Tenebrio molitor (Coleoptera: Tenebrionidae)-Optimization of Rearing Conditions to Obtain Desired Nutritional Values

. 2020 Sep 01 ; 20 (5) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33089873

The present study dealt with the influence of temperature and feed on the nutritional value of Tenebrio molitor, especially on the content of crude protein, amino acids, fat, and fatty acid profile. Tenebrio molitor larvae were kept in 15, 20, and 25°C and fed with wheat bran, lentil flour, and mixture. The parameters were analyzed by international standard methods. Generally, with an increase of the lentils in the feed, the crude protein content increased. The changes in the temperature and the feed were most pronounced on the essential amino acids Val, Arg, and Leu. The highest average fat content was determined at 20°C in insects fed with wheat bran. The lowest fat content was determined at 15°C in bran-fed insects. The dependency of fat content on the temperature in feeding with lentil flour and a mixture of wheat bran and lentil flour was statistically insignificant (P > 0.05, Kruskal-Wallis, Mann-Whitney post hoc tests). The highest content of polyene fatty acids was achieved at a rearing temperature of 15°C and the bran diet. It was concluded that a higher proportion of protein diet could increase the content of crude protein in the insects. An increase in the temperature generally leads only to a slight increase in the content of nitrogenous substances. The influence of feed on this nutritional parameter is therefore much more significant than the effect of the rearing temperature. In general, it can be stated that the feed and the temperature also significantly affect the fat content.

Zobrazit více v PubMed

Bednářová M, Borkovcová M, Mlček J, Rop O, and Zeman L. . 2013. Edible insects – species suitable for entomophagy under condition of Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 61: 587–593.

van Broekhoven S, Oonincx D G, van Huis A, and van Loon J J. . 2015. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 73: 1–10. PubMed

Bukkens G F. 2005. Insects in the human diet: nutritional aspects, pp. 545–577. In  Paoletti M G. (ed.), Ecological implications of minilivestock: potential of insects, rodents, frogs and snails. Science Publishers, Enfield, NH.

Defoliart G R. 1992. Insects as human food. Crop Prot. 11: 395–399.

Dostálová J, Dlouhý P, and Tláskal P. . 2012. Výživová doporučení pro obyvatelstvo České republiky Společnost pro výživu; http://www.vyzivaspol.cz/vyzivova-doporuceni-pro-obyvatelstvo-ceske-republiky/.

Dreassi E, Cito A, Zanfini A, Materozzi L, Botta M, and Francardi V. . 2017. Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). Lipids. 52: 285–294. PubMed

(FAO) Food and Agriculture Organization of the United Nations 2013. Dietary protein quality evaluation in human nutrition: report of an FAO expert consultation. FAO, Rome, Italy.

Grau T, Vilcinskas A, and Joop G. . 2017. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Z. Naturforsch. C. J. Biosci. 72: 337–349. PubMed

van Huis A. 2016. Edible insects are the future?  Proc. Nutr. Soc. 75: 294–305. PubMed

van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, and Vantomme P. . 2013. Edible insects: future prospects for food and feed security. FAO UN, Forestry Department, Rome, Italy.

ISO 1871:2009. Food and feed products-General guidelines for the determination of nitrogen by the Kjeldahl method. International Organization for Standardization, Geneva, Switzerland.

Józefiak A, Kierończyk B, Rawski M, Mazurkiewicz J, Benzertiha A, Gobbi P, Nogales-Merida S, Świątkiewicz S, and Józefiak D. . 2018. Full-fat insect meals as feed additive – the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci. 27: 131–139.

Keeley L L. 1985. Biochemistry and physiology of the insect fat body, pp. 211–248. In  Kerkut G A and Gilbert L I (eds.), Comprehensive insect physiology, biochemistry and pharmacology. Pergamon, New York.

Kim S Y, Park J B, Lee Y B, Yoon H J, Lee Y, and Kim N J. . 2015. Growth characteristics of mealworm Tenebrio molitor. J. Sericult. Entomol. Sci. 53: 1–5.

Li L Y, Zhao Z R, and Liu H. . 2013. Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronaut. 92: 103–109.

