi sheets by halogenation. Nanotechnology. 2016;27:055704. doi: 10.1088/0957-4484/27/5/055704. PubMed DOI
Bernevig B., Hughes T. Topological Insulators and Topological Superconductors. Princeton University Press; Princeton, NJ, USA: 2013.
Ortmann F., Roche S., Valenzuela S. Topological Insulators: Fundamentals and Perspectives. Wiley-VCH; Weinheim, Germany: 2015.
König M., Wiedmann S., Brüne C., Roth A., Buhmann H., Molenkamp L.W., Qi X.L., Zhang S.C. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science. 2007;318:766–770. doi: 10.1126/science.1148047. PubMed DOI
Wray L.A., Xu S.Y., Xia Y., Hsieh D., Fedorov A.V., Hor Y.S., Cava R.J., Bansil A., Lin H., Hasan M.Z. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nat. Phys. 2010;7:32–37. doi: 10.1038/nphys1838. DOI
Xu S.Y., Neupane M., Liu C., Zhang D., Richardella A., Andrew Wray L., Alidoust N., Leandersson M., Balasubramanian T., Sánchez-Barriga J., et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator. Nat. Phys. 2012;8:616–622. doi: 10.1038/nphys2351. DOI
Chen Y.L., Chu J.H., Analytis J.G., Liu Z.K., Igarashi K., Kuo H.H., Qi X.L., Mo S.K., Moore R.G., Lu D.H., et al. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science. 2010;329:659–662. doi: 10.1126/science.1189924. PubMed DOI
Chang C.Z., Zhang J., Liu M., Zhang Z., Feng X., Li K., Wang L.L., Chen X., Dai X., Fang Z., et al. Thin Films of Magnetically Doped Topological Insulator with Carrier-Independent Long-Range Ferromagnetic Order. Adv. Mater. 2013;25:1065–1070. doi: 10.1002/adma.201203493. PubMed DOI
Carva K., Kudrnovský J., Máca F., Drchal V., Turek I., Baláž P., Tkáč V., Holý V., Sechovský V., Honolka J. Electronic and transport properties of the Mn-doped topological insulator Bi2Te3: A first-principles study. Phys. Rev. B. 2016;93:214409. doi: 10.1103/PhysRevB.93.214409. DOI
Máca F., Kudrnovský J., Baláž P., Drchal V., Carva K., Turek I. Tetragonal CuMnAs alloy: Role of defects. J. Magn. Magn. Mater. 2019;474:467–471. doi: 10.1016/j.jmmm.2018.10.145. DOI
Zhang W., Yu R., Zhang H.J., Dai X., Fang Z. First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3. New J. Phys. 2010;12:065013. doi: 10.1088/1367-2630/12/6/065013. DOI
Lee Y., Punugupati S., Wu F., Jin Z., Narayan J., Schwartz J. Evidence for topological surface states in epitaxial Bi2Se3 thin film grown by pulsed laser deposition through magneto-transport measurements. Curr. Opin. Solid State Mater. Sci. 2014;18:279–285. doi: 10.1016/j.cossms.2014.07.001. DOI
Kriegner D., Harcuba P., Veselý J., Lesnik A., Bauer G., Springholz G., Holý V. Twin domain imaging in topological insulator Bi2Te3 and Bi2Se3 epitaxial thin films by scanning X-ray nanobeam microscopy and electron backscatter diffraction. J. Appl. Crystallogr. 2017;50:369–377. doi: 10.1107/S1600576717000565. PubMed DOI PMC
Eremeev S.V., Vergniory M.G., Menshchikova T.V., Shaposhnikov A.A., Chulkov E.V. The effect of van der Waal’s gap expansions on the surface electronic structure of layered topological insulators. New J. Phys. 2012;14:113030. doi: 10.1088/1367-2630/14/11/113030. DOI
Zhang J.M., Ming W., Huang Z., Liu G.B., Kou X., Fan Y., Wang K.L., Yao Y. Stability, electronic, and magnetic properties of the magnetically doped topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. Phys. Rev. B. 2013;88:235131. doi: 10.1103/PhysRevB.88.235131. DOI
Hor Y.S., Roushan P., Beidenkopf H., Seo J., Qu D., Checkelsky J.G., Wray L.A., Hsieh D., Xia Y., Xu S.Y., et al. Development of ferromagnetism in the doped topological insulator Bi2-xMnxTe3. Phys. Rev. B. 2010;81:195203. doi: 10.1103/PhysRevB.81.195203. DOI
Zhang J.M., Zhu W., Zhang Y., Xiao D., Yao Y. Tailoring Magnetic Doping in the Topological Insulator Bi2Se3. Phys. Rev. Lett. 2012;109:266405. doi: 10.1103/PhysRevLett.109.266405. PubMed DOI
Ghasemi A., Kepaptsoglou D., Figueroa A.I., Naydenov G.A., Hasnip P.J., Probert M.I.J., Ramasse Q., van der Laan G., Hesjedal T., Lazarov V.K. Experimental and density functional study of Mn doped Bi2Te3 topological insulator. APL Mater. 2016;4:126103. doi: 10.1063/1.4971354. DOI