Li L, Xie B, Dong C, Hu D, Wang M, Liu G, and Liu H. . 2015. Rearing Tenebrio molitor L. (Coleoptera: Tenebrionidae) in the “Lunar Palace 1” during a 105-day multi-crew closed integrative BLSS experiment. Life Sci. Space Res. (Amst). 7: 9–14. PubMed

Mancini S, Fratini F, Turchi B, Mattioli S, Dal Bosco A, Tuccinardi T, Nozic S and Paci G. . 2019. Former foodstuff products in Tenebrio Molitor rearing: effects on growth, chemical composition, microbiological load, and antioxidant status. Animals. 9. Article number 484, 1–13. PubMed PMC

Mišurcová L, Buňka F, Ambrožová J V, Machů L, Samek D, and Kráčmar S. . 2014. Amino acid composition of algal products and its contribution to RDI. Food Chem. 151: 120–125. PubMed

Mlček J, Rop O, Borkovcova M, and Bednarova M. . 2014. A comprehensive look at the possibilities of edible insects as food in Europe - a review. Polish J. Food Nutr. Sci. 64: 147–157.

Oonincx D G A B, and van der Poel A F B. . 2011. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 30: 9–16. PubMed

Oonincx D G A B, van Broekhoven S, van Huis A, and van Loon J J A. . 2015. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS One  10: 1–20. PubMed PMC

Paul A, Frederich M, Uyttenbroeck R, Hatt S, Malik P, Lebecque S, Hamaidia M, Miazek K, Goffin D, Willems L, . et al.  2016. Grasshoppers as a food source? A review. Biotechnol. Agron. Soc. 20: 337–352.

Ramos-Elorduy J, Moreno J M P, Vázquez A I, Landero I, Oliva-Rivera H, and Camacho V H. . 2011. Edible Lepidoptera in Mexico: geographic distribution, ethnicity, economic and nutritional importance for rural people. J. Ethnobiol. Ethnomed. 7. Article number 2, 1–22. PubMed PMC

Ravzanaadii N, Kim S H, Choi W H, Hong S J, and Kim N J. . 2012. Nutritional value of mealworm, Tenebrio molitor as food source. Int. J. Ind. Entomol. 25: 93–98.

Rumpold B A, and Schlüter O K. . 2013. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 57: 802–823. PubMed

Ruschioni S, Loreto N, Foligni R, Mannozzi C, Raffaelli N, Zamporlini F, Pasquini M, Roncolini A, Cardinali F, Osimani A, . et al.  2020. Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio Molitor L.) larvae. Foods. 9: 317. PubMed PMC

Sogari G, Amato M, Biasato I, Chiesa S, and Gasco L. . 2019. The potential role of insects as feed: a multi-perspective review. Animals  9: 1–15. PubMed PMC

Sogbesan A O, and Ugwumba A A A. . 2008. Nutritional evaluation of termite (Macrotermes subhyalinus) meal as animal protein supplements in the diets of Heterobranchus longifilis (Valenciennes, 1840) fingerlings. Turk. J. Fish. Aquat. Sci. 8: 149–157.

Soxhlet F. 1871. Die gewichtsanalytische bestimmung des Milchfettes. Dinglers Polytech. J. 232: 461–465.

Svačina Š. 2010. Poruchy metabolismu a výživy, 1st ed. Galén, Prague, Czech Republic.

Wang H C, Liao H Y, and Chen H L. . 2012. Tenebrio small-scale ecological farming feasibility study. Adv. Mater. Res. 356–360: 267–270.

Wu R A, Ding Q, Yin L, Chi X, Sun N, He R, Luo L, Ma H and Li Z. . 2020. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): amino acid, fatty acid, and element profiles. Food Chem. 323. Article number 126818, 1–8. PubMed

Xu S C, Gu M Z, Liu X W and Yang L L. . 2012. Experimental population life table of Tenebrio molitor at different temperatures. J. Henan Agric. Sci. 3: 85–89.

Yi L, Lakemond C M M, Sagis L M C, Eisner-Schadler V, van Huis A, and van Boekel M A J S. . 2013. Extraction and characterisation of protein fractions from five insect species. Food Chem. 141: 3341–3348. PubMed

Zielińska E, Baraniak B, Karaś M, Rybczyńska K, and Jakubczyk A. . 2015. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 77: 460–466.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...