Figueroa A.I., van der Laan G., Collins-McIntyre L.J., Cibin G., Dent A.J., Hesjedal T. Local Structure and Bonding of Transition Metal Dopants in Bi2Se3 Topological Insulator Thin Films. J. Phys. Chem. C. 2015;119:17344–17351. doi: 10.1021/jp511713s. DOI
Rienks E.D.L., Wimmer S., Sánchez-Barriga J., Caha O., Mandal P.S., Ruzicka J., Ney A., Steiner H., Volobuev V.V., Groiss H., et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature. 2019;576:423–428. doi: 10.1038/s41586-019-1826-7. PubMed DOI
Růžička J., Caha O., Holý V., Steiner H., Volobuiev V., Ney A., Bauer G., Duchoň T., Veltruská K., Khalakhan I., et al. Structural and electronic properties of manganese-doped Bi2Te3 epitaxial layers. New J. Phys. 2015;17:013028. doi: 10.1088/1367-2630/17/1/013028. DOI
Carva K., Baláž P., Šebesta J., Turek I., Kudrnovský J., Máca F., Drchal V., Chico J., Sechovský V., Honolka J. Magnetic properties of Mn-doped Bi2Se3 topological insulators: Ab initio calculations. Phys. Rev. B. 2020;101:054428. doi: 10.1103/PhysRevB.101.054428. DOI
Ptok A., Kapcia K.J., Ciechan A. Electronic properties of Bi2Se3 dopped by 3d transition metal (Mn, Fe, Co, or Ni) ions. J. Phys. Condens. Matter. 2020 doi: 10.1088/1361-648X/abba6a. PubMed DOI
Wei X., Zhang J., Zhao B., Zhu Y., Yang Z. Ferromagnetism in Fe-doped Bi2Se3 topological insulators with Se vacancies. Phys. Lett. A. 2015;379:417–420. doi: 10.1016/j.physleta.2014.11.032. DOI
Hor Y.S., Richardella A., Roushan P., Xia Y., Checkelsky J.G., Yazdani A., Hasan M.Z., Ong N.P., Cava R.J. p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys. Rev. B. 2009;79:195208. doi: 10.1103/PhysRevB.79.195208. DOI
Scanlon D.O., King P.D.C., Singh R.P., de la Torre A., Walker S.M., Balakrishnan G., Baumberger F., Catlow C.R.A. Controlling Bulk Conductivity in Topological Insulators: Key Role of Anti-Site Defects. Adv. Mater. 2012;24:2154–2158. doi: 10.1002/adma.201200187. PubMed DOI
Wolos A., Drabinska A., Borysiuk J., Sobczak K., Kaminska M., Hruban A., Strzelecka S.G., Materna A., Piersa M., Romaniec M., et al. High-spin configuration of Mn in Bi2Se3 three-dimensional topological insulator. J. Magn. Magn. Mater. 2016;419:301–308. doi: 10.1016/j.jmmm.2016.06.017. DOI
Huang F.T., Chu M.W., Kung H.H., Lee W.L., Sankar R., Liou S.C., Wu K.K., Kuo Y.K., Chou F.C. Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3. Phys. Rev. B. 2012;86:081104. doi: 10.1103/PhysRevB.86.081104. DOI
Miao L., Xu Y., Zhang W., Older D., Breitweiser S.A., Kotta E., He H., Suzuki T., Denlinger J.D., Biswas R.R., et al. Observation of a topological insulator Dirac cone reshaped by non-magnetic impurity resonance. NPJ Quantum Mater. 2018;3:29. doi: 10.1038/s41535-018-0101-8. DOI
Sánchez-Barriga J., Varykhalov A., Springholz G., Steiner H., Kirchschlager R., Bauer G., Caha O., Schierle E., Weschke E., Ünal A.A., et al. Nonmagnetic band gap at the Dirac point of the magnetic topological insulator (Bi(1-x)Mnx)2Se3. Nat. Commun. 2016;7:10559. doi: 10.1038/ncomms10559. PubMed DOI PMC
Medlin D.L., Yang N.Y.C. Interfacial Step Structure at a (0001) Basal Twin in Bi2Te3. J. Electron. Mater. 2012;41:1456–1464. doi: 10.1007/s11664-011-1859-7. DOI
Medlin D.L., Ramasse Q.M., Spataru C.D., Yang N.Y.C. Structure of the (0001) basal twin boundary in Bi2Te3. J. Appl. Phys. 2010;108:043517. doi: 10.1063/1.3457902. DOI
Tarakina N.V., Schreyeck S., Luysberg M., Grauer S., Schumacher C., Karczewski G., Brunner K., Gould C., Buhmann H., Dunin-Borkowski R.E., et al. Suppressing Twin Formation in Bi2Se3 Thin Films. Adv. Mater. Interfaces. 2014;1:1400134. doi: 10.1002/admi.201400134. DOI
Levy I., Garcia T.A., Shafique S., Tamargo M.C. Reduced twinning and surface roughness of Bi2Se3 and Bi2Te3 layers grown by molecular beam epitaxy on sapphire substrates. J. Vac. Sci. Technol. B. 2018;36:02D107. doi: 10.1116/1.5017977. DOI
Aramberri H., Cerdá J.I., Muñoz M.C. Tunable Dirac Electron and Hole Self-Doping of Topological Insulators Induced by Stacking Defects. Nano Lett. 2015;15:3840–3844. doi: 10.1021/acs.nanolett.5b00625. PubMed DOI
Skriver H.L. The LMTO Method: Muffin-Tin Orbitals and Electronic Structure. Springer; Berlin, Germnay: 2012.
Turek I., Drchal V., Kudrnovsky J., Sob M., Weinberger P. Electronic Structure of Disordered Alloys, Surfaces and Interfaces. Kluwer; Boston, MA, USA: 1997.
Vosko S.H., Wilk L., Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI
Freitas R.R.Q., de Brito Mota F., Rivelino R., de Castilho C.M.C., Kakanakova-Georgieva A., Gueorguiev G.K. Spin-orbit-induced gap modification in buckled honeycomb XBi and XBi3 (X=B, Al, Ga, and In) sheets. J. Phys. Condens. Matter. 2015;27:485306. doi: 10.1088/0953-8984/27/48/485306. PubMed DOI
Korzhavyi P.A., Ruban A.V., Abrikosov I.A., Skriver H.L. Madelung energy for random metallic alloys in the coherent potential approximation. Phys. Rev. B. 1995;51:5773–5780. doi: 10.1103/PhysRevB.51.5773. PubMed DOI
Velický B., Kirkpatrick S., Ehrenreich H. Single-Site Approximations in the Electronic Theory of Simple Binary Alloys. Phys. Rev. 1968;175:747–766. doi: 10.1103/PhysRev.175.747. DOI
Kudrnovský J., Drchal V., Blaas C., Weinberger P., Turek I., Bruno P. Ab initio theory of perpendicular magnetotransport in metallic multilayers. Phys. Rev. B. 2000;62:15084–15095. doi: 10.1103/PhysRevB.62.15084. DOI
Turek I., Kudrnovský J., Šob M., Drchal V., Weinberger P. Ferromagnetism of Imperfect Ultrathin Ru and Rh Films on a Ag(001) Substrate. Phys. Rev. Lett. 1995;74:2551–2554. doi: 10.1103/PhysRevLett.74.2551. PubMed DOI
Kudrnovský J., Drchal V., Turek I., Dederichs P., Weinberger P., Bruno P. Ab initio theory of perpendicular transport in layered magnetic systems. J. Magnetism Magn. Mater. 2002;240:177–179. doi: 10.1016/S0304-8853(01)00748-X. DOI
Spedding F.H., Daane A.H., Herrmann K.W. The crystal structures and lattice parameters of high-purity scandium, yttrium and the rare earth metals. Acta Crystallogr. 1956;9:559–563. doi: 10.1107/S0365110X5600156X. DOI
Vališka M., Warmuth J., Michiardi M., Vondráček M., Ngankeu A.S., Holý V., Sechovský V., Springholz G., Bianchi M., Wiebe J., et al. Topological insulator homojunctions including magnetic layers: The example of n-p type (n-QLs Bi2Se3/Mn-Bi2Se3) heterostructures. Appl. Phys. Lett. 2016;108:262402. doi: 10.1063/1.4954834. DOI
Liechtenstein A., Katsnelson M., Antropov V., Gubanov V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 1987;67:65–74. doi: 10.1016/0304-8853(87)90721-9. DOI
Turek I., Kudrnovský J., Drchal V., Bruno P. Exchange interactions, spin waves, and transition temperatures in itinerant magnets. Philos. Mag. 2006;86:1713–1752. doi: 10.1080/14786430500504048. DOI
Polyakov A., Meyerheim H.L., Crozier E.D., Gordon R.A., Mohseni K., Roy S., Ernst A., Vergniory M.G., Zubizarreta X., Otrokov M.M., et al. Surface alloying and iron selenide formation in Fe/Bi2Se3(0001) observed by x-ray absorption fine structure experiments. Phys. Rev. B. 2015;92:045423. doi: 10.1103/PhysRevB.92.045423. DOI
Alexandre S.S., Anglada E., Soler J.M., Yndurain F. Magnetism of two-dimensional defects in Pd: Stacking faults, twin boundaries, and surfaces. Phys. Rev. B. 2006;74:054405. doi: 10.1103/PhysRevB.74.054405. DOI
Editorial for the Special Issue on Computational Quantum Physics and Chemistry of Nanomaterials